
1

CS 297 Report

An MP3-based Currency System.

By

Timothy Chen

Project Advisor: Dr. Chris Pollett

Department of Computer Science

San José State University

One Washington Square

San José, CA 95112

2

Introduction
Recently crypto-currencies such as Bitcoin have become popular. This project

proposes a new crypto-currency system which will allow music artists to upload their

music in MP3 format to a website that I have implemented and earn the new cypto-

currency I have created. The amount earned depends on how long the users of the website

listen to the music. The technologies I am going to use are JavaScript for the front end of

the website, PHP for the back end of the website, and a one way function to do the hash

encryption for the currency coin.

My proposed MP3-based currency system will mimic the Bitcoin architecture

with a modified mining process and a slightly different transaction process. Instead of

using the hash cash-based proof-of-work system in mining Bitcoins, the MP3-based

currency system will award artists after they upload an MP3-based song and users listen

to it. Like the Bitcoin system, the MP3-based currency system uses a public key

infrastructure to verify transactions. The amount of currency transferred is based on the

length of time for which an artist’s song was listened to.

 This semester, I worked on various experiments for the new currency system. I

researched the background of the Bitcoin and how it works, and implemented hash

function and music function. The work was divided into four deliverables. The first

deliverable involved doing research to understand the Bitcoin, involved installing Bitcoin

wallet, and involved trying to do Bitcoin mining. The second deliverable was using

JavaScript to demonstrate a hash function to use for the new currency. The third

deliverable was using JavaScript to implement Tiger hash or implement SHA256 hash.

The fourth deliverable was using JavaScript to implement function to compute hashes as

long as audio is being played.

3

Deliverable 1

During my research I found out that the Bitcoin virtual currency uses a peer-to-

peer technology to operate without any central authority and there is no need to use banks

to manage transactions. The issuing of Bitcoins is done by the network. Bitcoin is open-

source; anyone can own or mine for Bitcoins. Bitcoins are spent like real currency. Each

transaction is broadcast to the Bitcoin framework with details such as the amount, source,

destination, timestamp of the transaction, and the public keys of the Bitcoins involved in

the transaction. Each Bitcoin has a public key and a private key. The private key is used

to determine who has ownership of the Bitcoin and the public key is used to sign the

Bitcoin for owner verification for the transaction. For example, suppose Owner 1 needs

to buy a car from Owner 2. Owner 1 needs to transfer the Bitcoins to the next person by

digitally signing a hash of the previous transaction to change ownership of the Bitcoins to

Owner 2 that uses the private key. The public key will be use to verify that the Bitcoin

changed ownership to Owner 2 as the graph below shows:

How do we prevent Owner 1 from double-spending the same Bitcoin to buy other stuff

from Owner 3? The solution is to use a timeStamp. As mentioned before, the Bitcoin

system is peer-to-peer, so anyone who gains ownership of Bitcoin will know the

4

transaction history of the Bitcoin. When someone gives someone else a Bitcoin, then

everyone else knows at what time the transaction occurred. This will prevent the use of

the same Bitcoin twice because once transaction occurs, the record of the transaction will

go public. Everyone will know what time that Bitcoin was used, and the Bitcoin will not

be able to reused by the same person twice in a row.

 How do we get Bitcoins? There are three ways to get Bitcoins: first, they can be

bought from a Bitcoin exchange website such as like https://www.mtgox.com/ (now

defunct) and https://coinbase.com/. The price for Bitcoins fluctuates on a daily basis from

about $100 to $1,000, similar to stocks. Second, one can get Bitcoins by Bitcoin mining.

The mining system uses SHA256 hash generates a hash give 32 hex digit. If the generate

begins with a zero bit in a single hash, then you got a Bitcoin. Over time, more people are

doing Bitcoin mining, so it will get harder and harder to mine Bitcoins. Previously one

could mine Bitcoin using a string such as ‘abc’ and by generating a 32-bit number that

starts with two zeroes like 00123456789012345678901234567891, but now you have to

generate a hash string like 00000056789012345678901234567891 with six zeroes at the

beginning in order to mine a Bitcoin. The third way to get Bitcoins is to do verification.

Whenever there is any transaction moving Bitcoins, people need to verify whether this

coin was previously used or not by utilizing their computer’s processing power. Whoever

gets notified and verifies the transaction first will be paid small reward, which is typically

a small part of a Bitcoin such as .00001 Bitcoin or even less depending on the amount of

Bitcoin in the transaction. Bitcoin is a framework of coins made from digital signatures,

which provides strong control of ownership and prevents double-spending. The only way

to attack this framework may be to use fake nodes to send a lot of verify requests. The

https://www.mtgox.com/
https://coinbase.com/

5

verifying will be very slow and during that time, the attacker can double-send while

verifications are not finished. Bitcoin exchange websites need to defend against this

attack by coding carefully to prevent attackers from selling anything while the Bitcoin is

not finished verifying prior transactions.

 The next part of this deliverable was to install a Bitcoin wallet and mine Bitcoins.

I went to the https://bitminter.com/ website and created an account, so that I have a wallet

at the website. All the Bitcoin I mine are saved to this wallet. Then I installed the

“BitMiner Client” application, which generates different hashes in order for me to mine

Bitcoins and also do verification. All the Bitcoins I obtained from mining are saved to my

account in bitminter.com. A screenshot of the “BitMiner Client” application is shown

below:

The screenshot below shows how many Bitcoins I got from mining:

https://bitminter.com/

6

The application examines my GPU processing power to determine how many hashes I

can generate every second to send to the Bitcoin framework and see if we can get any

strings of hashes with starting zero the Bitcoin machine want it. The mining tool can use:

ASIC card, our CPU, and graphics card. The speed at which Bitcoins are mined depends

on how powerful our computer graphics card or ASIC machine is that we use to generate

the hash. The chart below shows how different ASIC machines, Nvidia graphic card, and

AMD(ATI) graph card can mine Bitcoins rate, and their current price I got below

information from https://en.bitcoin.it/wiki/Mining_hardware_comparison/,

http://www.videocardbenchmark.net/video_lookup.php?gpu=GeForce+GTX+670/,

http://www.tomshardware.com/reviews/geforce-gtx-660-ti-benchmark-review,3279-

12.html/, and http://www.Amazon.com/ :

Product Name Generate Mhash/s Price

https://en.bitcoin.it/wiki/Mining_hardware_comparison/
http://www.videocardbenchmark.net/video_lookup.php?gpu=GeForce+GTX+670/
http://www.tomshardware.com/reviews/geforce-gtx-660-ti-benchmark-review,3279-12.html/
http://www.tomshardware.com/reviews/geforce-gtx-660-ti-benchmark-review,3279-12.html/

7

ASIC Avalon Asic #1 107 $1299

ASIC Avalon Asic #2 117 $1499

ASIC Avalon Asic #3 117 $1499

AMD(ATI) Radeon HD 7970 603.8 $350

AMD(ATI) Radeon HD 7950 517 $229.99

AMD(ATI) Radeon HD 6970 389.9 $169.99

Nvidia GTX 770 123 $370

Nvidia GTX 670 112 $289

Nvidia GTX 660 Ti 96 $189

We found out ATI graphics cards are good for Bitcoin mining. For the same price, they

are much faster than Nvidia. For example, the Nvidia GTX770 and ATI Radeon HD 7970

both cost around $350, but the GTX770 can only generate 123 hash strings while the

Radeon HD 7970 can generate 603 hash strings. The Radeon HD7970 is four to five

times faster at generating hashes than the GTX 770 for the same price.

8

Deliverable 2

 The second deliverable is using JavaScript to demonstrate a hash function for use

in a new currency. After the research I did on Deliverable 1, I found out how to generate

hashes by having the user enter a string and how many zeroes they want at the start of the

hash string, and then the hash function will return a hash string with the requested

number of zeroes at the start. Below is a screenshot of my test application:

The “text to hash” input box allows a user to enter the text they want to hash and the

“enter zero” input box will allows the user to choose how many zeros at the beginning are

required in order to mine for a coin. The “calculate” section uses the MD5 hash algorithm

to generate the 32 hex digit to be displayed in the "result" text box from the string that the

user entered in the "Text to hash" text box. The code was obtained from

http://pajhome.org.uk/crypt/md5/.

http://pajhome.org.uk/crypt/md5/

9

Clicking “ADDSTRING” button, generates the hash based on the user inputs in the “text

to hash” and “enter zero” input boxes using a function called “hex_add.” For example, if

a user entered ‘abc’ this function will add characters after it. I use a for loop to determine

the ASCII code from 0 to 255 to put into the MD5 function to see if the number of zeroes

in the start of the hash string generated will match the value of the “Enter Zero” input

box. If adding one character cannot generate a hash string as specified, then the function

will keep changing and adding additional characters until the generated hash string

satisfies the “Enter Zero” input. For example, given input ‘abc’ and ‘2’, character would

result in string ‘bac1’ which will be changed to ‘abc2’ if abc1’ does not generate a hash

string as specified. If just adding one character does not generate a hash string starting

with two zeroes, we will add another character at end, and it will be abc11, then abc12,

and so on. Basically, it tries all 256 ASCII codes for each added character until we

generate the desired hash string. The screenshot below shows how this code works.

 for (var i=0; i<len; i++)

 {

 var currentone = (str.charAt(i)).charCodeAt(0);

 if (currentone <= 255)

 {

 currentone = currentone+1;

 var res = String.fromCharCode(currentone);

 str = str.replaceAt(i,String.fromCharCode(currentone));

 var hash = hex_md5(userstring+str);

 if (hash.charAt(0) == "0")

 {

 found = true;

 }

 for (var i=1; i<zerolength; i++)

 {

 if (hash.charAt(i) != "0")

10

 {

 found = false;

 }

 }

 if (found)

 {

 break;

 }

 }

 else

 {

 currentone = 0;

 var init = String.fromCharCode(currentone);

 str = str.replaceAt(i,String.fromCharCode(currentone));

 str += String.fromCharCode(0);

 }

 }

11

Deliverable 3

The third deliverable was to implement the Tiger hash function or SHA256 hash

function. I decided to implement the SHA256 using the pseudocode from

http://en.wikipedia.org/wiki/SHA-2. SHA256 is a one way hashing method, meaning it

can encrypt text but cannot be used to generate the original text. The implementation

works like this: when a user enters a string, the input string is divided into 512 bit

message blocks. Each message block and its prior intermediate hash value is processed

by a message schedule and a compression function to produce a 256 bit intermediate hash

value. The initial hash value is the square root of the first eight primes 2…19. Each

message block is further broken down into 16 32-bit words. The 16 words are extended to

a 64 entry message schedule array. The message schedule function is to improve the

compression function's quality since the compression function is operated on a longer

message schedule array. The compression function consists of bitwise operations such as

XOR, AND, OR, SHIFT operations and so on. The pseudo code of my implementation

of the SHA256 algorithm from the Wikipedia article is described in more detail below:

Initialize hash values:

(first 32 bits of the fractional parts of the square roots of the first

8 primes 2..19):

h0 := 0x6a09e667

h1 := 0xbb67ae85

h2 := 0x3c6ef372

h3 := 0xa54ff53a

h4 := 0x510e527f

h5 := 0x9b05688c

h6 := 0x1f83d9ab

h7 := 0x5be0cd19

Initialize array of round constants:

(first 32 bits of the fractional parts of the cube roots of the first

64 primes 2..311):

k[0..63] :=

 0x428a2f98, 0x71374491, 0xb5c0fbcf, 0xe9b5dba5, 0x3956c25b,

0x59f111f1, 0x923f82a4, 0xab1c5ed5,

http://en.wikipedia.org/wiki/SHA-2

12

 0xd807aa98, 0x12835b01, 0x243185be, 0x550c7dc3, 0x72be5d74,

0x80deb1fe, 0x9bdc06a7, 0xc19bf174,

 0xe49b69c1, 0xefbe4786, 0x0fc19dc6, 0x240ca1cc, 0x2de92c6f,

0x4a7484aa, 0x5cb0a9dc, 0x76f988da,

 0x983e5152, 0xa831c66d, 0xb00327c8, 0xbf597fc7, 0xc6e00bf3,

0xd5a79147, 0x06ca6351, 0x14292967,

 0x27b70a85, 0x2e1b2138, 0x4d2c6dfc, 0x53380d13, 0x650a7354,

0x766a0abb, 0x81c2c92e, 0x92722c85,

 0xa2bfe8a1, 0xa81a664b, 0xc24b8b70, 0xc76c51a3, 0xd192e819,

0xd6990624, 0xf40e3585, 0x106aa070,

 0x19a4c116, 0x1e376c08, 0x2748774c, 0x34b0bcb5, 0x391c0cb3,

0x4ed8aa4a, 0x5b9cca4f, 0x682e6ff3,

 0x748f82ee, 0x78a5636f, 0x84c87814, 0x8cc70208, 0x90befffa,

0xa4506ceb, 0xbef9a3f7, 0xc67178f2

Pre-processing:

append the bit '1' to the message

append k bits '0', where k is the minimum number >= 0 such that the

resulting message

 length (modulo 512 in bits) is 448.

append length of message (without the '1' bit or padding), in bits, as

64-bit big-endian integer

 (this will make the entire post-processed length a multiple of 512

bits)

Process the message in successive 512-bit chunks:

break message into 512-bit chunks

for each chunk

 create a 64-entry message schedule array w[0..63] of 32-bit words

 (The initial values in w[0..63] don't matter, so many

implementations zero them here)

 copy chunk into first 16 words w[0..15] of the message schedule

array

 Extend the first 16 words into the remaining 48 words w[16..63] of

the message schedule array:

 for i from 16 to 63

 s0 := (w[i-15] rightrotate 7) xor (w[i-15] rightrotate 18) xor

(w[i-15] rightshift 3)

 s1 := (w[i-2] rightrotate 17) xor (w[i-2] rightrotate 19) xor

(w[i-2] rightshift 10)

 w[i] := w[i-16] + s0 + w[i-7] + s1

 Initialize working variables to current hash value:

 a := h0

 b := h1

 c := h2

 d := h3

 e := h4

 f := h5

 g := h6

 h := h7

 Compression function main loop:

 for i from 0 to 63

 S1 := (e rightrotate 6) xor (e rightrotate 11) xor (e

rightrotate 25)

13

 ch := (e and f) xor ((not e) and g)

 temp1 := h + S1 + ch + k[i] + w[i]

 S0 := (a rightrotate 2) xor (a rightrotate 13) xor (a

rightrotate 22)

 maj := (a and b) xor (a and c) xor (b and c)

 temp2 := S0 + maj

 h := g

 g := f

 f := e

 e := d + temp1

 d := c

 c := b

 b := a

 a := temp1 + temp2

 Add the compressed chunk to the current hash value:

 h0 := h0 + a

 h1 := h1 + b

 h2 := h2 + c

 h3 := h3 + d

 h4 := h4 + e

 h5 := h5 + f

 h6 := h6 + g

 h7 := h7 + h

Produce the final hash value (big-endian):

digest := hash := h0 append h1 append h2 append h3 append h4 append h5

append h6 append h7

My implementation produced an identical hash result with website http://www.movable-

type.co.uk/scripts/sha256.html, when I enter string ‘abc’ as my input text and also enter

the same input string to that website, both give the same result of

ba7816bf8f01cfea414140de5dae2223b00361a396177a9cb410ff61f20015ad. That shows

that my implementation is correct.

http://www.movable-type.co.uk/scripts/sha256.html
http://www.movable-type.co.uk/scripts/sha256.html

14

15

Deliverable 4

The fourth deliverable was using JavaScript to implement a function to compute

hashes while playing audio. I used the function I implemented in Deliverable 2 to add a

music bar into the GUI, which will be while the music player. When the user presses play

audio, it will ignore the “Enter Zero” input field. While it plays, my implementation will

run a while loop and add additional zeros out the beginning till the music is finished

playing or the pause audio button has been pressed.

Once the music stops, it will give the number of zeros it has calculated during the music

time length. For example, the above screenshot shows that during the ten second interval,

it has calculated five zeroes. I used an HTML5 audio tag to get music from a local file

and for the play audio button, I implemented a function called clickplay. When I press the

play audio button, it will use the value from the ‘text to hash’ inputbox, which is used by

my clickplay function. While the audio is playing, it will keep incrementing the zeroes to

16

pass to the function hex add starting with only one zero. If it returns a value and the

music is still playing, it will add another zero to hex_add function. If the music stops or is

paused then it will return the last value generated to the ‘Result2’ output text box.

 This function seems to be working perfectly, but it has a problem: When it runs, I

cannot press the pause button because the JavaScript cannot multi-task. So when I try to

press the pause button, it will not work because it is still running in the while loop as well

as playing audio and it creates a problem. The screenshot below shows the results:

Since JavaScript is single-threaded, I cannot use sleep() function in this method; I have to

use setTimeout function instead. During the setTimeout, the code runs smoothly, but

once the timer expires, the problem shows up again. The only solution for this problem is

to use WebCL; it supports parallel computing in HTML5 web browsers and will allow

me to run two threads at same time, which are play audio function and clickplay function.

It uses the GPU and CPU, unlike my example website that only uses the CPU, so it will

be much faster.

According to WebCL https://www.khronos.org/webcl/:

https://www.khronos.org/webcl/

17

“WebCL 1.0 defines a JavaScript binding to the Khronos OpenCL standard for

heterogeneous parallel computing. WebCL enables web applications to harness GPU and

multi-core CPU parallel processing from within a Web browser, enabling significant

acceleration of applications such as image and video processing and advanced physics for

WebGL games. WebCL has been developed in close cooperation with the Web

community and provides the potential to extend the capabilities of HTML5 browsers to

accelerate computationally intensive and rich visual computing application.”

The problem with this approach is anyone who wants to run it must have both the

OpenCL driver and the WebCL browser extension. I will use WebCL for my thesis

implementation later.

18

Conclusion

The MP3-based crypto-currency system consists of the hash function and “play music”

function. The ability to upload songs, play songs and WebCL are not included in this

project. As Deliverable 1 we found out a wallet containing the history of each Bitcoin

objects that keeps track of the public key, private key, and the balance of currency of a

particular address. Its method includes:

 - Generation of public/private key pairs

 - Hashing and encoding of a public key into an address

 - Store and retrieval of currency

For Deliverable 2 I implemented a simple hash function, similar to the one used by the

Bitcoin framework. For Deliverable 3, I implemented SHA256, which works as expected.

For Deliverable 4 I implemented the music function, which can play music and generate

zeroes at same time, but it cannot pause because it was implemented using JavaScript.

 For next semester I will implement the upload music function, use webCL to be

able pause and play smoothly, and after webCL is implemented, I will solve a problem

that if the user pauses, it resets the counter; that mean that the artist will be paid less if a

user keeps pausing.

19

Reference:

 Satoshi Nakamoto (2009), Bitcoin: A Peer-to-Peer Electronic Cash System.

Retrieved from https://bitcoin.org/bitcoin.pdf

 Florian Mendel and Vincent Rijmen, Cryptanalysis of the Tiger Hash Function.

Retrieved from

https://online.tugraz.at/tug_online/voe_main2.getvolltext?pCurrPk=31042

 SHA-256 Cryptographic Hash Algorithm. Retrieved from http://www.movable-

type.co.uk/scripts/sha256.html

 WebCL Heterogeneous parallel computing in HTML5. web browsers Retrieved

from https://www.khronos.org/webcl/

 WebCL. Retrieved from http://webcl.nokiaresearch.com/tutorials/tutorials.html

 Mining hardware comparison. Retrieved from

https://en.bitcoin.it/wiki/Mining_hardware_comparison

 GeForce GTX 660 Ti Review: Nvidia's Trickle-Down Keplernomics. Retrieved

from http://www.tomshardware.com/reviews/geforce-gtx-660-ti-benchmark-

review,3279-12.html

 SHA-2 Retrieved from http://en.wikipedia.org/wiki/SHA-2
 Videocard Benchmarks Retrived from

http://www.videocardbenchmark.net/video_lookup.php?gpu=GeForce+GTX+670

 Bitminer Retrieved from

https://bitminter.com/login?F308838864701HX5WKM=_

https://bitcoin.org/bitcoin.pdf
https://online.tugraz.at/tug_online/voe_main2.getvolltext?pCurrPk=31042
https://www.khronos.org/webcl/
http://webcl.nokiaresearch.com/tutorials/tutorials.html
https://en.bitcoin.it/wiki/Mining_hardware_comparison
https://en.bitcoin.it/wiki/Mining_hardware_comparison
http://www.tomshardware.com/reviews/geforce-gtx-660-ti-benchmark-review,3279-12.html
http://www.tomshardware.com/reviews/geforce-gtx-660-ti-benchmark-review,3279-12.html
http://en.wikipedia.org/wiki/SHA-2

