
San José State University Building Editor

A Report

Submitted to

The Faculty of the Department of Computer Science

San José State University

In Partial Fulfillment

 of the Requirements for the Degree

Master of Science

by

Viet Q. Trinh

December 2013

	
 2	

© 2013

Viet Q. Trinh

ALL RIGHTS RESERVED

	
 3	

The Designated Committee Approves the Master Project Titled

San José State University Building Editor

by

Viet Q. Trinh

APPROVED FOR THE DEPARTMENT OF COMPUTER SCIENCE

SAN JOSÉ STATE UNIVERSITY

December 2013

Dr. Chris Pollett Department of Computer Science

 Dr. H. Chris Tseng Department of Computer Science

 Dr. Soon Tee Teoh Department of Computer Science

	
 4	

Table of Contents

List of Figures ..5
List of Tables ...6
Abstract ..7
Introduction ..8
Literature Review ...10
 Path Planning Algorithm in Cellular Automata Environments10
 Image Loader for Converting Image Files into Texture Patterns13
 Bitmap-file Format ...13
 Image Loader Procedure ...14
 Implementation ...17
 SJSU Course Schedules Database ..21
 Visualization ...23
 Projection ..23
 Texture Mapping Procedure ...28
 Flow of People Simulation ...29
Analysis ...32
Conclusion ...36
Appendix A: Application User Manual ...38
Appendix B: An evacuation process in the MacQuarrie Hall ..39
Appendix C: The floor plans of the SJSU buildings ...43
References ..45

	
 5	

List of Figures

Fig 1. An environment with a certain configuration 11
Fig 2. The 8 possible geographical directions of a movement 11
Fig 3. The dynamically calculation of the distance between each cell and
 the goal cell G 12
Fig 4. The class diagram of relationship between the selected SJSU buildings 20
Fig 5. The SJSU Building Editor application 20
Fig 6. The Course Schedule Info 21
Fig 7. The Course Schedule Info in HTML 22
Fig 8. The sjsuCourse database 22
Fig 9. The 3D wireframe mode of the selected buildings 25
Fig 10. The 3D texture model of MacQuarrie hall 26
Fig 11. The 3D texture model of Duncan hall 26
Fig 12. The 3D texture model of Sweeney hall 26
Fig 13. The 3D texture model of Spartan Complex Central 26
Fig 14. The 3D texture model of South Parking 26
Fig 15. The floor plans in 2D mode 27
Fig 16. A selected floor in 2D mode 27
Fig 17. A sample of an evacuation process 30
Fig 18. The comparison curves of two scenarios: calling and not calling a subroutine
 for finding an alternate route 33
Fig 19. The curve represents an average run time after 10 trials as a function of
 MAX_HUMAN_IN_CELL 34
Fig 20. The curve represents an average run time after 10 trials as a function of
 MAX_HUMAN_TRANSFER 35
Fig 21. The Control Panel 38

	
 6	

List of Tables

Table 1. A schema of the relational table COURSES in the sjsuCourse

 database 21
Table 2. The 66 partitioned regions of a floor plan 28
Table 3. The run-times of 10 trials in a scenario of not calling a subroutine

 to find an alternate route 35
Table 4. The run-times of 10 trials in a scenario of calling a subroutine to find

 an alternate route 35
Table 5. The average run-time after 10 trials as a function of

 MAX_HUMAN_IN_CELL 36
Table 6. The average run-time after 10 trials as a function of

 MAX_HUMAN_TRANSFER 37

	
 7	

Abstract

The San José State University (SJSU) Building Editor is a graphic application that
renders the SJSU architectures in a multidimensional space and simulates the flows of
people evacuating in the buildings under different circumstances. For a given building,
the goals of this application are to analyze a density of people on each floor, to predict
bottlenecks in each structure, and to simulate an optimal evacuation plan in case of an
emergency for selected SJSU buildings that are visualized in multidimensional models.
This report describes in detail functionalities of the application, studies key points in its
implementation, and analyzes the application’s correctness and efficiency.

	
 8	

INTRODUCTION

A majority of visitors, newly admitted students, or newly hired employees at San José
State University (SJSU) agree that locating unfamiliar classrooms or buildings in the
SJSU campus is always a bit of challenge. The current map of SJSU only provides a
general layout of the university's architecture. It lacks essential information, such as the
physical appearances of the buildings, a number of floors or classrooms in each building,
an assigned classroom for each course, or building amenities and capacity, to help users
arrive at their desired destinations efficiently and conveniently. Also, in case of an
emergency, the currently provided map from the university is not capable of guiding
people out of dangerous regions safely.

Although both Google and Apple have modeled the SJSU architecture multi-
dimensionally in their map applications, their display models are too general. They only
show the outside appearances of the buildings. No inside views nor the floor plans of
each building are rendered. Also, these map applications do not provide the density of
people in each building, nor the shortest path from one place to another place. A desire to
enhance the SJSU community has motivated the researcher to develop an application for
his Master Writing Project, which renders the SJSU architecture in a multidimensional
space, and generates an optimal evacuation plan whenever emergency issues happen.

The main purposes of this SJSU Building Editor are to simulate bottlenecks in selected
SJSU buildings in an event of an emergency, analyze the capacity of each floor, and
suggest safe exit routes for evacuating people. For example, in case of fire in the
MacQuarrie Hall on Wednesday at 1:00PM, the San Jose Fire Department can use the
SJSU Building Editor application to know how many people there are on each floor of
the building and what their current status are. Also, the application helps the Fire
Department to predict what route people should take to exit the building safely. To
enhance user experience, the buildings in this application are modeled either in a
wireframe mode or in a texture mode under a three-dimensional view. The floor plans of
each building rendered in a two-dimensional view also provides the detailed information,
such as a number of classrooms, a number of enrolled students in each room, or currently
assigned rooms for specific courses.

To demonstrate the application’s functionalities and to keep its size small enough for a
representing purpose, not all buildings in the SJSU campus are rendered. Instead, only
five following buildings are selected for modeling: MacQuarrie Hall, Duncan Hall,
Sweeney Hall, Spartan Complex Central, and South Parking Garage. The application is

	
 9	

written in C++ in a MAC OSX operating system. Its required external libraries, which are
used in a compilation process, are OpenGL, GLUI, and SQLite3. The executable file of
this application is compatible with Mac OSX, Windows, and UNIX/Linux environments.

The remainder of this report is proceeded as follows: in the “Literature Review” section,
it is first explained the shortest path planning in a cellular automata system and an image
loader procedure for converting bitmap image files into texture patterns. Then, the next
section “Implementation” studies in details the researcher’s work. In this
“Implementation” section, there are three subsections: SJSU Course Schedules Database,
Projection, and Flow of People Simulation. The first subsection SJSU “Course Schedules
Database” discusses a method to parse all course information from the SJSU Registrar
website into a local storage for faster and more convenient access. The second subsection
“Visualization” provides a method for modeling a structure in a multidimensional space,
studies the bitmap-image format, and introduces a procedure for loading images into
textures. The third subsection “Flow of People Simulation” suggests a procedure to
analyze a density of people on each floor and generate the optimal evacuation paths under
different situations. Next, the section “Analysis” studies the correctness, optimization,
and efficiency of the introduced cellular automata-based simulation. Finally, the last
section “Conclusion” summarizes the application’s functionalities.

	
 10	

LITERATURE REVIEW

PATH PLANNING ALGORITHM IN CELLULAR AUTOMATA ENVIRONMENTS

One of the purposes of this project is build a simulator for flows of people in buildings
across the SJSU campus. This could aid in simulations of building evacuations. To do our
simulations, we use a cellular automata approach. As a warm up example, in this section,
we describe how cellular automata have been used to find shortest paths. If each
classroom is considered to be a cell in a n × m grid of cells framework that is a subset of
a framework of floors in a SJSU building, finding a way to exit a building is equivalent to
searching for a shortest path from a particular cell to exit cells on the first floor
framework. Because the classroom cells have different distances to the exit cells and
people are allowed to move in all possible directions, a network of classrooms can be
treated as a cellular automata system.

Cellular Automata is an abstract computational systems that can be used to represent non-
linear dynamics or model physical systems [1]. Cellular Automata are composed of a finite
set of homogeneous units called cells. Each cell is associated with a Cartesian coordinate
and can be a container of three kinds of objects: Agents represented by numbers,
Obstacles represented by colors, and Goal represented by letters [2]. The advantage of
Cellular Automata is the emergent behavior in which all cells follow a simple local
update rule deterministically. At each unit of time, each cell hold only one state of a finite
set of states that are in parallel with each other’s. The transitional update of a cell must
take into account the states of its neighboring cells [1].

Cellular Automata are formally defined as a quadruple (d, q, N, f) in which:

o d is a dimension of the cellular automata space.
o q is a state of a cell in a set of states Q = {0, 1, …, q-1}.
o N = (n1, n2, …, nv) is a tuple of distinct vectors which each vector ni is a relative

positions of all neighbor cells with respect to the i-cell.
o f: QV  Q is a local function of transition rule.

The function A of the cellular automata is defined via f as follows [2]:

∀c ∈ C, ∀i ∈ Zd, A(c)(i) = f(c(i+n1), …, c(i+nv))

	
 11	

where C is a set of all configurations describing a certain state of the cellular automata
system. Fig 1 represents a sample configuration of the cellular automata environment. In
Fig 1, a numerical value in each cell is the shortest distance from that cell to the goal cell
G. The black cells denote occupied cells in which a minimum path from a particular cell
to the goal cell G cannot pass through.

 0 1 2 3 4
0 5
1 9 2 3
2 10
3 2
4 G

Fig 1. An environment with a certain configuration

Finding the minimum distance between any two cells in a cellular automata system is to
searching for a movement path such that the sum of values in all cells that the path
passing through is minimum. The movements are allowed in vertical, horizontal, and
diagonal directions [3]. Fig 2 shows all 8 possible directions for a cell to move in case of
all of its neighbor cells are free.

  

 A 

  

Fig 2. The 8 possible geographical directions of a movement

For a simple illustration and an easy computation, let’s assign a cost of 10 for each
vertical or horizontal movement, and a cost of 14 for each diagonal movement. The
transition rule, which dynamically calculates the minimum distance between each cell
and the goal cell G, is as follows.

	
 12	

The cellular automata-based algorithm for a path planning is terminated when no further
updates occur [2]. In Fig 3, the entire process for calculating the minimum distance
between each cell and the goal cell G is illustrated [3]. The black cells have a value of 1
because they are obstacles or occupied cells. Initially, all non-occupied cells, except the
goal cell G, have an infinite value. The goal cell G has a value of 0. At each unit of time,
the minimum distance between each cell and the goal cell G is dynamically calculated
based on the possible directions of movements. After all calculations are completed, the
shortest path between a particular cell and the goal cell G is a path whose sum of all
values in its cells is minimum. For example, in Fig 3, the shortest path between the cell
(1, 1) and the goal cell G is the non-color path with directional marks.

 0 1 2 3 4
0 ∞ ∞ ∞ ∞ ∞
1 ∞	
 ∞	
 ∞	
 ∞	
 ∞	

2 ∞	
 ∞	
 1 ∞	
 ∞	

3 1 1 ∞	
 ∞	
 ∞	

4 1 ∞	
 ∞	
 ∞	
 0

 1st iteration

 0 1 2 3 4
0 ∞ ∞ ∞ ∞ ∞
1 ∞	
 ∞	
 ∞	
 ∞	
 ∞	

2 ∞	
 ∞	
 1 24 20
3 1 1 24 14 10
4 1 ∞ 20 10 0

3rd iteration

 0 1 2 3 4
0 ∞ ∞ ∞ ∞ ∞
1 ∞	
 ∞	
 ∞	
 ∞	
 ∞	

2 ∞	
 ∞	
 1 ∞	
 ∞	

3 1 1 ∞	
 14	
 10	

4 1 ∞	
 ∞	
 10	
 0

2nd iteration

 0 1 2 3 4
0 ∞ ∞ ∞ ∞ ∞
1 ∞	
 ∞	
 38	
 34 30
2 ∞	
 ∞	
 1 24 20
3 1 1 24 14 10
4 1 30 20 10 0

4th iteration

	
 13	

 0 1 2 3 4
0 62 52 48 44 40
1 52 48 38 34 30
2 48 38 1 24 20
3 1 1 24 14 10
4 1 30 20 10 0

last iteration

 0 1 2 3 4
0
1   
2 
3 
4 G

the movement path

Fig 3. The dynamically calculation of the distance between each cell and the goal cell G

IMAGE LOADER FOR CONVERTING IMAGE FILES INTO TEXTURE PATTERNS

To enhance the three-dimensional scene’s realism, a texture-mapping method is used to
add texture pattern details onto geometric surfaces of an object. A texture pattern is often
an array of RGB colors. Image loader functions in several computer graphic libraries are
developed to convert image files into such texture patterns. In the image loader functions,
a color table of a provided image file is mapped into a texture pattern’s structure. In this
SJSU Building Editor application, the implemented image loader function is only capable
of loading bitmap image files. Hence, a literature review on a bitmap-file structure and an
image loading procedure is necessary.

BITMAP-FILE FORMAT

A bitmap image file is stored in a device-independent format. This format specifies pixel
color in an image independent of methods that are used by display devices to represent
colors [4]. The default filename extension for a bitmap image file is .bmp. Each bitmap
image file is a structure of a bitmap-file header, a bitmap-information header, a color
table, and an array of bytes defining bitmap bits. The bitmap-file header contains
information about size, type, and layout of a bitmap file. The bitmap-information header
contains information about the dimensions and the color format of a bitmap. The color
table contains color values of all pixels in a bitmap, and these colors should appear in an
order of importance. In the bitmap data area, each pixel is represented by a 24-bit red-
green-blue (RGB) value. An array of bytes, or bitmap bits, represents scan lines of a
bitmap. Each of these scan lines consists of a number of consecutive bytes, in the left to
right order, representing pixels in that scan line [4]. This number of consecutive bytes
varies and depends on the size and the color format of a bitmap file.

	
 14	

Below is a typical structure of a bitmap image file:

 BitmapStructure{
 BITMAPFILEHEADER bmfh;
 BITMAPINFOHEADER bmih;
 RGBQUAD colors[];
 BYTE bitmapBits[];
 }

In a bitmap-information header, there exists a biBitCount variable that determines a
number of bits defining each pixel and a maximum number of colors in a bitmap. It can
be assigned one of the below values [4]:

Value Meaning
1 A bitmap is monochrome, and each pixel is represented

by a bit
4 A bitmap has a maximum of 16 colors, and each pixel

is represented by 4 bits
8 A bitmap has a maximum of 256 colors, and each pixel

is represented by a byte
24 A bitmap has a maximum of 224 colors, and each pixel

is represented by 3 bytes

The following is an example of a 16-color bitmap structure

BITMAPFile
 BitmapFileHeader
 Type 19778

Size 3118
Reserved1 0
Reserved2 0
OffsetBits 118

 BitmapInfoHeader
Size 40
Width 80
Height 75
Planes 1
BitCount 4
Compression 0
SizeImage 3000
XPelsPerMeter 0
YPelsPerMeter 0
ColorsUsed 16
ColorsImportant 16

	
 15	

 ColorTable
 Blue Green Red Unused
[00000000] 84 252 84 0
[00000001] 252 252 84 0
[00000002] 84 84 252 0
[00000003] 252 84 252 0
[00000004] 84 252 252 0
[00000005] 252 252 252 0
[00000006] 0 0 0 0
[00000007] 168 0 0 0
[00000008] 0 168 0 0
[00000009] 168 168 0 0
[0000000A] 0 0 168 0
[0000000B] 168 0 168 0
[0000000C] 0 168 168 0
[0000000D] 168 168 168 0
[0000000E] 84 84 84 0
[0000000F] 252 84 84 0
 Image
 .
 . [Bitmap data]
 .

IMAGE LOADER PROCEDURE

The purpose of the image loader procedure is to convert image files into texture patterns.
Once the structure of an image file is determined, it is not difficult for the image loader
procedure to iterate through each field of this structure and extract necessary information
into the texture pattern’s structure. The texture pattern structure consists of the texture
dimensions and the color values of each pixel. It has one of the following formats:

Texture { Texture {
 GLuint sizeX; GLuint sizeX;

 GLuint sizeY; or GLuint sizeY;
 char * data; char data[][];
 } }

First, the image loader procedure reads the size of a bitmap file from the bitmap-file
header in a BitmapStructure, and then it allocates memory for a data field in Texture
to hold the pixels’ color values. Next, it reads the width and the height of a bitmap image
file to create a boundary for the texture pattern. Finally, the image loader procedure looks
into the color table and maps the color values of pixels into corresponding memory
locations that are pointed by the data variable [5].

	
 16	

Once the image loader procedure completes, the texture patterns are returned as
parameters to graphic library’s functions for mapping them onto surfaces of an object.
The mapping process is a transformation from the texture pattern’s coordinates to the
device pixel’s coordinates. The texture pattern has a two-dimensional (s, t) coordinate
whose value is from 0.0 to 1.0. The texture coordinates (s, t) of the four corners of a
texture pattern can be assigned to four spatial positions of a scene. Linear interpolation
can also be applied to determine the color values of other pixels’ positions over a scene.
The parametric transformation equation for mapping an object’s coordinates in the
texture space f(s, t) onto the pixel space f(x, y) is as follows [5]:

x = x(s, t) = axs + bxt + cx
y = y(s, t) = aYs + byt + cy

where ai, bi, ci are coefficients of an object’s coordinates in the i-direction

A disadvantage of the texture-mapping procedure is that the texture pattern’s resolution
often does not match with a pixel resolution of an object’s surfaces. Sometimes, a pixel is
the size of a fraction of a texel; but sometimes, a pixel corresponds to many different
texels. In those cases, an extra calculation is required to determine the fractional area of
the pixel coverage.

	
 17	

IMPLEMENTATION

The SJSU Building Editor application integrates database management and cellular
automata-based algorithms for path planning into computer graphics to enhance a way of
data visualization and analysis. The goals of this application are to analyze the population
density rates, and simulate the evacuation plan in multidimensional models of the SJSU
architectures. The implementation is a practice of multidimensional vector manipulation,
2D orthogonal projection, 3D perspective projection, multi-texture mappings, data
management, visualization, and path routing in a cellular automata environment.

This application has more than 20 source files that contain more than 8000 lines of code.
Its executable file has a size of 134KB and is compatible with MAC OSX, Windows, and
UNIX/Linux environments. Below is the list of the main classes in this application.

main : is the main procedure of the application
vMacro : is the class of all pre-defined constant variables
vPoint : contains procedures to manipulate 2D/3D points

 mathematically
vVector : contains procedures to manipulate 2D/3D vectors

 mathematically
readBMP

: reads image files in .bmp format and converts them
 into textures

building

: is the structure of the buildings’ information such
 as a building name, a number of floors, textures,
 and floor structures

buildingFloor

: is the structure of the floors’ information such as a
 number of rooms, a density map, and a
 distance to from each room to the exit gates

SJSUDatabase : defines relational tables in the course schedules
 database

GetCourses : contains procedures to parse the course info into
 the defined database

Course : is the class of the SJSU course structure

The class vMacro is created when the application reads a special data file named
data.txt containing detailed information of each building such as its name, its
abbreviation name, a number of textures, a number of floors, a number of rooms, and so
on. This data file contains the complete detail of the SJSU buildings, and has the
following format:

	
 18	

{ building name: string,
 building abbreviation: string,
 number of texture: Integer,
 num of floor: Integer,
 number of room in each floor: Integer,
 BLOCK{ Rectangle{ coordinates: Point,

coordinates: Point,
coordinates: Point,
coordinates: Point,}

 Rectangle{ coordinates: Point,
coordinates: Point,
coordinates: Point,
coordinates: Point,}

 Rectangle{…}
 …
 }

 BLOCK {…},
 BLOCK {…},
 …
 BLOCK{…}
}

Below is a sample of this data file.

{ MacQuarrie Hall,
 MQH,
 12,
 4,
 25,
 {{{10.0, 23.0, 5.0},
 { 5.0, 46.0, 35.0},
 {23.0,125.0, 50.0},
 {42.0, 46.0,225.0}}
 {{51.0, 76.0, 35.0},
 {12.0, 23.0, 5.0},
 {121.0,33.0, 5.0},
 {12.0, 23.0, 25.0}}
 …
 }
 {{{110.0,98.0,15.0},
 { 45.0,23.0,55.0},
 { 56.0, 5.0,50.0},
 …}
 …
 }
 …
}

{ Duncan Hall,
 DH,
 24,
 5,
 25,

	
 19	

 {{{50.0,28.0,55.0},
 {65.0,43.0,45.0},
 {63.0,12.0,70.0},
 {32.0,66.0,25.0}}
 {{53.0,76.0,75.0},
 {14.0,53.0,5.0}
 …}
 …
 }
 …
}

{ Sweeney Hall,
 SH,
 24,
 4,
 20,
 …
}
…

The class vPoint and vVector contain procedures for manipulating multidimensional
vectors mathematically such as addition, subtraction, normalization, dot product
calculation, cross product calculation, coordinates setter, and a calculation of a distance
between two points. The class building is an abstract class, which is used as a base to
implement other buildings. In order to make the SJSU Building Editor robust and
extensible, this class building’s implementation follows a structure of the Builder
design pattern. The Builder pattern is designed to separate the construction of a complex
object from its representation so that the same construction process can create different
representations [6]. The advantages of using the Builder design pattern in this application
are to improve control over the construction process of each building and to isolate code
for a representation of different buildings [6]. In this application, the modeled
architectures (MacQuarrie, Duncan, Sweeney, Spartan Complex Central, and South
Parking Garage) are inherited classes of this building class (Fig 4). Since each building
has different architecture, the floors of those buildings also have different layouts. The
class buildingFloor is another abstract class that serves as a foundation for allocating
memory space and implementing different floor structures in different SJSU buildings.
The class buildingFloor ‘s implementation also follows the Builder design pattern’s
implementation for the same reason.

	
 20	

Fig 4. The class diagram of the relationship between the selected SJSU buildings

When the application is executed, a window of size 1250 x 600 pixels modeling the SJSU
buildings in a 3D wireframe mode is displayed (Fig 5). If users click on a particular
building, a 360-degree rotational view of that selected and texture-mapped building is
rendered. Also, when the application is first executed, the SJSU course schedules
database is loaded into temporary data containers for later visualization. In an evacuation
plan simulation mode, each 2D floor plan of a user-selected building is shown with
enrolled students represented as red dots. An evacuation process is a movement of those
red dots along the shortest path from their original locations to pre-defined exit locations.
The implementation of this application consists of 3 major parts: parsing SJSU course
schedules into a pre-defined database, projecting SJSU buildings in multidimensional
space, and routing an evacuation path.

Fig 5. The SJSU Building Editor application

	
 21	

SJSU COURSE SCHEDULES DATABASE

The SJSU course schedules from the SJSU Registrar website at http://info.sjsu.edu/web-
dbgen/soc-fall-courses/all-departments.html are parsed into a defined SQLite3 database.
Data parsing is processed in a tiny and independent Java application. This Java
application has 3 classes: SJSUDatabase, GetCourses, and Course. The SJSUDatabase
defines relational tables in the course schedules database. The GetCourses contains
procedures to parse the course information into the defined database. The Course defines
the SJSU courses’ structure.

In this application, the course schedule database named sjsuCourse has only one
relational table COURSES which holds all necessary SJSU course information. Its database
schema is defined in the Table 1. The SJSU course information, written in HTML,
contains a department name, a course title, a course number, a number of enrollments, an
assigned classroom, and a meeting date and time (Fig 6).

Fig 6. The Course Schedule Info

Field name Type Constraint
DEPARTMENT TEXT NOT NULL

TITLE TEXT NOT NULL
COURSE
NUMBER

TEXT PRIMARY
KEY

ENROLLMENT TEXT
LOCATION TEXT

DATE TEXT
TIME TEXT

Table 1. A schema of the relational table COURSES in
the sjsuCourse database

In the SJSU Registrar website, each course schedule is an HTML table, and its contents
are stored in each row of that table (Fig 7).

	
 22	

Fig 7. The Course Schedule Info in HTML

When the Java application is executed, the createTable()method is invoked to create
the table COURSES in a local machine. This table COURSES is create only once. Next, the
method GetCourseInformation(), which in turn will call GetDeparmentsURL()and
GetCoursesURL(), extracts the course schedules’ contents between a pair of tags
<td><tr> … </tr></td>. Last, the method insertIntoTable() is then invoked to save
those extracted information into the appropriate fields in the relational table COURSES.
This Java application is completed when it loads all available course schedules on the
SJSU Registrar website into the database sjsuCourse. A sample query to validate the
availability and correctness of this sjsuCourse database is shown in Fig 8.

Fig 8. The sjsuCourse.db database

	
 23	

VISUALIZATION

PROJECTION

The SJSU buildings are projected either in a 3D wireframe mode or in a 3D texture mode
into a virtual 3D world where the vertical direction is y and the ground is the x-z plane.
The modeling coordinates of each building are first converted into viewing coordinates,
and then they are transformed into normalized coordinates. These normalized coordinates
are mapped into display screen coordinates [7]. Although a display screen is still 2D,
projected images look 3D because these images include visual depth cues. These cues
give the human brain 3D information about a rendered scene. Invoking OpenGL
functions call performs this sequence of transformation that converts modeling
coordinates into screen coordinates. Also in a 3D projection, illumination plays an
extremely important role. In this application, the Phong lighting model, which is a
combination of ambient light, diffuse reflection and specular reflection, is implemented.
The illumination of the building’s surfaces is calculated as follows: I = Iambient

 + Idiffuse
 +

Ispecular [7]. The illumination process is also implemented by calling OpenGL lighting
functions.

When the application is executed, the method buildCampus() is called to render all 5
selected SJSU buildings - MacQuarrie, Duncan, Sweeney, Spartan Central Complex, and
South Parking – in a 3D wireframe mode instantaneously (Fig 9). The display 3D mode
of each building is implemented in the method renderBuilding()with the parameters
MAP_TEXTURE or NOT_MAP_TEXTURE. These parameters are used to determine whether a
selected building should be rendered in a wireframe mode or in a texture mode. The
textures of those buildings are created by a method ImageLoad()in the class readBMP.
This method reads bitmap images in the local storage and converts them into textures.
The building images’ names are labeled in a numerical sequence starting as 0. This
numerical order ensures a correct mapping of each texture onto a corresponding surface
of the building. For example, an image 0.png is mapped onto a front surface; an image
1.png is mapped onto a left-side surface, an image 2.png is mapped onto a back surface,
and so on. So, the image loader procedure in the class readBMP only needs a single loop
to iterate through all images and create the textures for the corresponding surfaces easily
and conveniently.

The wireframe mode is simply a mesh of triangles, which is drawn by invoking OpenGL
functions. Each building is composed from a set of rectangular prisms. For example, the
building MacQuarrie hall has 3 rectangular prisms; the building Duncan hall has 4

	
 24	

rectangular prisms; or the South Parking has only 1 rectangular prism. Each of these
rectangular prisms is made up from 6 different rectangles whose four corners’
coordinates are also listed in a special data file named data.txt. These corners’
coordinates are the modeling coordinates in a virtual three-dimensional world. The
function renderBuilding() reads these corner’s coordinates from the file and then
passes them into the OpenGL functions for drawing a rectangle on a perspective
projection plane [7]. For example, below is a sample of a rectangular prism in the data file:

// a sample rectangular prism
{
 {{10.0,23.0,5.0}, // a front surface
 {5.0,46.0,35.0},
 {23.0,125.0,50.0},
 {42.0,46.0,225.0}}

 {{50.0,35.0,12.0}, // a right-side surface
 {55.0,46.0,5.0},
 {33.0,125.0,40.0},
 {142.0, 46.0,22.0}}

 {{51.0,76.0,35.0}, // a back surface
 {12.0,23.0,15.0},
 {112.0,33.0,53.0},
 {312.0,53.0,51.0}}

 {{50.0,28.0,55.0}, // a left-side surface
 {65.0,43.0,45.0},
 {63.0,12.0,70.0},
 {32.0,66.0,25.0}}

 {{100.0,23.0,5.0}, // a top surface
 { 5.0,46.0,135.0},
 {12.0,15.0,530.0},
 {40.0,64.0,25.0}}

 {{53.0,43.0,25.0}, // a bottom surface
 {95.0,46.0,35.0},
 {35.0,15.0,50.0},
 {12.0,76.0,25.0}}

The rendering order of the rectangles in each prism is extremely important because it
guarantees the correct mapping in the 3D texture mode. This order is also an order of the
prism’s surfaces in the data file: front, right-side, back, left-side, top, and bottom.

	
 25	

Below is a pseudo code of this renderBuilding() function

 void renderBuilding()
 1. for each prism of this building
 1.1. for (rect = 0; rect <6; rect++)
 1.1.1 coordinatesContainer[4]
 1.1.2 for (coord = 0; coord <4; coord++)
 1.1.2.1 coordinatesContainer[coord]
 = read in corner’s coordinate
 1.1.3 draw rectangle from coordinatesContainer

Also, if users want to extend the SJSU campus view by rendering more buildings, all they
have to do is to append the information of new buildings’ prisms into the data file. The
renderBuilding() method will do its job as described above to satisfy users’ demands.

Fig 9. The 3D wireframe mode of the selected buildings

When a selected building is displayed in the 3D texture mode, the method doMotion()
will get called to rotate this building around its vertical axis continuously (Fig 10-14).
The idea in its implementation is to change a viewing angle after a certain amount of
time. Below is a pseudo code of this doMotion() function

 void doMotion
 1. static GLint motion_prev_time = 0;
 2. int this_time = glutGet(GLUT_ELAPSED_TIME);
 3. rotationAngle += this_time - motion_prev_time;
 4. motion_prev_time = this_time;
 5. glutPostRedisplay

	
 26	

Fig 10. The 3D texture model of MacQuarrie hall Fig 11. The 3D texture model of Duncan hall

Fig 12. The 3D texture model of Sweeney hall Fig 13. The 3D texture model of Spartan Central hall

Fig 14. The 3D texture model of South Parking

	
 27	

When users simulate an evacuation plan of a building in the 2D mode, the method
renderFloor() is called to project the floor plans of that building orthogonally. The
floor plan is rendered easily by connecting multiple lines to represent walls and
classrooms. This is implemented by calling OpenGL functions to draw lines [7]. The
parameter selectedFloor of renderFloor() is used to determine whether all floor
plans should be displayed simultaneously (Fig 15), or users are just interested in a
particular floor plan (Fig 16) (see the appendix C for the floor plans of all buildings).

Fig 15. The floor plans in 2D mode

Fig 16. The selected floor in 2D mode

	
 28	

TEXTURE MAPPING PROCEDURE

When each building is rendered in the 3D texture mode, a memory space for the texture
patterns of that building is allocated. Next, the image loader function ImageLoad()is
invoked to convert the bitmap image files in a local folder into the texture. The texture
pattern;s structure, in this SJSU Building Editor application, is named Image, and is as
follows:
 struct Image{
 unsigned long sizeX;
 unsigned long sizeY;
 char * data;
 }

where sizeX and sizeY determine the texture pattern’s dimensions, and data contains
RGB values of each pixel in an original bitmap image file. The ImageLoad()function
first opens an image file’s structure and reads its dimensions from the bitmap-file header.
Next, this function determines a number of bits per pixel to ensure that a provided file is a
24-bit RGB color image. Once a bitmap image file passes all requirements for
constructing a texture pattern, the ImageLoad()skips through the rest of the bitmap-file
header and reads the olor values from the color table into a data field of Image. The data
array is now holding the RGB color values of all pixels in the provided image file. Below
is a pseudo code of this ImageLoad() function

 void ImageLoad
 1. open bitmap file structure
 2. seek to bmp header, up to the width/height location
 3. read the height, the width
 4. calculate size = width*height*3
 5. read bits per pixel bpp
 6. if (bpp != 24)
 6.1 exit
 7. seek to the color table
 8. read image data
 9. for (i=0;i<size;i++) // reverse color from BGR to RGB

 9.1 tmp = data[B]
 9.2 data[B] = data[R]
 9.3 data[R] = tmp

Once the texture patterns of each building are available, they are passed into OpenGL
functions. Each texture pattern is assigned a texture ID. The rest of the texture mapping
procedure is to bind the appropriate textures onto the surfaces of a selected building and
map the textures’ coordinates with the object’s coordinates. This is implemented by
invoking OpenGL texture functions.

	
 29	

FLOW OF PEOPLE SIMULATION

The evacuation simulation in this application originates from the cellular automata-based
algorithms for path planning. Finding an optimal evacuation plan is equivalent to
determining a shortest path from each classroom cell to the exit-door cells [3]. The floor
plans of each building are partitioned equally into 66 cells or smaller regions. A
classroom in each building can be made up either from only one region or from multiple
regions. The hallways of each building are always made up from multiple regions. Thus,
routing an evacuation is the problem of finding the shortest path from one region to other
regions. Each region is a data structure containing two fields: a density value X, and a
distance D to the exit regions (Table 2). The smaller the value of D is, the closer the exit
regions are. If the value of D is 0, that region is an exit region.

X|4 X|3 X|4 X|5 X|6 X|7 X|6 X|5 X|4 X|3 X|4
X|3 X|2 X|3 X|4 X|5 X|6 X|5 X|4 X|3 X|2 X|3
X|0 X|1 X|4 X|5 X|6 X|7 X|6 X|3 X|2 X|1 X|0
X|0 X|1 X|4 X|5 X|6 X|7 X|6 X|4 X|3 X|2 X|1
X|3 X|2 X|3 X|4 X|5 X|6 X|5 X|5 X|4 X|3 X|4
X|4 X|3 X|4 X|5 X|6 X|7 X|6 X|5 X|4 X|3 X|4

Table 2. The 66 partitioned regions of a floor plan

In an evacuation process (Fig 17), there are several constraints:

- A cell making up the hallway in each building has a limited capacity
MAX_HUMAN_IN_CELL and a limited evacuation rate MAX_HUMAN_TRANSFER.

- At each unit of time, the cells, which are not classrooms, can accommodate the
maximum of 8 people. The maximum of 4 people are allowed to move from one
region to its neighboring regions. Hence, MAX_HUMAN_IN_CEL=8, and
MAX_HUMAN_TRANSFER=4. The transition rule is [8]:

(Xi,j|d)t+1 = min {(Xi-1,j-1 - 4|d+1)t), (Xi-1,j - 4|d+1)t), (Xi-1,j+1 - 4|d+1)t),

 (Xi,j-1 - 4|d+1)t), (Xi,j - 4|d+1)t), (Xi,j+1 - 4|d+1)t),
 (Xi+1,j-1 - 4|d+1)t), (Xi+1,j - 4|d+1)t), (Xi+1,j+1- 4|d+1)t)

} < MAX_HUMAN_IN_CEL

- In the hallways, people are only allowed to move from one region to other regions
in the left and right directions. Whereas, in the classrooms, people are only
allowed to move up an down. If there is a wall between 2 regions, they are not
allowed to move between those regions.

- If a potential region for people to move in is not available, an alternative route to
other available regions should be considered.

	
 30	

Below is a pseudo code of an evacuation simulation

void doEvacuation
1. if this region density <= MAX_HUMAN_IN_CELL

1.1. if this region density <= MAX_HUMAN_TRANSFER
 1.1.1. next region density += this region density
 1.1.2. this region density = 0

1.2. else
 1.2.1. next region density += MAX_HUMAN_TRANSFER
 1.2.2. this region density -= MAX_HUMAN_TRANSFER
2. else
 2.1. alt_region = -1
 2.2. alt_region = findAltRoute(up direction)
 2.3. alt_region = findAltRoute(down direction)
 2.4. alt_region = findAltRoute(left direction)
 2.5. alt_region = findAltRoute(right direction)
 2.6. if alt_region not equal -1
 2.6.1. alt_region density += MAX_HUMAN_TRANSFER
 2.6.1. this region density -= MAX_HUMAN_TRANSFER

Fig 17. A sample evacuation process

	
 31	

This evacuation simulation, which originates from a cellular automata-based algorithm
for path planning, defines a cellular automata system with 2 variables X and D. This
cellular automata system calculates both the minimum distances from the classroom cells
to the exit door cells and the density value of each cell in a unit of time dynamically. The
suggested simulation is terminated when all cells have a density value of 0. The tables
below illustrate a sample procedure for an evacuation plan in a floor of the MacQuarrie
hall (for an entire procedure of this evacuation plan, see the appendix B).

t = 0:

0|4 12|3 12|4 15|5 15|6 7|7 7|6 11|5 11|4 14|3 14|4
0|3 0|2 0|3 0|4 0|5 0|6 0|5 0|5 0|4 0|3 0|4
0|0 0|1 10|4 7|5 10|6 12|7 20|6 0|3 0|2 0|1 0|0
0|0 0|1 12|4 7|5 10|6 15|7 14|6 0|4 0|3 0|2 0|1
0|3 0|2 0|3 0|4 0|5 0|6 0|5 0|5 0|4 0|3 0|4
0|4 0|3 0|4 0|5 0|6 0|7 0|6 0|5 0|4 0|3 0|4

t = 1:

0|4 8|3 8|4 11|5 11|6 3|7 3|6 7|5 7|4 10|3 10|4
0|3 4|2 4|3 4|4 4|5 4|6 4|5 4|5 4|4 4|3 4|4
0|0 0|1 10|4 7|5 10|6 12|7 20|6 0|3 0|2 0|1 0|0
0|0 0|1 8|4 3|5 6|6 11|7 10|6 0|4 0|3 0|2 0|1
0|3 0|2 4|3 4|4 4|5 4|6 4|5 0|5 0|4 0|3 0|4
0|4 0|3 0|4 0|5 0|6 0|7 0|6 0|5 0|4 0|3 0|4

…

t = 16:

0|4 0|3 0|4 0|5 0|6 0|7 0|6 0|5 0|4 0|3 0|4
0|3 0|2 0|3 0|4 0|5 0|6 0|5 0|5 0|4 0|3 0|4
0|0 0|1 0|4 0|5 6|6 0|7 0|6 0|3 0|2 0|1 0|0
0|0 0|1 0|4 0|5 0|6 0|7 0|6 0|4 0|3 0|2 0|1
0|3 0|2 0|3 0|4 0|5 0|6 0|5 0|5 0|4 0|3 0|4
0|4 0|3 0|4 0|5 0|6 0|7 0|6 0|5 0|4 0|3 0|4

	
 32	

ANALYSIS

Although the main purpose of this simulation is to analyze the capacity of each floor and
to generate an evacuation path in case of an emergency, it is also worth analyzing several
key points of data parsing and projection implementation. The course schedule database
is a pre-defined structure which is created only once in the first execution. So, each time
the SJSU Building Editor application is executed, no extra effort is needed to reload the
course database. Also, changes in SJSU’s Registrar website will not effect the local
database and the application’s performance. However, there exists a disadvantage.
Whenever users want to fetch new updates from the SJSU Registrar, they have to re-run
the tiny Java application to overwrite the old course schedule database. In the 3D
projection, a memory space for texture patterns of each building is only allocated once
when a building is displayed in a 3D texture mode in its first time. Textures are created
by invoking functions from the Texture Image Loader library. Also, the texture mapping
procedure is written as a module for generating independent textures from different
sources conveniently. However, this procedure only functions properly with images in
the bitmap format. This disadvantage definitely terminates an improvement of texture
mappings because it limits users to make better textures from loading images in other
formats.

In the evacuation simulation, each floor plan is partitioned equally into smaller 66
regions. So, each floor plan is considered as a table of 6 rows and 11 columns because all
the floor plans of each building share the same properties. All classrooms are located
horizontally on top and bottom sides, while exit doors are located vertically on left and
right sides. So, only 1 row for each side is needed to represent the horizontal space of
classrooms, and 2 rows are needed to represent the vertical space of exit doors. Also
some buildings have several classrooms in a middle of the floor plan such as MacQuarrie
Hall or Sweeney Hall. Hence, 2 extra rows are enough to represent the horizontal space
of those classrooms. Since all the classrooms in each building are often numbered from 1
to 25, 11 columns are needed to represent the vertical space of those classrooms.
Therefore, a table of 6 rows and 11 columns, or 66 regions, is enough to represent all the
floor plans in the SJSU buildings.

Table 3 displays the running times of the evacuation simulation without calling a
subroutine findAltRoute()when a potential region for moving is not available. From the
Table 3, the average run-time after 10 trials is 16.23 seconds, and the range of the run-
time in this scenario is from 10.2 seconds to 21.5 seconds

	
 33	

Trial # 1 2 3 4 5 6 7 8 9 10

Runtime 15.1 18.7 19.8 14.3 10.2 21.5 14.5 14.6 16.2 17.3
Table 3. The run-times of 10 trials in a scenario of not calling a subroutine to find an alternate route

Table 4 displays the running times of the evacuation simulation with calling a subroutine
findAltRoute()when a potential region for moving is not available. From the Table 4, the
average run-time after 10 trials is 11.51 seconds, and the range of the run-time in this
scenario is from 9.6 seconds to 14.2 seconds.

Trial # 1 2 3 4 5 6 7 8 9 10

Runtime 9.6 10.1 14.2 11.3 13.2 9.7 10.5 12.1 14.1 10.3
Table 4. The run-times of 10 trials in a scenario of calling a subroutine to find an alternate route

Fig 18 shows the comparison curves of the running times in these two scenarios. The blue
curve represents the running times of 10 trials in a scenario of not calling a subroutine.
The red curve represents the running times of 10 trials in a scenario of calling a
subroutine. The horizontal axis denotes the number of trials, and the vertical axis denotes
the simulation’s running time. From the graph, it shows that every point on the red curve
is always below its countering point on the blue curve. This means that by calling a
subroutine for finding an alternate route, the evacuation simulation performs better. From
the average running times of two scenarios, it is clearly that by calling the subroutine, a
running time of the evacuation plan is speeding up 41.008%. Hence, invoking a
subroutine findAltRoute()to determine an alternate path whenever a primary path is
unavailable makes the application run faster and produces the better evacuation plan.

Fig 18. The comparison curves of two scenarios: calling and not calling

a subroutine for finding an alternate route

	
 34	

One of the constraints of the simulation is the limited capacity MAX_HUMAN_IN_CELL
and the limited evacuation rate MAX_HUMAN_TRANSFER. Table 5 and Table 6 represent
the average run-times after 10 trials as a function of MAX_HUMAN_IN_CELL, and an
average run-time after 10 trials as a function of MAX_HUMAN_TRANSFERt, respectively.

MAX_HUMAN_IN_CELL MAX_HUMAN_TRANSFER Average run-time
4 4 20.1
6 4 12.3
8 4 10.3
10 4 15.6
15 4 15.8
30 4 26.1

Table 5. The average run-time after 10 trials as a function of MAX_HUMAN_IN_CELL

Fig 19. The curve represents an average run time after 10 trials as a function of MAX_HUMAN_IN_CELL

Let’s call MAX_HUMAN_IN_CELL is Max, and MAX_HUMAN_TRANSFER is Rate. From Table 5 and
Fig 19, it is clearly that the combination of (Max, Rate) = (8,4) yields the best run-time.
This is correct because, with a constant transfer Rate, the more people are allowed in the
cell, the more overcrowded the cell is. It is hard to speed up the evacuation process
because the crowded cells will create the bottlenecks on each floor. Also with a constant
Rate, the fewer people are allowed in each cell, the more overcrowded the exit-door cells
are. This is also true. Because people are moving faster from cells to cells, not from a

	
 35	

floor’s exit-door cells to another floor’s exit-door cells, there will be bottlenecks at each
exit-door cell on each floor.

MAX_HUMAN_IN_CELL MAX_HUMAN_TRANSFER Average run-time
8 2 16.4
8 4 10.3
8 6 10.5
8 8 13.5

Table 6. The average run-time after 10 trials as a function of MAX_HUMAN_TRANSFER

Fig 20. The curve represents a average run time after 10 trials as a function of MAX_HUMAN_TRANSFER

Similarly, in Table 6 and Fig 20, it is clearly that the combination of (Max, Rate) = (8,4)
also yields the best run-time. This is correct because the faster the Rate is, the more
people are strapped at the exit cells. The smaller the Rate is, the more overcrowded each
region is.

Therefore, after several experiments or trials and errors, the researcher finds that the
combination of maximum of 8 people in each region and maximum of 4 people
transferring each time will yield an optimal run-time. Thus, this will produce an optimal
evacuation plan.

	
 36	

CONCLUSION

In this paper, the San José State University (SJSU) Building Editor renders SJSU
architecture under different circumstances, analyzes the density of people on each floor
of buildings and generates an optimal evacuation path in case of emergency. The
computer graphic techniques applied in this application for rendering models in a
multidimensional space are 2D orthogonal projection, 3D perspective projection, multi-
texture mappings, and illumination model. Each building in the SJSU campus is rendered
either in the 3D wireframe mode or in the 3D texture mode onto a three-dimensional
perspective projection plane. The buildings’ coordinates are stored in the provided data
file; and these coordinates are passed as parameters to the OpenGL functions for
rendering the models in a virtual 3D world. Hence, if users demand to add more
architecture into the application, no modification in the source code is needed. Instead,
users only need to modify the data file. The image loader procedure in this application is
only capable of converting bitmap image files into texture patterns. The conversion
process is a mapping of the color values of pixels in an image file to the color table of the
texture pattern’s structure [4]. This structure is then parsed as parameters to OpenGL
texture function, which transforms the texture coordinates to the object coordinates. The
majority of projection and illumination implementation is a practice of OpenGL functions
call [7].

The proposed evacuation simulation in this application originates from a cellular
automata-based algorithm for path finding. Planning an optimal evacuation plan for each
building in this application is equivalent to determining a minimum path from each
classroom cell to the exit-door cells in a cellular automata environment. This cellular
automata-based simulation not only calculates the lowest-cost distance from each cell to
the goal cell, but it also determines the density value in each cell dynamically. This
calculation is performed at each cell in parallel at each time step. Also, this calculation
follows the transition update rule in which an update of a cell is obtained by taking into
account an update of its neighbor cells [1]. This suggested simulation is terminated when
every cell has a density value of 0 or no more update occurs. After several trials and
errors, the researcher finds that the combination of 8 people in each cell and maximum of
4 people transferring at a time among cells will yield an optimal result. Since 8 people are
allowed in each cell and the floor plans are made up of 66 cells, a simple calculation
suggests that the maximum capacity of each floor is 520 people. This helps the SJSU
administrators to determine the maximum capacity of each classroom and limit the
maximum number of enrollments for each course to ensure the safety of SJSU students
and staffs.

	
 37	

In general, the San Jose State University Building Editor application can be considered as
a simple simulator to plan the evacuation paths in the SJSU buildings in case of an
emergency. Based on the cellular automata-based algorithm for path planning, this
application simulates the basic evacuation paths on the floor plans of each SJSU building.
The application’s evacuation simulation also invokes a call to another subroutine
whenever a potential movement to a cell is not available [8]. Yet, since this SJSU Building
Editor application is a basic simulator for path planning, the application’s running time
does not take into account other factors such as the emotions, the movement speeds, and
the behaviors of people in case of an emergency. For example, in case of a fire, some
people might run as fast as they can to save their lives. Some people might jump out off
windows, while others are panic and do not make any move. Also, the evacuation speeds
of people are different due to their physical heaths or ages. Hence, this application’s
evacuation time is relative. It is predicted based on several assumptions such as
maximum of 8 people in each cell, and maximum of 4 people transferring among cells at
each time. The application also assumes that people’s behaviors in case of an emergency
are stable, and the movement speeds are all the same to everyone. From the flow of the
people simulation, it takes at most 254 movements among cells of the floor plans to
evacuate all people out of the building. In reality, the researcher finds that it might take
him 1.78 seconds to walk from one cell to another cell. This means that a single
movement in the evacuation process will cost at most ~ 1.8 seconds in a real world time.
In the worst case, it will take 254 (moves) x 1.8 (seconds/move) = 452.1 seconds or ~ 7.5
minutes to evacuate all people in the building. Thus, if the number of movements in the
application’s evacuation simulation is determined, multiplying it by 1.78 seconds will
result the nearly exact time for evacuating people out of the SJSU building in a real world
situation.

At this point, this application represents a first pass at modeling the evacuation from
buildings of the SJSU campus. In terms of computer graphics, it could be insightful to
render cross-sectional views of floor plans of buildings. In terms of the simulation we
have implemented, it would be useful to flesh out our crude modeling of human behavior
with more detailed single step moves. In particular, it might be interested to simulate
different kinds of people during an evacuation scenario. For example, one might simulate
cases where a certain fraction of people requires assistance to go down the stairs. The
researcher expects his project will serve as a good preliminary step for such future
investigations.

	
 38	

APPENDIX A: APPLICATION USER MANUAL

The SJSU Building Editor application provides the users two different ways to operate:
the on-screen control panel (Fig 21) and the pre-defined functional keys.

• Click on any building or choose drop-down

Bldg in the SIMULATION panel to view your selected
building in the 3D texture mode.

• To toggle between the 3D wireframe mode and
the 3D texture mode, right click.

• To toggle between the 2D mode and the 3D
mode, either choose MODE option or press key m

• To select building, date, or time, choose drop-
down menus in the SIMULATION panel

• In the 3D mode:
- move up :press key w
- move down :press key x
- rotate left :press key a
- rotate right :press key d
- look up :press key q
- look down :press key e
- view from top :press key z
- view from bottom :press key c

• In the 2D mode:

- simulate evacuation plan : click on Simulate button or

: press key s
- increase simulation speed : click on + button or

: press key]
- decrease simulation speed : click on - button or

: press key [
- load density map : click on Load button
- select a floor : press key #

• To quit the application, press Command-Q (in Mac OSX) or Ctrl-Q in (Windows)

Fig 21. The Control Panel

	
 39	

APPENDIX B: AN EVACUATION PROCESS IN THE MACQUARRIE HALL

t = 0:

0|4 12|3 12|4 15|5 15|6 7|7 7|6 11|5 11|4 14|3 14|4
0|3 0|2 0|3 0|4 0|5 0|6 0|5 0|5 0|4 0|3 0|4
0|0 0|1 10|4 7|5 10|6 12|7 20|6 0|3 0|2 0|1 0|0
0|0 0|1 12|4 7|5 10|6 15|7 14|6 0|4 0|3 0|2 0|1
0|3 0|2 0|3 0|4 0|5 0|6 0|5 0|5 0|4 0|3 0|4
0|4 0|3 0|4 0|5 0|6 0|7 0|6 0|5 0|4 0|3 0|4

t = 1:

0|4 8|3 8|4 11|5 11|6 3|7 3|6 7|5 7|4 10|3 10|4
0|3 4|2 4|3 4|4 4|5 4|6 4|5 4|5 4|4 4|3 4|4
0|0 0|1 10|4 7|5 10|6 12|7 20|6 0|3 0|2 0|1 0|0
0|0 0|1 8|4 3|5 6|6 11|7 10|6 0|4 0|3 0|2 0|1
0|3 0|2 4|3 4|4 4|5 4|6 4|5 0|5 0|4 0|3 0|4
0|4 0|3 0|4 0|5 0|6 0|7 0|6 0|5 0|4 0|3 0|4

t = 2:

0|4 0|3 4|4 3|5 3|6 3|7 3|6 0|5 0|4 6|3 6|4
0|3 8|2 8|3 8|4 8|5 8|6 8|5 7|5 7|4 8|3 4|4
0|0 4|1 10|4 7|5 10|6 4|7 16|6 0|3 0|2 4|1 0|0
0|0 0|1 8|4 0|5 2|6 3|7 2|6 0|4 0|3 0|2 0|1
0|3 4|2 8|3 3|4 8|5 8|6 8|5 4|5 0|4 0|3 0|4
0|4 0|3 0|4 0|5 0|6 0|7 0|6 0|5 0|4 0|3 0|4

t = 3:

0|4 0|3 4|4 3|5 3|6 3|7 0|6 0|5 0|4 6|3 2|4
0|3 8|2 8|3 8|4 8|5 8|6 8|5 7|5 7|4 8|3 4|4
0|0 4|1 6|4 7|5 10|6 4|7 16|6 0|3 4|2 8|1 0|0
0|0 4|1 4|4 0|5 2|6 3|7 0|6 0|4 0|3 0|2 0|1
0|3 4|2 8|3 3|4 8|5 8|6 6|5 8|5 4|4 0|3 0|4
0|4 0|3 0|4 0|5 0|6 0|7 0|6 0|5 0|4 0|3 0|4

	
 40	

t = 4:
0|4 0|3 0|4 0|5 3|6 3|7 0|6 0|5 0|4 6|3 0|4
0|3 8|2 8|3 7|4 8|5 8|6 8|5 7|5 7|4 8|3 2|4
4|0 8|1 6|4 7|5 10|6 4|7 16|6 0|3 4|2 8|1 4|0
4|0 8|1 0|4 0|5 2|6 1|7 0|6 0|4 0|3 0|2 0|1
0|3 8|2 8|3 3|4 8|5 8|6 8|5 8|5 8|4 4|3 0|4
0|4 0|3 0|4 0|5 0|6 0|7 0|6 0|5 0|4 0|3 0|4

t = 5:

0|4 0|3 0|4 0|5 0|6 0|7 0|6 0|5 0|4 0|3 0|4
0|3 8|2 0|3 8|4 7|5 8|6 8|5 7|5 7|4 6|3 0|4
8|0 8|1 0|4 0|5 6|6 0|7 9|6 0|3 7|2 8|1 8|0
8|0 8|1 0|4 0|5 0|6 0|7 0|6 0|4 0|3 8|2 0|1
0|3 8|2 8|3 3|4 3|5 8|6 8|5 8|5 8|4 8|3 0|4
0|4 0|3 0|4 0|5 0|6 0|7 0|6 0|5 0|4 0|3 0|4

t = 6:

0|4 0|3 0|4 0|5 0|6 0|7 0|6 0|5 0|4 0|3 0|4
0|3 8|2 8|3 4|4 3|5 8|6 8|5 3|5 3|4 2|3 0|4
8|0 8|1 0|4 0|5 6|6 0|7 1|6 0|3 7|2 8|1 8|0
8|0 8|1 0|4 0|5 0|6 0|7 0|6 0|4 0|3 8|2 0|1
0|3 4|2 4|3 0|4 0|5 4|6 8|5 8|5 8|4 8|3 0|4
0|4 0|3 0|4 0|5 0|6 0|7 0|6 0|5 0|4 0|3 0|4

t = 7:

0|4 0|3 0|4 0|5 0|6 0|7 0|6 0|5 0|4 0|3 0|4
0|3 8|2 8|3 0|4 0|5 4|6 4|5 4|5 4|4 0|3 0|4
8|0 8|1 0|4 0|5 6|6 0|7 0|6 0|3 3|2 8|1 8|0
8|0 8|1 0|4 0|5 0|6 0|7 0|6 0|4 0|3 8|2 0|1
0|3 4|2 0|3 0|4 0|5 0|6 8|5 8|5 8|4 8|3 0|4
0|4 0|3 0|4 0|5 0|6 0|7 0|6 0|5 0|4 0|3 0|4

t = 8:

0|4 0|3 0|4 0|5 0|6 0|7 0|6 0|5 0|4 0|3 0|4
0|3 8|2 8|3 0|4 0|5 0|6 0|5 0|5 0|4 4|3 0|4
8|0 8|1 0|4 0|5 6|6 0|7 0|6 0|3 4|2 8|1 8|0
8|0 8|1 0|4 0|5 0|6 0|7 0|6 0|4 0|3 8|2 0|1
0|3 0|2 0|3 0|4 0|5 0|6 4|5 8|5 8|4 8|3 0|4
0|4 0|3 0|4 0|5 0|6 0|7 0|6 0|5 0|4 0|3 0|4

	
 41	

t = 9:
0|4 0|3 0|4 0|5 0|6 0|7 0|6 0|5 0|4 0|3 0|4
0|3 8|2 4|3 0|4 0|5 0|6 0|5 0|5 0|4 4|3 0|4
8|0 8|1 0|4 0|5 6|6 0|7 0|6 0|3 0|2 8|1 8|0
8|0 4|1 0|4 0|5 0|6 0|7 0|6 0|4 0|3 8|2 0|1
0|3 0|2 0|3 0|4 0|5 0|6 0|5 4|5 8|4 8|3 0|4
0|4 0|3 0|4 0|5 0|6 0|7 0|6 0|5 0|4 0|3 0|4

t = 10:

0|4 0|3 0|4 0|5 0|6 0|7 0|6 0|5 0|4 0|3 0|4
0|3 8|2 0|3 0|4 0|5 0|6 0|5 0|5 0|4 0|3 0|4
8|0 8|1 0|4 0|5 6|6 0|7 0|6 0|3 0|2 8|1 8|0
8|0 0|1 0|4 0|5 0|6 0|7 0|6 0|4 0|3 8|2 0|1
0|3 0|2 0|3 0|4 0|5 0|6 0|5 0|5 8|4 8|3 0|4
0|4 0|3 0|4 0|5 0|6 0|7 0|6 0|5 0|4 0|3 0|4

t = 11:

0|4 0|3 0|4 0|5 0|6 0|7 0|6 0|5 0|4 0|3 0|4
0|3 4|2 0|3 0|4 0|5 0|6 0|5 0|5 0|4 0|3 0|4
8|0 8|1 0|4 0|5 6|6 0|7 0|6 0|3 0|2 8|1 8|0
4|0 0|1 0|4 0|5 0|6 0|7 0|6 0|4 0|3 8|2 0|1
0|3 0|2 0|3 0|4 0|5 0|6 0|5 0|5 4|4 8|3 0|4
0|4 0|3 0|4 0|5 0|6 0|7 0|6 0|5 0|4 0|3 0|4

t = 12:

0|4 0|3 0|4 0|5 0|6 0|7 0|6 0|5 0|4 0|3 0|4
0|3 0|2 0|3 0|4 0|5 0|6 0|5 0|5 0|4 0|3 0|4
8|0 8|1 0|4 0|5 6|6 0|7 0|6 0|3 0|2 8|1 8|0
8|0 0|1 0|4 0|5 0|6 0|7 0|6 0|4 0|3 8|2 0|1
0|3 0|2 0|3 0|4 0|5 0|6 0|5 0|5 0|4 8|3 0|4
0|4 0|3 0|4 0|5 0|6 0|7 0|6 0|5 0|4 0|3 0|4

t = 13:

0|4 0|3 0|4 0|5 0|6 0|7 0|6 0|5 0|4 0|3 0|4
0|3 0|2 0|3 0|4 0|5 0|6 0|5 0|5 0|4 0|3 0|4
8|0 0|1 0|4 0|5 6|6 0|7 0|6 0|3 0|2 8|1 8|0
8|0 0|1 0|4 0|5 0|6 0|7 0|6 0|4 0|3 8|2 0|1
0|3 0|2 0|3 0|4 0|5 0|6 0|5 0|5 0|4 4|3 0|4
0|4 0|3 0|4 0|5 0|6 0|7 0|6 0|5 0|4 0|3 0|4

	
 42	

t = 14:
0|4 0|3 0|4 0|5 0|6 0|7 0|6 0|5 0|4 0|3 0|4
0|3 0|2 0|3 0|4 0|5 0|6 0|5 0|5 0|4 0|3 0|4
4|0 0|1 0|4 0|5 6|6 0|7 0|6 0|3 0|2 8|1 8|0
4|0 0|1 0|4 0|5 0|6 0|7 0|6 0|4 0|3 4|2 0|1
0|3 0|2 0|3 0|4 0|5 0|6 0|5 0|5 0|4 0|3 0|4
0|4 0|3 0|4 0|5 0|6 0|7 0|6 0|5 0|4 0|3 0|4

t = 15:

0|4 0|3 0|4 0|5 0|6 0|7 0|6 0|5 0|4 0|3 0|4
0|3 0|2 0|3 0|4 0|5 0|6 0|5 0|5 0|4 0|3 0|4
0|0 0|1 0|4 0|5 6|6 0|7 0|6 0|3 0|2 4|1 8|0
0|0 0|1 0|4 0|5 0|6 0|7 0|6 0|4 0|3 0|2 0|1
0|3 0|2 0|3 0|4 0|5 0|6 0|5 0|5 0|4 0|3 0|4
0|4 0|3 0|4 0|5 0|6 0|7 0|6 0|5 0|4 0|3 0|4

t = 16:

0|4 0|3 0|4 0|5 0|6 0|7 0|6 0|5 0|4 0|3 0|4
0|3 0|2 0|3 0|4 0|5 0|6 0|5 0|5 0|4 0|3 0|4
0|0 0|1 0|4 0|5 6|6 0|7 0|6 0|3 0|2 0|1 0|0
0|0 0|1 0|4 0|5 0|6 0|7 0|6 0|4 0|3 0|2 0|1
0|3 0|2 0|3 0|4 0|5 0|6 0|5 0|5 0|4 0|3 0|4
0|4 0|3 0|4 0|5 0|6 0|7 0|6 0|5 0|4 0|3 0|4

	
 43	

APPENDIX C: THE FLOOR PLANS OF THE SJSU BUILDINGS

The floor plan of the MacQuarrie Hall

The floor plan of the Duncan Hall

The floor plan of the Sweeney Hall

	
 44	

The floor plan of the South Parking Structure

The floor plan of the Spartan Complex Central

	
 45	

REFERENCES

1 Berto, F., & Tagliabue, J. (2012). "Cellular Automata". The Stanford
Encyclopedia of Philosophy. Edward N. Zalta (ed.).
http://plato.stanford.edu/archives/sum2012/entries/cellular-automata/

2 Tavakoli, Y., Javadi, H., & Adabi, S. (2008). “A Cellular Automata Based

Algorithm for Path Planning in Multi-Agent Systems with A Common Goal”.
IJCSNS International Journal of Computer Science and Network Security. VOL.8
No.7

3 Schiff, Joel L. (2011). Cellular Automata: A Discrete View of the World. Wiley &

Sons, Inc.

4 Reddy, M. (1994). “Bitmap-File Formats”. The Graphics File Formats Page.

Edinburgh Informatics Department.
http://www.martinreddy.net/gfx/2d/BMP.txt

5 Telea, A. C. (2008). Data visualization: principles and practice (1st ed.).

Wellesley, MA: A K Peters Ltd.

6 Gamma, E., Helm R., Johnson R., & Vlissides, J. (2008). Design Patterns:

elements of reusable object-oriented software (1st ed.). Westford, MA: Addison-
Wesley.

7 Baker, H. (2004). Computer Graphics with OpenGL (3rd ed.). Upper Saddle River,

NJ: Pearson Education Inc.

8 Kleinberg, J., & Tardos, E. (2005). Algorithm Design (1st ed.). Upper Saddle
River, NJ: Pearson Education Inc.

