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ABSTRACT 

 

ADDING A SOURCE CODE SEARCHING CAPABILITY TO YIOOP 

 

This project introduces a Java and Python source code searching capability to Yioop [1]. Yioop 

is a PHP-based search engine. This feature enables users to search Java and Python source code 

files by entering Java or Python code snippets in the search bar of the search engine. In this 

project, a logarithmic char-gramming approach and a suffix tree approach were implemented and 

compared. In Yioop, the logarithmic char-gramming approach was newly implemented; whereas, 

an existing suffix tree approach was extended to operate on tokenized source codes. On 

comparing performance and effectiveness of these two approaches, it was found that the suffix 

trees approach was the better approach. The two methods returned comparable results, but the 

suffix tree approach was much faster for indexing.  
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CHAPTER 1 

INTRODUCTION 

 

 There are several online source code search engines: Ohloh [2], Google code [3], and 

Krugle [4]. These search engines help users to look for some specific implementations of 

programming concepts or logics. This project aims to implement a source code searching feature 

in Yioop for Java and Python programming languages. 

 Source code search, as we have implemented it in Yioop, downloads the contents of Java 

and Python source code files from publically crawlable Git [5] repositories. Many Git hosting 

web servers like GitHub [6], Gitorious [7], etc., are not publically crawlable. These Git hosting 

web servers allow only few well-known web crawlers like Google to crawl their Git repositories. 

These types of restrictions can be found out by checking a robots.txt file of web servers. 

 We developed two techniques for code search: logarithmic char-gramming and suffix 

tree. The logarithmic char-gramming technique is new and was never proposed or experimented 

before by anyone in the context of source code search. In the approach of logarithmic char-

gramming, source code is split into char-grams where size of char-grams starts from three and 

doubles until the size reaches to the length of the source code file. In this approach, the source 

codes are logarithmically char-grammed during the index building phase. In the querying phase, 

the query string is split into two maximal char-grams that cover the entire query. The existing 

search implementation in Yioop uses these two char-grams to search relevant results using an 

inverted index built during indexing phase. 

 For normal text, the suffix tree approach is already present in Yioop. It is the default 

method of indexing in Yioop. However, Yioop’s existing suffix tree approach is ill-suited to 



10 
 

source code. To modify the suffix tree approach to search source codes, Java and Python source 

code was first tokenized into Java and Python tokens with a tokenizer we created based on the 

respective language specifications. These tokens were used to build a suffix tree. Unlike 

logarithmic char-gramming, a suffix tree approach treats source codes in the index building 

phase and query string in the querying phase in a same way. 

 The rest of the report is sorted into chapters. Chapter 2  provides a brief description of 

Yioop in the context of implementing code search. Chapter 3 explains the background work done 

in the initial phases of the project. Chapter 4 describes the implementation of Git cloning effects 

in Yioop. Chapter 5  explains the logarithmic char-gramming and suffix tree approaches, to 

implement source code search in Yioop. Chapter 6  illustrates the querying approach 

implemented in Yioop. Chapter 7 presents and interprets the results of a comparison between the 

logarithmic char-gramming and suffix tree approaches of code search in Yioop. Chapter 8

explains the conclusion drawn on the basis of results presented in the previous chapter followed 

by the appendix and references.  
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CHAPTER 2 

SUMMARY OF BACKGROUND WORK IN YIOOP 

 

 This Chapter presents a brief description of Yioop [8]. Yioop is an open source search 

engine developed by Dr. Chris Pollett using PHP. It can be used to create indexes of a website or 

set of websites for users. It can also be used to index non-web archives. The crawler in Yioop 

can crawl over websites and non-web archives. Yioop contains two important processes: fetchers 

and queue serves. A fetcher downloads the contents from crawled web pages or non-web 

archives and processes them. The queue server performs of index building and scheduling 

activities. 

 In Yioop, the fetcher process is changed to fetch and process Git URLs in a special way 

to handle source code search. Currently, there are no page processors present in Yioop to process 

source code. To handle Java and Python source code, new page processors were created in 

Yioop. Index building and querying methods were also modified to support code search in 

Yioop. Details of the changes involved are described in Chapter 4 . 
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CHAPTER 3 

PRELIMINARY WORK 

 

 This chapter explains the initial work done to understand how code search can be 

implemented in Yioop. It includes detecting the language of the given code snippet, analyzing 

Git objects, and understanding internal workings of the Git clone command. A proof of concept 

was developed for a Naïve Bayes classifier and Git cloning effect, as a part of preliminary work, 

which actually helped in understanding the concepts and visualizing the actual implementations 

in Yioop. 

3.1 NAÏVE BAYES CLASSIFIER 

 To implement code search in Yioop, we need to be able to detect programmatically the 

language of the query string. In other words, for source code search, Yioop should be able to find 

which query string belongs to which particular programming language. Generally, a code snippet 

acts like a query string in code search. One of the ways to detect the language of the query string 

is to use a Naïve Bayes classifier. As a part of the experiment, a Naïve Bayes classifier was 

implemented as a PHP program. 

 In the program, Java, Python languages and neither are treated as hypotheses. The 

training set used in the classifier consisted of a specific number of Java and Python source code 

files. All the data from source code files used in the training set was maintained in the two 

separate text files: one for Java and one for Python. For simplicity, these text files are treated like 

a collection of documents where each document represents content from each respective source 

code file and each document is separated by ‘\n\n’. However, ‘\n’ still represents content from 

the same document. 
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 The program splits the contents of Java and Python documents into trigrams and stores 

them separately. Similarly, a search string that is in the form of a code snippet is also fragmented 

into trigrams and stored for future calculation. The program counts the total number of Java and 

Python documents separately and stores them in variables such as say       and         

respectively. The program also individually counts the total number of Java and Python 

documents containing each of the trigrams of the training set and stores them in variables such as 

             and                respectively. The program does a one-time calculation to find 

probability of each trigram from the training set. A sample probability calculation is shown in the 

table below: 

 

Table 1: Sample of notations for trigrams and initial probability calculation 

Trigrams 

Java 

(            ) 

Python 

(              )                                   

Trigrams1                                                 ⁄  

 

                      ⁄  

Trigrams2                                                 ⁄  

 

                      ⁄  

 

 

 The program also calculates the probability for each hypothesis (i.e., Java or Python.) 

Data for calculating the probability of each hypothesis was hard-coded in the program. These 

data were obtained by recording total search results obtained by separately typing Java and 

Python in Google. The program calculates the probability of the hypothesis by dividing each 

number of Java and Python search results by the total number of search results. The total number 

of search results was found by adding Java search results and Python search results. 

 This model for calculating probabilities of trigrams does not take care of the probability 

of unknown trigrams. To resolve this issue, a smoothened probability model is used in the 

program. To calculate the probability of unknown trigrams in Java and Python, random Java and 
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random Python source code files are used in a document representation. The probability of 

unknown trigrams in Java and Python are found by dividing the total number of new trigrams in 

a random Java and Python document by the total number of trigrams in a random Java and 

Python document respectively.  

 The program then calculates a smoothened probability of each trigram in the Java and 

Python training set by multiplying the probabilities of each Java and Python trigram by one 

minus the probability of unknown Java trigrams and by one minus the probability of unknown 

Python trigrams respectively. The program separately categorizes the trigrams of a query as 

known and unknown trigrams for both Java and Python. For each query trigram, if it belongs to a 

set of trigrams from the training set, then the program considers it as a known trigram; otherwise, 

the program considers it as an unknown trigram. This process is repeated separately for Java and 

Python. The program finally calculates the probability for the entire query by multiplying the 

known and unknown probabilities of query trigrams with the probability of the hypothesis. This 

is done separately for Java and Python. The program finally compares the final probability of 

query trigrams 

A detailed description about implementation of a Naïve Bayes classifier can be found in CS297 

Report [17]. Results from the Program are shown below: 

 

 

Figure 1: Results with ten source code documents in Java and Python in the training set 

 

 On experiments produced by a Naïve Bayes classifier indicate that as the size of the 

training set increases the classification improves. 
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3.2 GIT CLONE USING CURL REQUESTS 

 Git [8] is a popular open source version control system. Git provides command line 

commands to perform different action over its repositories. A version control system provides a 

convenient way to track changes and to maintain various versions of the files in a timely manner. 

Some of the other version control systems are SVN, CVS, VSS, Mercurial, Bazaar, etc.  

 Git clone is a Git command used for copying files from a remote repository into a local 

machine. Git clone effects were implemented in Yioop to download Java and Python source code 

files from a Git repository. To do this, the Git clone command was reverse engineered. Git 

commands are not well documented for its internal operations due to which the only way to 

understand its internal operations is to reverse engineer them. 

 To reverse engineer a Git clone command, a Git repository was configured with the help 

of WebDav, and Java and Python source code files were pushed into it. The directory structure of 

a local Git repository is shown below: 

 

 

Figure 2: Local Git repository structure in Mac OS X 

 

 To trace the actual internal calls made while cloning files from the repository, source 

code files were cloned from a local Git repository using the Git clone command. The screenshot 

on the next page shows sample GET requests: 
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Figure 3: Sample GET requests for Git clone 

 

 The next step towards achieving the Git cloning effect was to make these GET requests 

using cURL calls. To accomplish this, a PHP program was developed. The program makes the 

first cURL request to obtain the contents from the first GET request of the Figure 3.3. The output 

of this cURL request is shown below: 

 

 

Figure 4: Output obtained from cURL call to the first GET request of the Git clone 

 After analyzing the output of the cURL request as shown in Figure 3.4, it was found that 

the output of the first GET request of the Git clone operation contains the SHA hash of the Git 

object in hexadecimal. The third row of Figure 3.3 shows this hexadecimal SHA hash. The 

cURL call to the second GET request of Figure 3.4 simply confirms the branch as the master.  

 Git stores data in two kinds of objects, namely the blob and the tree object. The blob 

objects of Git contain the actual data in zlib compressed format. The tree objects of Git contain 

structural information in a compressed format. Uncompressed output of the cURL call to the 

third GET request of Figure 3.3 is shown below: 

 

Figure 5: Uncompressed output of cURL call to the third GET request of the Git clone 
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 After analyzing the output of the cURL request as shown in Figure 3.5, it became evident 

that it contains the SHA hash of the Git object as indicated by the fourth row of Figure 3.3. 

Uncompressed output obtained from the cURL call to the fourth GET request of Figure 3.3 

indicates the presence of binaries in it. It represents the Git tree object. As discussed in the next 

paragraph, a hex dump of the output indicated a useful pattern. A screenshot of the portion of the 

hex dump of the output obtained from the cURL call to the fourth GET request of Figure 3.3 is 

shown below: 

 

 

Figure 6: Portion of the hex dump of the Git tree object 

 

 According to Schwarz (2010) “A Git tree contains the internal representation of Git’s 

directory structure. The general format of a Git tree object is represented by: tree ZN(A FNS)*. 

Here, Z represents the size of the objects in byte; N represents the null character; A indicates the 

UNIX access code; F represents the file name; and S indicates 20 bytes long SHA hash. The 

same pattern repeats for each Git object.” It was observed that the UNIX access code for the tree 

objects starts with ‘400…’ and for the blob object starts with ‘100…’. In a local Git repository, 

Git objects are stored inside the objects folder.  Each object is contained inside a separate folder. 

The first two bytes of SHA hash represent the folder name and the remaining 38 bytes indicate 

the file name [9]. The snapshot indicating the structure of the object folder in a local Git 

repository is shown on the next page. 
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Figure 7: Object folder structure for local Git repository in Mac OS X 

 

 With the help of the information from the Git tree objects, the program extracts the SHA 

hash of each Git object and makes the cURL call to get the actual content of each Git object. 

Each Git tree object contains the roadmap for the files and folders included inside it; whereas, 

details of each folder will be inside its own tree object and the actual contents of the files will be 

inside Git blob objects. The program makes successive cURL requests for getting the 

compressed contents of all the Git blob objects. After getting the compressed contents of Git 

blob files, the program decompresses the compressed contents. 
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CHAPTER 4 

IMPLEMENTING GIT CLONE IN YIOOP 

 

 In Yioop, a fetcher process fetches the URLs, downloads contents from each URL, and 

checks if downloaded contents contain any URL. If downloaded contents contain URLs, then the 

fetcher process will download the contents from these URLs also. These downloaded contents 

are processed based on their type. The fetcher then builds an inverted index using these 

processed contents. 

 To understand the changes in Yioop that are needed to handle source code from a Git 

repository, we need to understand the usual crawl flow in Yioop. For normal URLs, a fetcher 

process in Yioop fetches a set of hundred URLs and then downloads contents from these URLs. 

To keep the user informed about the number of URLs crawled, a fetcher process updates the 

count of found sites. Yioop continues to crawl until it is manually stopped by a user. After 

fetching each set of hundred URLs, these URLs are removed from the list of URLs to be 

processed. The next iteration of fetching URLs starts from the first URL of the next set of 

hundred URLs. 

 The following changes were made to Yioop to handle Git repositories. When Yioop 

encounters a Git URL, then Git internal URLs are fetched from the parent Git URL. These 

internal Git URLs are used to perform the clone operation. The first internal Git URL is made by 

appending a fixed component, “/info/refs?service=git-upload-pack” to the parent Git URL. All 

subsequent Git URLs are fetched as described in section 2.3  of Chapter 3 . 

 After fetching all internal Git URLs from the original Git URL, the Git internal URLs are 

processed in sets of hundred. The contents from each set of internal Git URLs are downloaded. 
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After fetching each set of internal Git URLs, a counter is set to the starting point of the next set 

of internal Git URLs with respect to all the internal Git URLs. After this, in the list of URLs to 

be processed, the original Git URL is removed and reinserted after appending it with the counter 

value. In the next fetch of internal Git URLs, this counter value is read and the next set of 

internal Git URLs, is fetched. This process will be repeated until all the internal Git URLs are 

fetched and downloaded. 

 In a scenario where a Git URL is crawled along with normal URLs, then a fetcher picks 

up the URL as per Yioop’s already available logic and processes it. As soon as Yioop encounters 

a Git URL, the custom process for cloning the Git URL takes over. After all the Git URLs are 

downloaded, control returns back to Yioop’s normal routines to process other normal URLs. 

 In Yioop, an inverted index is built after downloaded contents are processed. If we set a 

particular crawl as an index, then we can perform a search over it. For display purposes, the 

name of a source code file is displayed as the title, which is made as a hyperlink. Usually, the 

URL is shown below the title of the respective webpage. For Java or Python source code files, 

the Git internal URL is displayed below the title of a source code file. 

 Generally, on Yioop’s search page, when a user clicks on a title as a hyperlink, a fresh 

HTTPS request is made and the contents are retrieved. In the case of source code search with 

results from a Git repository, if a fresh HTTPS request is made, then the compressed contents 

would be returned to the web browser. To avoid this, a cache request is made to retrieve the 

contents from already downloaded cached contents. 

 

 

Figure 8: Fetcher logs showing processing of Git URL starts from robots.txt 
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Figure 9: Fetcher logs showing internal Git URLs downloaded in Yioop 

 

 To implement Git clone effects in Yioop, the fetcher process is modified to check Git 

urls. Once a Git url is found the control is transferred to a new class to fetches Git internal urls. 

These urls are then returned back to the fetcher and are downloaded in a special way. 

  

Figure 10: Implementation of Git cloning effects in Yioop  
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CHAPTER 5 

SOURCE CODE INDEXING METHODS IN YIOOP 

 

 In Yioop, source code search can be viewed as a two phase process. The first phase is the 

indexing phase, and the second phase is the querying phase. In the indexing phase, source code is 

downloaded, processed, and indexed to create an inverted index. In the querying phase, a user 

enters a query string to search relevant results. In this chapter, the indexing phase of source code 

search implementation is discussed. 

 After downloading the contents from a set of internal Git URLs, the fetcher process in 

Yioop detects the MIME type of the downloaded contents and assigns a suitable page processor 

to process these contents further. Java and Python processors were created to process Java and 

Python source code, respectively. These processors extract the file extension from each source 

code file name and consider it as a language of the respective source code. The existing text 

processor in Yioop, prepares a summary of textual contents by eliminating the unnecessary 

information. However, for source code entire contents should be retained in the original form. To 

achieve this entire content of a given source code file is retained as its description. The Java and 

Python processors extend the text processor. 

5.1 LOGARITHMIC CHAR-GRAMMING 

 Logarithmic char-gramming is a modification of a char-gramming technique, which is 

used to process text consisting of a contiguous sequence of characters. As far as we know, this 

approach has never been implemented before in the context of code search. In Yioop, the native 

implementation of char-gramming is present for texts that do not contain any word boundaries or 

for texts that do not has a stemmer.  
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 Char-gramming [10] is a technique used for texts that do not contains definite word 

boundaries. For information retrieval purposes, when a text does not have any kind of word 

boundary, it is chunked into character n -grams. Character n -grams are chunks of continuous 

text each of size n . For example, if the text is “shining bell” and 3n , then 3 -grams extracted 

from the text are “shi, hin, ini, nin, ing, ng_, g_b, _be, bel, ell.” Similarly, if 4n , then 4 -

grams extracted from the text are “shin, hini, inin, ning, ing_, ng_b, g_be, _bel, bell”. Here, ‘_’ 

represents a space. 

  In Yioop, logarithmic char-gramming was used to index Java and Python source code. In 

the approach of logarithmic char-gramming, text is chunked into character n -grams where n  

starts from 3 and keeps doubling until it exceed the length of the text.  For example, if the text is 

“shining bell”, then the value of n  starts from 3  and doubles to 6  and then doubles to12 . In this 

case, the length of the text is 12  therefore, doubling stops when the value of n  reaches 12 . If the 

length of a text is 25, then the n  starts from 3  and doubles until it reaches 24 , but the doubling 

stops at 24  because 24  doubles to 48 , which is greater than the length of the text, i.e. 25 . 

 We call this modified approach to char-gramming, logarithmic char-gramming because 

the number of possible sizes of char-grams is logarithmic. The approach of logarithmic char-

gramming is memory sensitive because it produces a large numbers of char-grams. In other 

words, it consumes lots of memory to store all the char-grams. To make this approach more 

effective in Yioop, hashes of the char-grams are stored instead of directly storing the char-grams. 

Hashes of char-grams are computed by using the hashing technique already present in Yioop. 

 The number of char-grams produced from a source code file as a result of the logarithmic 

char-gramming approach is proportional to the number of terms in a source code file times the 

log of the number of terms in a source code file. The space required to store all the char-grams of 
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a source code file produced due to logarithmic char-gramming is proportional to the length of the 

source code file times log of the number of terms in a source code file. The space requirement 

reduces to log times the size of a source code file by storing a 8 -byte hash of char-grams instead 

of storing char-grams directly. In this case, space complexity is given by                  . 

 To further enhance the effectiveness of the logarithmic char-gramming approach, Java 

and Python source code are processed before char-gramming. All the unnecessary spaces, tabs 

and new lines are removed from the Java and Python source code such that source codes look 

like a large continuous string. In pre-processing, escape characters and other tokens in Java and 

Python source code remain unchanged. In Yioop, pre-processing logic for the Java and Python 

source code are implemented with the help of the regular expressions. 

 To implement logarithmic char-gramming in Yioop, language detection for source code 

plays an important role. As described earlier, the language of the source code is detected based 

upon file extension. For Java and Python, separate locale tags were created and the initial char-

gram value was set as a string. When Yioop detects Java or Python language, it invokes 

logarithmic char-gramming implementation to index Java or Python source code. After indexing 

source code using the logarithmic char-gramming approach, hashes of char-grams were used to 

build an inverted index in Yioop. 

 Consider an example to elaborate the technique of logarithmic char-gramming used for 

indexing source codes in Yioop. Suppose the sample Java text for logarithmic char-gramming is 

“public static void main (String [] args) {”. After pre-processing, it gets converted into a 

continuous string “publicstaticvoidmain(String[]args){” of length 35.  

 In logarithmic char-gramming, the n  value starts from 3  and keeps doubling until it 

exceeds the length of the string. Therefore, in this example, n    3 , 6 , 12 , 24 . The n  value 
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terminates at 24  because 24 doubles to 48 , which is greater than 35 . All the char-grams 

produced in this example are listed in the next page as per their length: 

 For 3n , 3 -grams are “pub, ubl, bli, lic, ics, cst, sta, tat, ati, tic, icv, cvo, voi, oid, idm, 

dma, mai, ain, in(, n(S, (St, Str, tri, rin, ing, ng[, g[], []a, ]ar, arg, rgs, gs), s){”.  

 For 6n , 6 -grams are - “public, ublics, blicst, licsta, icstat, cstati, static, taticv, aticvo, 

ticvoi, icvoid, cvoidm, voidma, oidmai, idmain, dmain(, main(S, ain(St, in(Str, n(Stri, 

(Strin, String, tring[, ring[], ing[]a, ng[]ar, g[]arg, []args, ]args), args){”.  

 For 12n , 12 -grams are “publicstatic, ublicstaticv, blicstaticvo, licstaticvoi, 

icstaticvoid, cstaticvoidm, staticvoidma, taticvoidmai, aticvoidmain, ticvoidmain(, 

icvoidmain(S, cvoidmain(St, voidmain(Str, oidmain(Stri, idmain(Strin, dmain(String, 

main(String[, ain(String[], in(String[]a, n(String[]ar, (String[]arg, String[]args, 

tring[]args), ring[]args){”.  

 For 24n , 24 -grams are “publicstaticvoidmain(Str, ublicstaticvoidmain(Stri, 

blicstaticvoidmain(Strin, licstaticvoidmain(String, icstaticvoidmain(String[, 

cstaticvoidmain(String[], staticvoidmain(String[]a, taticvoidmain(String[]ar, 

aticvoidmain(String[]arg, ticvoidmain(String[]args, icvoidmain(String[]args), 

cvoidmain(String[]args){ ”. 

Logarithmic char-gramming indexes both Java and Python source code in the same way as 

described above. 

5.2 TOKENIZING JAVA AND PYTHON SOURCE CODES 

 Java and Python source codes have definite structures and organization of words. These 

characteristics of Java and Python source codes can be used to tokenize the source codes into 

lexical units. Lexical structure of Java and Python programming languages are different. The 
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focus of this approach is to split the source codes into tokens of their respective programming 

languages and to build suffix trees from these tokens. A suffix tree implementation is already 

present in Yioop; however, it was never used in the context of code search. In the case of source 

codes, the existing suffix tree method uses tokenized source codes to construct the suffix trees. 

Earlier, there was no specific implementation to handle source codes for constructing a suffix 

tree. 

5.2.1 TOKENS IN JAVA 

 Tokens in Java [11] consist of keywords, identifiers, separators, operators, comments, 

and literals. To understand these tokens, it is important to get familiar with the Java character-set. 

The Java character-set consists of alphanumeric characters and symbols. Rules for constructing 

different types of tokens in Java are defined with the help of the Java character-set: 

Keywords: Keywords consist of a set of specific words that are interpreted in a specific way by 

the Java compiler and cannot be used for other purposes. Examples of keywords are if, else, 

continue, break, this, etc. There is no general rule defined for identifying keywords. The words 

need to be memorized and searched as a complete word. 

Identifiers: Identifiers in Java are used to specify elements of Java programming language like 

class, package, interface, variable etc. The general rule for finding identifier is that they starts 

from either upper case or lower case alphabets, or an underscore or dollar sign, followed by 

alpha-numeric characters or underscore or dollar sign.  

Separators: Separators consist of commas, semi-colons, colons, dots, and small, curly, and 

square brackets. Other types of tokens are separated with the help of separators. 

Operators: Operators in Java are used to indicate specific operations and usually consist of a 

single symbol, set of two symbols, or set of three symbols. The general rule for operators says 



27 
 

that operators that consist of three symbols should be tokenized first, followed by operators with 

two symbols, then operators with a single symbol. 

Comments: Java programming language allows three different styles of comments, namely 

single line comments, multi-line comments, and Javadoc comments. Single line comments start 

and end in a single line. Their beginning is indicated by two forward slashes. Multi-line 

comments can be extended to multiple lines. The starting and ending positions of multi-line 

comments are characterized by ‘/*’ and ‘*/’ respectively. Javadoc comments are used for 

documentation purposes in Java. Javadoc comments are similar to multiline comments. Javadoc 

comments start with ‘/**’ and end with ‘*/’. 

Literals: In Java, literals can be divided into string literals, integer literals, floating-point literals, 

char literals, Boolean literals and null literals. Each sub-category of literals has its own lexical 

rules. 

String Literal: A string literal is a sub-category of literal and is identified by opening and 

closing double quote symbols such as “print to the console.” The general rule for identifying a 

string literal is identifying alpha-numeric and special character sequences, escape sequences, or 

spaces enclosed inside double quotes.  

Char Literal: A char literal is another sub-category of literal. It is characterized by a single 

character enclosed in single quotes. A single character can be a space, an escape sequence, alpha-

numeric character, or a symbol like ‘a’, ‘@’ etc.  

Boolean Literal: Boolean literal is the next sub-category of literal. It is recognized by one of the 

two fixed values (i.e. true or false).  

Null literal: Null literal is identified by a single fixed value null. 
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Integer Literal: An integer literal is a sub-category of literal. An integer literal consists of a 

decimal numeral, an octal numeral and a hexadecimal numeral. A decimal numeral starts with 

either zero or a non-zero digit followed by zero or more occurrences of digits from 0  to 9 . An 

octal numeral starts with 0  and followed by one or more occurrences of digits from 0  to 7 . A 

hexadecimal numeral starts with 0  and is followed by either ‘ x ’ or ‘ X ’ in turn followed by one 

or more occurrences of digits from 0  to 9 , or characters from ‘ A ’ or ‘ a ’ to ‘ F ’ or ‘ f ’.  

Floating-point Literal: A floating-point literal is the last sub-category of literal. A floating point 

literal stores a float value. A float value can be recognized by either digits followed by a decimal 

point again followed by digits, or digits followed by an exponential part, or digits followed by a 

decimal point that is followed by digits and in turn followed by an exponential part. The 

exponential part consists of a character ‘ e ’ or ‘ E ’ followed by symbols ‘ ’ or ‘‘and a symbol 

is again followed by digits. Examples of a floating point literal are 15025.4 E , 0056.0 , and 

91.2 . 

 All the elements of Java source code must fall under one of the above mentioned 

categories of the Java tokens. Comments and string literals are again chucked into individual 

words demarcated by spaces. In Yioop, Java source codes are tokenized to produce different Java 

tokens. 

5.2.2 TOKENS IN PYTHON 

 Python tokens [12] consist of identifiers, keywords, operators, delimiters, comments, and 

literals. Python programming language has its own character-set. The tokenization rules for 

Python are defined over its character-set.  

Identifiers: Identifiers in Python programming languages refer to the elements of the language 

like name of class, function, variables, etc. The general rule for defining an identifier is that it 
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starts from alphabets of an English language or an underscore symbol followed by zero or many 

occurrences of alphabets or digits or underscore. 

Keywords: Keywords in Python are specialized identifiers and are interpreted in a specific way 

and cannot be used like other identifiers. Some examples of keywords are global, return, etc. 

Operators: Each operator in Python represents some specific operations for example, ‘ ’ 

indicates addition and ‘’ represents comparison. In other words, operators are symbolic 

representations for operations. Operators are again divided into arithmetic, logical, bit-wise, and 

relational operators.  

Delimiters: Delimiters consist of a single symbol, a set of two symbols, or a set of three 

symbols. During tokenization, a set of three symbols are given preference over a set of two 

symbols and a set of two symbols are given preference over a single symbol. 

Comments: In Python programming language, anything followed by #  is considered as a 

single-line comment. For Multi-line comments, each line is written as a single-line comment. 

The general rule for identifying comments is #  followed by one or more occurrence of alpha-

numeric characters, symbols, white space, or a forward slash delimited by a new line. 

Literals: Literals are again categorized into numeric literals, floating-point literals, logical 

literals, string literals, byte literals and none type literals. Each of these sub-categories is 

categorized by some set of rules that is specific to each type.  

Numeric Literal: A numeric literal includes decimal numbers, binary numbers, hexadecimal 

numbers, and octal numbers. A decimal number starts with zero or a non-zero digit or non-zero-

digit followed by zero or more occurrences of non-zero digits. A binary number consists of ‘ b0 ’ 

or ‘ B0 ’ followed by zero or one in turn followed by zero or more occurrences of zero or one. A 

hexadecimal number starts with ‘ x0 ’ or ‘ X0 ’ followed by hex digits in turn followed by zero or 
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more occurrences of hex digits. In a similar way, an octal numbers starts with ‘0o’ or ‘0O’ 

followed by an octal digit in turn followed by zero or more occurrence of octal digits. 

Floating-point Literal: A floating-point literal can be recognized by a mantissa followed by an 

exponent or digits followed by an exponent. A mantissa contains digits followed by a decimal 

point followed by one or more occurrences of digits, or a decimal point followed by one or more 

occurrences of digits. An exponents consists of the character ‘ e ’ or ‘ E ’ followed by the ‘ ’ or ‘

‘ symbol in turn followed by digits. 

Logical Literal: A logical literal or Boolean literal contains one of the two values (i.e. True or 

False) and can be identified by an entire word.  

None Type Literal: None type literal contains a single value and is recognized by none as an 

entire word. 

String Literal: A string literal contains a sequence of characters enclosed inside single quotes 

and double quotes. A string literal also contains a sequence enclosed inside triple or single 

quotation marks and triple double quotation marks.  

Byte Literal: Like a string literal, a byte literal starts with ‘ b ’ or ‘ B ’ followed by the optional 

character ‘ r ’ or ‘ R ’ and then followed by the syntax of a string literal. At times a string literal 

also starts with ‘ r ’ or ‘ R ’. 

 Like tokens in Java, tokens in Python source code must fall under one of the above 

mentioned categories of the Python tokens. Comments, string literals, and byte literals are again 

chucked into individual words demarcated by spaces. In Yioop, Python source codes are 

tokenized to produce different Python tokens. 
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 In Yioop, the entire process of tokenizing source code files was implemented with the 

help of regular expressions. Regular expressions provide a convenient way to identify different 

tokens from a collection of texts in a given source code file. 

5.3 SUFFIX TREE IN YIOOP 

 Suffix tree [13] is a tree based data structure which contains all the suffixes of a given 

string. In other words, it can be used to store all the substrings of the given text. Some of the 

popular applications of suffix tree are pattern matching, finding longest common subsequence, 

etc. Currently, Yioop has an implementation for Ukkonen’s algorithm [14] to build a suffix tree. 

Ukkonen’s algorithm is used to build a suffix tree in a linear time. In general, the running time 

[15] for Ukkonen’s algorithm is            in Yioop, since size of alphabet is not fixed. In our 

implementation, each term from the source code act as an alphabet. In Yioop, the newly 

introduced source code tokenization process provides terms needed to build a suffix trees for 

source codes. 

 For each source code file, Yioop builds a suffix tree from tokenized source code and then 

finds maximal strings and conditionally maximal strings [16]. In general, a given string is called 

maximal string if it does not act as prefix of any other string in the document and all the 

occurrences of a given string includes other strings in the document. Whereas, a given string is 

called conditionally maximal string if it acts as a prefix of maximal string in a document and 

there is no other string in the document which lies between them. Yioop already contains 

implementation for finding maximal and conditionally maximal strings. The existing 

implementation in Yioop, stores all the maximal sub-strings along with the pointers to their 

respective conditionally maximal strings. After finding conditionally maximal strings from a 

suffix tree, the fetcher process in Yioop builds the inverted index to support search operations. 
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 The maximal and conditionally maximal sub-strings were presented for the sample set of 

documents. Let there are two documents    and    , which contains 12341235  and 123456  

respectively, as text. Here we view each number as a term. Yioop calculates maximal sub-strings 

and conditionally maximal sub-strings for each of the document as indicated in the tables below:  

Table 2: Maximal and conditionally maximal sub-strings for document    

Document   : 12341235 

Maximal Sub-

Strings 
1 2 3 4 5 123 12341235 23 2341235 341235 41235 1235 235 

Conditionally 

Maximal Sub-

Strings   

/ / / / / 1 123 2 23 3 4 1 2 

 

Table 3: Maximal and conditionally maximal sub-strings for document    

Document   : 123456 

Maximal Sub-

Strings 
1 2 3 4 5 6 123456 23456 3456 456 56 

Conditionally 

Maximal Sub-

Strings   

/ / / / / / 1 2 3 4 6 

 

 In the above tables “/” indicated the root element. Suppose the query    is 12  which 

never appears as a maximal string for any of the above documents. In this situation, Yioop looks 

for the cases where 1 occurs as a conditionally maximal sub-string and is followed by 2 . The 

documents, which satisfy this condition, are returned as the search results. 

 The snapshot presented on the next page indicated the sample crawl performed in Yioop 

for different sample sizes of a Git repository. 
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Figure 11: Sample crawls in Yioop in index building phase 
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CHAPTER 6 

SOURCE CODE QUERYING METHODS IN YIOOP 

 

 In Yioop, an inverted index is used to perform search operations. In a context of code 

search, a user can enter a query string in Yioop’s search bar to search relevant source code files. 

To search source code files, first of all language of query string needs to be detected. One of the 

approaches tried to detect the language of the query string is Naïve Bayes classifier. As discussed 

in the chapter 3 , a Naïve Bayes classifier was implemented in Yioop to detect the language of 

the search string i.e. code snippet entered in the search bar. 

 Naïve Bayes classifier is a probabilistic model, so at times it detects language incorrectly. 

Incorrect language detection of search string affects Yioop’s performance negatively in terms of 

returning relevant results. To avoid this issue, an alternative approach of using control words is 

implemented in Yioop. In this approach the user explicitly mentions the language of the code 

snippet or query string i.e., Java or Python. For example if the user is looking for source codes 

from Java programming language then the user will specify control word ‘java:’ before the actual 

query string. If user is trying to search for source codes from Python programming then the user 

will specify control word ‘python:’ before the actual query string. In Yioop, control words used 

before actual query string are removed before performing the actual search operations. Querying 

phase differs for both logarithmic char-gramming approach and suffix tree approach. 

 In the logarithmic char-gramming approach, query string is pre-processed before 

searching for the relevant matches. The pre-processing includes finding two largest char-grams 

from the query string which covers the entire query without any significant information loss. The 

technique used for this is described below: 
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Where       indicates query string entered by a user 

 

    ⌊   ⌊
       

 
⌋⌋ 

          

where   indicates length of the segment of the query string from the beginning 

 

                 

    ⌈   ⌈
       

 
⌉⌉ 

          

where   indicates length of the segment of the query string from the end 

 To avoid char-gramming of the query string we used above mathematical formulation. In 

Yioop, a conjunctive query of two strings takes less time to return relevant results than 

conjunctive query of n  number of strings. Two largest char-grams from a given query string is 

found by splitting the original query string into two substrings; one from beginning of the string 

for length X  and another from ending of the string for length Y . These two char-grams are 

searched over the inverted index to find a match. Source code files where match is found are 

returned to a user as relevant search results. 

 In the suffix tree approach of code search a query string does not require any pre-

processing. Yioop directly tokenizes the query string to build a suffix trees and finds maximal 
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and conditionally maximal strings to return the matching results. The querying phase in a suffix 

tree approach is simpler than querying phase in a logarithmic char-gramming approach. 

 

 

Figure 12: Result set retrieved from a sample query in Yioop 
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CHAPTER 7 

COMPARING SOURCE CODE SEARCH TECHNIQUES IN YIOOP 

 

 We now compare the logarithmic char-gramming and the suffix tree techniques for code 

search. To find the better technique for code search in Yioop, some performance criteria are 

recorded and basic effectiveness measures are calculated for both the techniques. Table 7.1 and 

7.2 indicates performance criteria for Yioop’s index construction phase for logarithmic char-

gramming and suffix tree approaches respectively. 

 

Table 4: Crawl performance statistics for logarithmic char-gramming approach of code search 

Number of files in 

Git repository 

Size of the 

inverted index 

Time taken to build inverted 

index in HH:MM:SS 

Memory 

usage  

Original 

size of files 

10 81.2 MB 00:06:55 1158373144 193KB 

100 359.1 MB 00:25:50 1742086984 1.1MB 

1000 1.75 GB 01:42:47 1868283592 8.2MB 

 

Table 5: Crawl performance statistics for suffix tree approach of code search 

Number of files in 

Git repository 

Size of the 

inverted index 

Time taken to build inverted 

index in HH:MM:SS 

Memory 

usage  

Original 

size of files 

10 3.2 MB 00:00:51 515064424 193KB 

100 11.1 MB 00:02:24 515065288 1.1MB 

1000 57.6 MB 00:08:15 686648216 8.2MB 

 As one can see from the above tables, the suffix tree approach takes less time to build the 

inverted index and consumes less space to store the inverted index when compared to the 

logarithmic char-gramming approach. 
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 To determine the effectiveness of code search techniques experimented in Yioop, we 

have searched some queries in Yioop and formulated the recall, precision and f-measure for the 

retrieved search results. Recall [17] indicates the portion of the relevant documents returned to 

the users as search result. Whereas, precision [17] shows the portion of a search results relevant 

to a user. F-measure [17] indicates the accuracy of search operation. The easiest way of 

calculating F-measure is by taking the harmonic mean of recall and precision. The graph 

presented below shows the average recall, precision and F-measure for logarithmic char-

gramming and suffix tree approaches used to search ten queries over a set of fifty source code 

files in Yioop. 

 

Figure 13: Average Effectiveness Measures calculated for fifty Source Code Documents 
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 The above graph shows, average recall, average precision, and average F-measure values 

are higher for the logarithmic char-gramming technique as compared to the average values for 

the suffix tree technique. It tells us that the logarithmic char-gramming technique provides more 

effective result set for a query searched than suffix tree technique, when used in the context of 

the code search in Yioop. The details of the experiment are presented in the appendix. 

 On the basis of both performance and effectiveness of code search techniques in Yioop, 

we have decided that suffix tree technique is a reasonable approach to search source code in 

Yioop. In terms of effectiveness, the logarithmic char-gramming technique performs a little bit 

better than the suffix tree technique. However, in terms of performance suffix tree technique 

performs much better than logarithmic char-gramming technique. Therefore, suffix tree approach 

is selected as a result of trade-off between performance and effectiveness. 

 

 

 

 

 

 

 

 

 

 

 

 



40 
 

CHAPTER 8 

CONCLUSION 

  

 For this project a Java and Python source code search feature was implemented in Yioop. 

Source code search is more complicated to implement than normal text search. Our technique of 

code search addresses the complexity of source code search without deteriorating the 

performance of Yioop.  

 In this project logarithmic char-gramming and suffix tree approaches were explored and 

experimented with for source code search in Yioop. As discussed in Chapter 6 , the suffix tree 

approach was determined to yield much better performance. It was decided to add the suffix tree 

implementation of code search to the main Yioop branch.  

 As a part of the implementation, the existing fetcher process was modified to download 

source code from publically crawlable Git repositories. Existing page processors were 

insufficient to handle source code, therefore, new page processors were created to process Java 

and Python source codes. Separate tokenizers were developed to tokenize Java and Python 

programming elements for building inverted index. 

 The program for the source code search feature in Yioop was written in an extensible 

way. With my feature, Yioop could easily support the addition of other programming languages. 

All an implementer needs to do is code a programming language specific tokenizer and page 

processor and integrate them with Yioop.  
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APPENDIX 

 

 

 Table presented below consolidates the results of search activity performed in Yioop for 

the logarithmic char-gramming technique and suffix tree technique of code search. In the below 

tables “Rel” indicates number of relevant files for a query, “Res” indicates number of files 

retrieved in response of a query, and “F-Mes” indicates F-measure. 

Table 6: Logarithmic char-gramming technique for ten source code files in Yioop 

S.No 
File 

Count 
Query Rel Res Recall Precision F-Mes MAP 

1 10 java:System.out.println 4 4 1 1 1 1 

2 10 java:import java.util 1 1 1 1 1 1 

3 10 java:public static void 

main(String[] args) 
2 2 1 1 1 1 

4 10 java:printStackTrace() 1 1 1 1 1 1 

5 10 java:catch(IOException e) 2 2 1 1 1 1 

6 10 python:from IPython.utils 2 2 1 1 1 1 

7 10 python:def __init__ 2 2 1 1 1 1 

8 10 python:self.print_help 1 1 1 1 1 1 

9 10 python:return self 2 2 1 1 1 1 

10 10 python:@catch_config_error 1 1 1 1 1 1 
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Table 7: Logarithmic char-gramming technique for twenty five source code files in Yioop 

S.No 
File 

Count 
Query Rel Res Recall Precision F-Mes MAP 

1 25 java:System.out.println 11 11 1 1 1 1 

2 25 java:import java.util 6 6 1 1 1 1 

3 25 java:public static void 

main(String[] args) 
8 7 0.875 1 0.933 1 

4 25 java:printStackTrace() 6 6 1 1 1 1 

5 25 java:catch(IOException e) 6 6 1 1 1 1 

6 25 python:from IPython.utils 3 3 1 1 1 1 

7 25 python:def __init__ 5 5 1 1 1 1 

8 25 python:self.print_help 1 1 1 1 1 1 

9 25 python:return self 3 3 1 1 1 1 

10 25 python:@catch_config_error 1 1 1 1 1 1 
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Table 8: Logarithmic char-gramming technique for fifty source code files in Yioop 

S.No 
File 

Count 
Query Rel Res Recall Precision F-Mes MAP 

1 50 java:System.out.println 18 17 0.944 1 0.971 1 

2 50 java:import java.util 13 13 1 1 1 1 

3 50 java:public static void 

main(String[] args) 
12 7 0.583 1 0.737 1 

4 50 java:printStackTrace() 7 6 0.857 1 0.923 1 

5 50 java:catch(IOException e) 7 7 1 1 1 1 

6 50 python:from IPython.utils 8 8 1 1 1 1 

7 50 python:def __init__ 9 9 1 1 1 1 

8 50 python:self.print_help 1 1 1 1 1 1 

9 50 python:return self 5 4 0.8 1 0.889 1 

10 50 python:@catch_config_error 1 1 1 1 1 1 

 

  

 

 

 

 

 



44 
 

Table 9: Suffix tree technique for ten source code files in Yioop 

S.No 
File 

Count 
Query Rel Res Recall Precision F-Mes MAP 

1 10 java:System.out.println 4 4 1 1 1 1 

2 10 java:import java.util 1 1 1 1 1 1 

3 10 java:public static void 

main(String[] args) 
2 2 1 1 1 1 

4 10 java:printStackTrace() 1 1 1 1 1 1 

5 10 java:catch(IOException e) 2 2 1 1 1 1 

6 10 python:from IPython.utils 2 2 1 1 1 1 

7 10 python:def __init__ 2 2 1 1 1 1 

8 10 python:self.print_help 1 1 1 1 1 1 

9 10 python:return self 2 2 1 1 1 1 

10 10 python:@catch_config_er

ror 

1 1 1 1 1 1 
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Table 10: Suffix tree technique for twenty five source code files in Yioop 

S.No 
File 

Count 
Query Rel Res Recall Precision F-Mes MAP 

1 25 java:System.out.println 11 10 0.909 1 0.952 1 

2 25 java:import java.util 6 5 0.833 1 0.909 1 

3 25 java:public static void 

main(String[] args) 
8 7 0.875 1 0.933 1 

4 25 java:printStackTrace() 6 6 1 1 1 1 

5 25 
java:catch(IOException e) 

6 6 1 1 1 1 

6 25 
python:from IPython.utils 

3 3 1 1 1 1 

7 25 python:def __init__ 5 5 1 1 1 1 

8 25 python:self.print_help 1 1 1 1 1 1 

9 25 python:return self 3 5 1 0.6 0.75 0.917 

10 25 python:@catch_config_er

ror 
1 1 1 1 1 1 
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Table 11: Suffix tree technique for fifty source code files in Yioop 

S.No 
File 

Count 
Query Rel Res Recall Precision F-Mes MAP 

1 50 java:System.out.println 18 14 0.778 1 0.875 1 

2 50 java:import java.util 13 12 0.923 1 0.96 1 

3 50 java:public static void 

main(String[] args) 
12 7 0.583 1 0.737 1 

4 50 java:printStackTrace() 7 6 0.857 1 0.923 1 

5 50 java:catch(IOException 

e) 
7 7 1 1 1 1 

6 50 python:from 

IPython.utils 
8 6 0.75 1 0.857 1 

7 50 python:def __init__ 9 7 0.778 1 0.875 1 

8 50 python:self.print_help 1 2 1 0.5 1 1 

9 50 python:return self 5 7 0.8 0.571 0.667 0.893 

10 50 
python:@catch_config_e

rror 
1 1 1 1 1 1 
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