
CS297 Report Adding a Source Code Searching Capability to Yioop

1

ADDING A SOURCE CODE SEARCHING CAPABILITY TO YIOOP

CS297 REPORT

Submitted to

Dr. Chris Pollett

By

Snigdha Rao Parvatneni

CS297 Report Adding a Source Code Searching Capability to Yioop

2

1. INTRODUCTION

 The aim of the CS297 project is to explore and learn important components to

incorporate a source code searching feature to Yioop, a PHP-based search engine. The source

code searching feature will allow users of Yioop to search Java and Python source codes from

open source code repositories like GIT. All that a user would need to do is to type or paste a Java

or Python code snippet in the search bar of Yioop and click the search button. This action will

return the set of relevant source code files to the user. A user could then go over the search

results to find the implementation for which they are searching.

 Deliverables in the CS297 project gave me an opportunity to learn PHP, to understand

GIT, and to implement the Naïve Bayes classifier. These deliverables gave me a fair idea of how

to implement the source code searching feature in Yioop for the CS298 project.

 This report includes details of all the deliverables of CS297 project. Before starting with

the actual deliverables, preliminary activity included installing and configuring Yioop and

writing a patch to support Bengali language in Yioop. The first deliverable was about learning

how Sourcerer and Google Code Search work. The second deliverable was to implement a Naïve

Bayes classifier in Java to recognize Java and Python source code files. The third deliverable had

two parts: Implementing Naïve Bayes classifier in PHP to get familiar with PHP and enabling

Yioop to process Java and Python source code. The fourth deliverable was reproducing the

effects of GIT clone via cURL calls without using any external libraries. The last deliverable was

the CS297 project report.

 In this report each deliverable is explained under appropriate section headers. At the end,

the report has the conclusion section to discuss the learning from the project followed by the

reference section including all references used to achieve the goals of the project.

CS297 Report Adding a Source Code Searching Capability to Yioop

3

2. OVERVIEW OF DELIVERABLES

2.1 Deliverable-1

 The purpose of this deliverable is to analyze the various steps involved in search

operations of existing source code search engines. Sourcerer and Google Code Search were

selected for the study. After an internet search, I found papers and articles written for Sourcerer

and Google Code Search. Important points from secondary research of Sourcerer and Google

Code Search are presented.

2.1.1 Sourcerer

 As mentioned by Bajracharya et al. (2006) in the paper “Sourcerer: A search engine for

open source code”, Sourcerer is a search engine developed for academic purposes and it is used

for searching open source code files in Java.

 Sourcerer performs two important activities: searching and ranking. As mentioned by

Bajracharya et al. (2006), Sourcerer extracts structural information from the source code and

uses it for finding search results and ranking the search results.

 The main aim of extracting structural information is to extend the Sourcerer’s capability

beyond traditional keyword-based search. Bajracharya et al. (2006), categorizes the source code

search into three broad categories: Implementation search, usability search, and structural

characteristic search. After this, Bajracharya et al. (2006) explain the Sourcerer’s architecture,

and describe various components of the architecture. Sourcerer’s architecture helped me in

understanding the overall infrastructure of the search engine and also explained to me the roles

played by different components in searching and ranking activities.

CS297 Report Adding a Source Code Searching Capability to Yioop

4

 Bajracharya et al. (2006) provide a detailed explanation about how significant features

are extracted from source code files and how these extracted features are stored. According to

Bajracharya et al. (2006), source code features are entities and relations. Additionally, keywords

and fingerprints are used for quickly retrieving search results. As mentioned by Bajracharya et al.

(2006), extracted features are stored in the relational database and in the form of fingerprints.

Fingerprints represent the quantifiable features linked to the entities (Bajracharya et al. 2006).

Extracted source code features enable Sourcerer to perform structure-based searches.

 The next section of Bajracharya et al. (2006) explains how Sourcerer ranks the retrieved

search results. As mentioned by Bajracharya et al. (2006), while ranking, Sourcerer treats codes

as text and makes use of the TF-IDF heuristic. However, Bajracharya et al. (2006) explains that

source code files are different from free text, so their structural information can be used along

with TF-IDF to improve the Sourcerer’s ranking scheme. The researchers suggested using three

different heuristics in Sourcerer for ranking the search results. As explained by Bajracharya et al.

(2006), the first heuristic uses a text-based approach, the second heuristic takes advantage of a

structure-based approach, and third heuristic incorporates a graph-based approach. Finally,

Bajracharya et al. (2006) experimented with all these three heuristics in Sourcerer. Comparing

the recall of the first ten and twenty hits, Bajracharya et al. (2006) found that the combination of

all the three heuristics performs the best.

2.1.2 Google Code Search

 As mentioned by Cox (2012) in his article “How Google Code Search Worked,” Google

Code search is no longer an active project. According to Cox (2012) Google Code Search uses

Google’s famous concept of document indexing and retrieving search results.

CS297 Report Adding a Source Code Searching Capability to Yioop

5

 In this article, Cox (2012) suggests that Google Code Search uses a regular expression

search over an inverted index. Cox (2012) explains that Google Code Search uses an inverted

index to find the plausible search results. The inverted index is built by trigrams because search

operations do not perform well over the word boundaries. Moreover, n = 3 is selected for

character-n grams instead of selecting 2n or 4n because if n is selected as two then there

will be too few distinct 2-grams, and if n is selected as four there will be too many distinct 4-

grams (Cox, 2012).

 As explained by Cox (2012), a search string is treated as a regular expression, which is

chunked into trigrams. All these trigrams are used to make query with ANDs and ORs. All the

trigrams in the search string are searched against the trigrams inverted index to find the set of

candidate documents. After that, a full regular expression search is performed over the set of

candidate documents for finding final search results.

 According to Cox (2012), converting a search string into a regular expression is not

simple. On applying a full set of rules, each rule will compute five sets of results. However,

applying all these rules will not produce very meaningful queries. Moreover, these rules will

make sets of queries very large and unmanageable. To handle this, simplification rules are

applied at each step. After this step, information saving and information discarding steps are

applied to keep query sets manageable (Cox, 2012).

CS297 Report Adding a Source Code Searching Capability to Yioop

6

2.2 Deliverable-2

 The aim of this deliverable is to understand how Naïve Bayes classifier can be used to

recognize whether a given search string is from Java or Python. To experiment with Naïve Bayes

classifier a program is written in Java.

 In the program Java and Python languages are treated as hypothesis. The training set used

in the classifier consisted of specific number of Java and Python source code files. All the data

from source code files used in the training set was maintained in the two separate text files one

for Java one for Python. For simplicity sake these text files are treated like a collection of

documents where each document represents content from each respective source code file and

each document is separated by ‘\n\n’. However, ‘\n’ still represents content from same document.

 The program splits the contents of Java and Python documents into trigrams and stores

them separately. Similarly, search string which is in a form of code snippet is also fragmented

into trigrams and stored for future calculation. The program counts the total number to Java and

Python documents separately and stores it let say JavaN and PythonN respectively. The program

also individually counts the total number of Java and Python documents containing each of the

trigram of training set and stores it in let say aTrigramJavN and honTrigramPytN respectively. The

program does a one-time calculation to find probability of each trigram from the training set.

Sample probability calculation is shown in the below table:

Trigrams Java(aTrigramJavN) Python(thonTrigramsPyN))(aTrigramJavprob)(honTrigramPytprob

Trigrams1 JavaTrigramN 1 PythonTrigramN 1 JavaJavaTrigram NN /1
PythonPythonTrigram NN /1

Trigrams2 JavaTrigramN 2 PythonTrigramN 2

JavaJavaTrigram NN /2
PythonPythonTrigram NN /2

CS297 Report Adding a Source Code Searching Capability to Yioop

7

 The program also calculates the probability for each hypothesis, i.e., Java or Python. Data

for calculating probability of hypothesis was hard-coded in the program. These data were

obtained by recording total search results obtained on separately typing Java and Python in

Google. The program calculates the probably of hypothesis as below:

)()(chResultsPythonSearcountResultsJavaSearchcounthResultTotalSearc 

)(aJavhypothesisprob =)(/)(hResultsTotalSearccountResultsJavaSearchcount

)(Pythonhypothesisprob =)(/)(hResultsTotalSearccountchResultsPythonSearcount

 This model of calculating probabilities of trigrams does not take care of probability of

unknown trigram. To resolve this issue, smoothened probability model is used in the program.

To calculate probability of unknown trigrams in Java and Python, a random Java and a random

Python source code files are used in document representation. The probability calculation for

unknown Java and Python trigrams is shown below:

aUnknownJavprob =

)(/)(vaDocumentInRandomJavaDocumentInRandomJa amsTotalTrigrcountsNewTrigramcount

honUnknownPytprob =

)(/)(ntthonDocumeInRandomPyentthonDocumInRandomPy amsTotalTrigrcountsNewTrigramcount

 The program then calculates a smoothened probability of each trigram in Java and

Python training set by multiplying probabilities of each Java and Python trigrams by

)1(aUnknownJavprob and by)1(honUnknownPytprob respectively. The program separately

categorizes the trigrams of the query as known and unknown trigram for Java and Python. For

each query trigram if it belongs to a set of trigrams from the training set then the program

considers it as a known trigram; otherwise, the program considers it as an unknown trigram. This

CS297 Report Adding a Source Code Searching Capability to Yioop

8

process is repeated separately for Java and Python. The program finally calculates the probability

for the entire query which will decide whether search string belongs to Java or Python. The

calculation for the query is shown below; in it  is a constant which is taken as 1, for simplicity

sake.

)()(vaTrigramsAllKnownJaJavaSmooth ilitiesJavaProbabSmoothenedmultiplyamsQueryTrigrprob 

)()(msthonTrigraAllKnownPythPythonSmoo abilitiesPythonProbSmoothenedmultiplyamsQueryTrigrprob 

)()(msJavaTrigraAllUnknownnJavaUnknow tiesaProbabiliUnknownJavmultiplytrigramsprob 

)()(ramsPythonTrigAllUnknownownPythonUnkn litieshonProbabiUnknownPytmultiplytrigramsprob 

)(/ QueryJavaclassifierprob

)()()(JavanJavaUnknowJavaSmooth hypothesisprobTrigramsprobamsQueryTrigrprob 

)(/ QueryPythonclassifierprob =

)()()(PythonownPythonUnknthPythonSmoo hypothesisprobTrigramsprobamsQueryTrigrprob 

If)()(// QueryPythonQueryJava classifierprobclassifierprob  then the given query belongs to Java

programming language.

Else if)()(// QueryJavaQueryPython classifierprobclassifierprob  then the given query belongs to

Python programming language.

Results from the Program are shown below:

Figure1: Results with five source code documents in Java and Python in the training set

Figure2: Results with ten source code documents in Java and Python in the training set

CS297 Report Adding a Source Code Searching Capability to Yioop

9

The conclusion that I draw from this experiment is that result produced by a Naïve Bayes

classifier improve as size of training set increases.

CS297 Report Adding a Source Code Searching Capability to Yioop

10

2.3 Deliverable-3

 This deliverable has two parts. The goal of the first part of the deliverable is to learn PHP

and the goal of second part of the deliverable is extend the capability of Yioop’s text processor to

process Java and Python source code files.

 For the first part of the deliverable, the Naïve Bayes classifier of deliverable-2 was

recoded in PHP. This helped me to learn the basic concepts of PHP. This assignment revealed

the basic difference between various components available in Java and PHP. One of the

important structures in PHP is an array; an array in PHP allows values in the form of key value

pair whereas value in an array can be another array. Arrays in PHP were used to store the

trigrams and various values associated with the trigrams like individual trigram probabilities,

smoothened trigram probabilities and document count for trigrams.

 To handle large floating point numbers in the program, I used the BCMath library which

is available in PHP. BCMath library supports many algebraic operations with large floating point

numbers. It also helps in calculating various values PHP in coded Naïve Bayes classifier. The

final output of the PHP coded Naïve Bayes classifier was in-line with the Java coded Naïve

Bayes classifier for same set of Java and Python source code files in the training set. Aptana

Studio 3.0 was used as IDE to develop the PHP program for classifier.

Results from the Program are shown below:

Figure 3: Results with ten source code documents in Java and Python in the training set

 For the second part of the deliverable, I have created locale tags in Yioop for Java and

Python. In tokenizer.php of Java and Python chargram value is set to three to chunk the crawled

Java and Python source code files into trigrams. I have also modified Yioop ‘s config.php to call

CS297 Report Adding a Source Code Searching Capability to Yioop

11

Text Processor when the mime types of Java and Python source code files are discovered. This

change will make Yioop’s internal function to call Text Processor when Java or Python source

code files are crawled.

 When source code files are crawled then their extensions are extracted in the

calculateLang method of the TextProcessor.php. Based upon the extension, the language is set

for the crawled file. When Yioop’s internal operations find the $lang variable is Java then the

crawled Java source code file will be chunked into trigrams. Similarly, when Yioop’s internal

operations find that the $lang variable is Python then the crawled Python source code file will

also be chunked into trigrams.

CS297 Report Adding a Source Code Searching Capability to Yioop

12

2.4 Deliverable-4

 The main purpose of this deliverable is to create a PHP program which reproduces the

effect of Git clone with the help of cURL calls. Git clone is a Git command used for copying the

files from remote repository into the local machine.

 The first step to accomplish the goal of the deliverable was to find out the requests made

by the local machine to the remote repository. To find this out a local Git repository was

configured with help of WebDav. For simplicity sake, I have used XAMPP.

 To setup the local Git repository, first of all I have installed XAMPP, after this I have

created repository.git directory inside the XAMPP’s document root. It is very important to give

write permissions to the new local repository created and to the xamppfiles folder inside

XAMPP. After providing the write permissions, I have modified the httpd.conf file which is

present inside etc folder of XAMPP to uncomment WebDav and to enable dav for the local Git

repository. I have made this new local Git repository as bare repository and updated the server

information. The directory structure of a local Git repository is shown below:

Figure 4: Local Git repository structure in Mac OS X

 To test my PHP-based Git clone program, I have arranged some sample Java and Python

files inside a nested folder structure. Next, I added and committed these files using Git

commands and pushed these committed file to a local Git repository by using Git push

CS297 Report Adding a Source Code Searching Capability to Yioop

13

command. Finally, I cloned the files which I pushed previously to trace the requests made while

cloning the files from the repository. XAMPP access logs give the list of requests made.

The screenshot below shows sample GET requests used for cloning the files from local Git

repository.

Figure 5: Sample GET requests for Git clone

 The next step towards achieving the goal would be to make these GET requests using

cURL via a PHP program. The example below indicates the steps used by the PHP program to

reproduce the effects of Git clone operation.

 My PHP program makes the first cURL request to obtain the contents from the first GET

request of the Figure 5. Output of the cURL request is shown below:

Figure 6: Output obtained from cURL call to the first GET request of the Git clone

 After analyzing the output of cURL request as shown in Figure 6, I found that he output

of first GET request of the Git clone operation indicates the SHA hash of the Git object in

hexadecimal. Third row of the Figure 5 contains this hexadecimal SHA hash. The cURL call to

the second GET request of the Figure 5 simply confirms the branch as master. After exploring

how Git stores the object, I found that Git stores data in two kinds of objects namely blob and

tree object. The blob object of Git contains the actual data in zlib compressed format. The tree

object of Git contains structural information in compressed format. Uncompressed output of the

cURL call to the third GET request of the Figure 5 is shown in the next page:

CS297 Report Adding a Source Code Searching Capability to Yioop

14

Figure 7: Uncompressed output of cURL call to the third GET request of the Git clone

 Again analyzing the output of the cURL request as shown in Figure 7, I found that it has

the SHA hash of the Git object as indicated by the fourth row of the Figure 5. Uncompressed

output obtained from the cURL call to the fourth GET request of Figure 5 indicates presence of

binaries in it. It represents the Git tree object. Hex dump of the output indicated a useful pattern.

Screenshot of the portion of the hex dump of the output obtained from the cURL call to the

fourth GET request of Figure 5 is shown below:

Figure 8: Portion of the hex dump of the Git tree object

 According to Schwarz (2010) “the Git tree contains the internal representation of Git’s directory

structure. The general format of Git tree object is represented by: tree ZN(A FNS)*. Here Z represents the

size of the objects in byte, N represents the null character, A indicates the UNIX access code, F represents

the file name, and S indicates 20 bytes long SHA hash. The same pattern repeats for each Git object.” I

have observed UNIX access code of 1600644 and 100755 for the Git blob objects and UNIX access code

of 40000 for Git tree objects. In the local Git repository Git objects are stored inside the objects

folder where each object has a folder named with first two bytes of SHA hash and the remaining

CS297 Report Adding a Source Code Searching Capability to Yioop

15

38 bytes shows the file name. The snap shot indicating the structure of the object folder in local

Git repository is shown below:

Figure 9: Object folder structure for local Git repository in Mac OS X

 With help of the knowledge of Git tree objects, the program extracts the SHA hash of

each Git object and makes the cURL call to get the actual content of each Git object. Each Git

tree object contains the roadmap for the files and folders included inside it; whereas, details of

each folder will be inside its own tree object and the actual contents of the files will be inside Git

blob objects. The program makes successive cURL requests for getting the compressed contents

CS297 Report Adding a Source Code Searching Capability to Yioop

16

of all the Git blob objects. After getting the compressed contents of Git blob files, the program

decompresses the compressed contents. Then the program determines the nested folder structure

with help of the information contained inside Git tree objects. The Git tree object contains

different access codes for files and folders. The Git tree object also contains names for files and

folders. Finally, the program creates the files inside the nested folder structure and finally writes

the uncompressed contents to their respective files.

CS297 Report Adding a Source Code Searching Capability to Yioop

17

3. CONCLUSION

The deliverables in my CS297 project helped me to understand the different concepts that will be

needed in CS298. Deliverable-4 provided me with the hands on experience of downloading

source code from a Git repository, which will be used in the CS298 project to download open

source code files from remote Git repositories. Search operations will be performed over an

inverted index built from these downloaded source code files. Deliverable-2 gave me an

opportunity to understand and implement the Naïve Bayes classifier, which will be used in

CS298 to recognize the language of a search query. Deliverable -3 helped me find a way to set

the language for crawled pages and use this language settings to chunk the contents of the page

into trigrams. The entire project of implementing the source code searching feature in Yioop will

be completed in Fall 2013 for the CS298.

CS297 Report Adding a Source Code Searching Capability to Yioop

18

REFERENCES

Bajracharya, S., Baldi, P., Dou, Y., Linstead, E., Lopes, C. Ngo, T., & Rigor, P. (2006, October).

 Sourcerer: A search engine for open source code. Paper presented at Proceedings of

 the 2006 Annual ACM SIGPLAN Conference on Object-Oriented Programming,

 Systems, Languages, and Applications, Oregon, Portland, USA. Retrieved on February

12, 2013 from

http://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=3&sqi=2&ved=

0CEMQFjAC&url=http%3A%2F%2Fwww.researchgate.net%2Fpublication%2F2288

04354_Sourcerer_A_Search_Engine_for_Open_Source_Code%2Ffile%2F79e4150930

483860a6.pdf&ei=VWaQUfSMEeOQjAKgwIGAAg&usg=AFQjCNHLSP_h9lrEkiJys

TyVdZhLlCczgg&bvm=bv.46340616,d.cGE

Cox, R. (2012, January). Regular Expression Matching with a Trigram Index. Retrieved on February 15,

 2013, from http://swtch.com/~rsc/regexp/regexp4.html

Schwarz, N. (2010, March 25). Niko Schwarz's science and programming: Git tree objects, how are they

 stored? Retrieved April 20, 2013, from

http://smalltalkthoughts.blogspot.com/2010/03/git-tree-objects-how-are-they-stored.html

http://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=3&sqi=2&ved=0CEMQFjAC&url=http%3A%2F%2Fwww.researchgate.net%2Fpublication%2F228804354_Sourcerer_A_Search_Engine_for_Open_Source_Code%2Ffile%2F79e4150930483860a6.pdf&ei=VWaQUfSMEeOQjAKgwIGAAg&usg=AFQjCNHLSP_h9lrEkiJysTyVdZhLlCczgg&bvm=bv.46340616,d.cGE
http://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=3&sqi=2&ved=0CEMQFjAC&url=http%3A%2F%2Fwww.researchgate.net%2Fpublication%2F228804354_Sourcerer_A_Search_Engine_for_Open_Source_Code%2Ffile%2F79e4150930483860a6.pdf&ei=VWaQUfSMEeOQjAKgwIGAAg&usg=AFQjCNHLSP_h9lrEkiJysTyVdZhLlCczgg&bvm=bv.46340616,d.cGE
http://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=3&sqi=2&ved=0CEMQFjAC&url=http%3A%2F%2Fwww.researchgate.net%2Fpublication%2F228804354_Sourcerer_A_Search_Engine_for_Open_Source_Code%2Ffile%2F79e4150930483860a6.pdf&ei=VWaQUfSMEeOQjAKgwIGAAg&usg=AFQjCNHLSP_h9lrEkiJysTyVdZhLlCczgg&bvm=bv.46340616,d.cGE
http://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=3&sqi=2&ved=0CEMQFjAC&url=http%3A%2F%2Fwww.researchgate.net%2Fpublication%2F228804354_Sourcerer_A_Search_Engine_for_Open_Source_Code%2Ffile%2F79e4150930483860a6.pdf&ei=VWaQUfSMEeOQjAKgwIGAAg&usg=AFQjCNHLSP_h9lrEkiJysTyVdZhLlCczgg&bvm=bv.46340616,d.cGE
http://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=3&sqi=2&ved=0CEMQFjAC&url=http%3A%2F%2Fwww.researchgate.net%2Fpublication%2F228804354_Sourcerer_A_Search_Engine_for_Open_Source_Code%2Ffile%2F79e4150930483860a6.pdf&ei=VWaQUfSMEeOQjAKgwIGAAg&usg=AFQjCNHLSP_h9lrEkiJysTyVdZhLlCczgg&bvm=bv.46340616,d.cGE
http://swtch.com/~rsc/regexp/regexp4.html
http://smalltalkthoughts.blogspot.com/2010/03/git-tree-objects-how-are-they-stored.html

