CS297 Report Adding a Source Code Searching Capability to Yioop

ADDING A SOURCE CODE SEARCHING CAPABILITY TO YIOOP

CS297 REPORT

Submitted to

Dr. Chris Pollett

By

Snigdha Rao Parvatneni

CS297 Report Adding a Source Code Searching Capability to Yioop

1. INTRODUCTION

The aim of the CS297 project is to explore and learn important components to
incorporate a source code searching feature to Yioop, a PHP-based search engine. The source
code searching feature will allow users of Yioop to search Java and Python source codes from
open source code repositories like GIT. All that a user would need to do is to type or paste a Java
or Python code snippet in the search bar of Yioop and click the search button. This action will
return the set of relevant source code files to the user. A user could then go over the search
results to find the implementation for which they are searching.

Deliverables in the CS297 project gave me an opportunity to learn PHP, to understand
GIT, and to implement the Naive Bayes classifier. These deliverables gave me a fair idea of how
to implement the source code searching feature in Yioop for the CS298 project.

This report includes details of all the deliverables of CS297 project. Before starting with
the actual deliverables, preliminary activity included installing and configuring Yioop and
writing a patch to support Bengali language in Yioop. The first deliverable was about learning
how Sourcerer and Google Code Search work. The second deliverable was to implement a Naive
Bayes classifier in Java to recognize Java and Python source code files. The third deliverable had
two parts: Implementing Naive Bayes classifier in PHP to get familiar with PHP and enabling
Yioop to process Java and Python source code. The fourth deliverable was reproducing the
effects of GIT clone via cURL calls without using any external libraries. The last deliverable was
the CS297 project report.

In this report each deliverable is explained under appropriate section headers. At the end,
the report has the conclusion section to discuss the learning from the project followed by the

reference section including all references used to achieve the goals of the project.

CS297 Report Adding a Source Code Searching Capability to Yioop

2. OVERVIEW OF DELIVERABLES

2.1 Deliverable-1

The purpose of this deliverable is to analyze the various steps involved in search
operations of existing source code search engines. Sourcerer and Google Code Search were
selected for the study. After an internet search, | found papers and articles written for Sourcerer
and Google Code Search. Important points from secondary research of Sourcerer and Google

Code Search are presented.

2.1.1 Sourcerer
As mentioned by Bajracharya et al. (2006) in the paper “Sourcerer: A search engine for
open source code”, Sourcerer is a search engine developed for academic purposes and it is used

for searching open source code files in Java.

Sourcerer performs two important activities: searching and ranking. As mentioned by
Bajracharya et al. (2006), Sourcerer extracts structural information from the source code and

uses it for finding search results and ranking the search results.

The main aim of extracting structural information is to extend the Sourcerer’s capability
beyond traditional keyword-based search. Bajracharya et al. (2006), categorizes the source code
search into three broad categories: Implementation search, usability search, and structural
characteristic search. After this, Bajracharya et al. (2006) explain the Sourcerer’s architecture,
and describe various components of the architecture. Sourcerer’s architecture helped me in
understanding the overall infrastructure of the search engine and also explained to me the roles

played by different components in searching and ranking activities.

CS297 Report Adding a Source Code Searching Capability to Yioop

Bajracharya et al. (2006) provide a detailed explanation about how significant features
are extracted from source code files and how these extracted features are stored. According to
Bajracharya et al. (2006), source code features are entities and relations. Additionally, keywords
and fingerprints are used for quickly retrieving search results. As mentioned by Bajracharya et al.
(2006), extracted features are stored in the relational database and in the form of fingerprints.
Fingerprints represent the quantifiable features linked to the entities (Bajracharya et al. 2006).

Extracted source code features enable Sourcerer to perform structure-based searches.

The next section of Bajracharya et al. (2006) explains how Sourcerer ranks the retrieved
search results. As mentioned by Bajracharya et al. (2006), while ranking, Sourcerer treats codes
as text and makes use of the TF-IDF heuristic. However, Bajracharya et al. (2006) explains that
source code files are different from free text, so their structural information can be used along
with TF-IDF to improve the Sourcerer’s ranking scheme. The researchers suggested using three
different heuristics in Sourcerer for ranking the search results. As explained by Bajracharya et al.
(2006), the first heuristic uses a text-based approach, the second heuristic takes advantage of a
structure-based approach, and third heuristic incorporates a graph-based approach. Finally,
Bajracharya et al. (2006) experimented with all these three heuristics in Sourcerer. Comparing
the recall of the first ten and twenty hits, Bajracharya et al. (2006) found that the combination of

all the three heuristics performs the best.

2.1.2 Google Code Search
As mentioned by Cox (2012) in his article “How Google Code Search Worked,” Google
Code search is no longer an active project. According to Cox (2012) Google Code Search uses

Google’s famous concept of document indexing and retrieving search results.

CS297 Report Adding a Source Code Searching Capability to Yioop

In this article, Cox (2012) suggests that Google Code Search uses a regular expression
search over an inverted index. Cox (2012) explains that Google Code Search uses an inverted
index to find the plausible search results. The inverted index is built by trigrams because search
operations do not perform well over the word boundaries. Moreover, n = 3 is selected for
character-n grams instead of selecting n =2 or n =4 because if n is selected as two then there
will be too few distinct 2-grams, and if n is selected as four there will be too many distinct 4-
grams (Cox, 2012).

As explained by Cox (2012), a search string is treated as a regular expression, which is
chunked into trigrams. All these trigrams are used to make query with ANDs and ORs. All the
trigrams in the search string are searched against the trigrams inverted index to find the set of
candidate documents. After that, a full regular expression search is performed over the set of
candidate documents for finding final search results.

According to Cox (2012), converting a search string into a regular expression is not
simple. On applying a full set of rules, each rule will compute five sets of results. However,
applying all these rules will not produce very meaningful queries. Moreover, these rules will
make sets of queries very large and unmanageable. To handle this, simplification rules are
applied at each step. After this step, information saving and information discarding steps are

applied to keep query sets manageable (Cox, 2012).

CS297 Report Adding a Source Code Searching Capability to Yioop

2.2 Deliverable-2
The aim of this deliverable is to understand how Naive Bayes classifier can be used to
recognize whether a given search string is from Java or Python. To experiment with Naive Bayes

classifier a program is written in Java.

In the program Java and Python languages are treated as hypothesis. The training set used
in the classifier consisted of specific number of Java and Python source code files. All the data
from source code files used in the training set was maintained in the two separate text files one
for Java one for Python. For simplicity sake these text files are treated like a collection of
documents where each document represents content from each respective source code file and
each document is separated by ‘\n\n’. However, ‘\n’ still represents content from same document.

The program splits the contents of Java and Python documents into trigrams and stores
them separately. Similarly, search string which is in a form of code snippet is also fragmented
into trigrams and stored for future calculation. The program counts the total number to Java and
and N

Python documents separately and stores it let say N respectively The program

Java

Python

also individually counts the total number of Java and Python documents containing each of the

trigram of training set and stores it in let say N and NTrigramPyThon respectively. The

TrigramJava
program does a one-time calculation to find probability of each trigram from the training set.

Sample probability calculation is shown in the below table:

Trigrams ‘]ava(NTrigramJava) Python(NTrigramsPython) prOb(TrigramJava) prOb(TrigramPython)
. N N N /N NTrigramlethon / N Python
Tl’lgl’amsl TrigramlJava TrigramlPython TrigramlJava Java
N-. I'N
. T 2 Pyth h
Trigrams2 N-rrigramzava N-rigramzpytnon Nrigramzsava / N iava riorameryhon - THYROn

CS297 Report Adding a Source Code Searching Capability to Yioop

The program also calculates the probability for each hypothesis, i.e., Java or Python. Data
for calculating probability of hypothesis was hard-coded in the program. These data were
obtained by recording total search results obtained on separately typing Java and Python in
Google. The program calculates the probably of hypothesis as below:

TotalSearchResult = count(JavaSearchResults) + count (PythonSear chResults)
prob(hypothesis ,,,,) = count(JavaSearchResults) / count (TotalSearchResults)

prob(hypothesis,,,,,) = count(PythonSearchResults) / count(TotalSearchResults)

This model of calculating probabilities of trigrams does not take care of probability of
unknown trigram. To resolve this issue, smoothened probability model is used in the program.
To calculate probability of unknown trigrams in Java and Python, a random Java and a random
Python source code files are used in document representation. The probability calculation for

unknown Java and Python trigrams is shown below:

prObUnknownJava =

count (NewTrigrams,, z.ndomsavanocument) / COUNt (TotalTrigrams

InRandomJavaDocu ment)

prObUnknownPy[hon:
count (NewTrigrams, c..qompythonpocurent) / COUNE (TOtRITTIGrams, . 1oeyinonbocument)
The program then calculates a smoothened probability of each trigram in Java and
Python training set by multiplying probabilities of each Java and Python trigrams by
(L— Probymownsaa) @nd by (L— Probyouneyinen) Fespectively. The program separately

categorizes the trigrams of the query as known and unknown trigram for Java and Python. For
each query trigram if it belongs to a set of trigrams from the training set then the program

considers it as a known trigram; otherwise, the program considers it as an unknown trigram. This

CS297 Report Adding a Source Code Searching Capability to Yioop

process is repeated separately for Java and Python. The program finally calculates the probability
for the entire query which will decide whether search string belongs to Java or Python. The
calculation for the query is shown below; in it « is a constant which is taken as 1, for simplicity
sake.

prob(QueryTrigrams » = multiply (SmoothenedJavaProbabilities . ounsavatrigrams)

JavaSmootl

prob(QueryTrigramseg,onsmoon) = Multiply (Smoothened PythonProb abilities . ownpythontrigrams)

prob(trigrams) = multiply (UnknownJavaProbabilities ymownsavatrigrans)

JavaUnknown

prob(trigramsp.,unimown) = MUltiply (UnknownPyt honProbabilities ,y,mounpytnonTrigrams)
prob(classifier ., ouer,) =

a x prob(QueryTrigrams,, .c.oom) X Prob(Trigrams,, . .wmown) X Prob(hypothesis ,,.)
prob(classifier o0/ ouery) =

a x prob(QueryTrigramse, . s moan) X Prob(Trigramsg .. omown) < Prob(hypothesis o ...)

If prob(classifier) > prob(classifier) then the given query belongs to Java

Java/Query Python/ Query

programming language.

) then the given query belongs to

Else if prob(classifier) > prob(classifier

Python/ Query Java/Query

Python programming language.

Results from the Program are shown below:

Probability Cguery is from Java)------- =0.000001447169194764342466970235682710325361671606909370146094364854468243886724612326481861752557491247846
Probability (guery is from Python)----- =1.369806853992708135544873114648216951387206612833414855085504834037074465337700460540447213802071644E-8
Result----- >Query entered belongs to Java programming language

Figurel: Results with five source code documents in Java and Python in the training set

Probability {(query is from Java}------- >0 . 00007304802177438561636415719100085082173574758219668754253340875051817540014961032765863632032532417850
Probability (gquery is from Python)----- »7. 16@896577656772668251697512087502702036814721534614888924208334252805558880542932624579939077937864E-16
Result ————— =Query entered belongs to Java progromming language

Figure2: Results with ten source code documents in Java and Python in the training set

CS297 Report Adding a Source Code Searching Capability to Yioop

The conclusion that | draw from this experiment is that result produced by a Naive Bayes

classifier improve as size of training set increases.

CS297 Report Adding a Source Code Searching Capability to Yioop

2.3 Deliverable-3

This deliverable has two parts. The goal of the first part of the deliverable is to learn PHP
and the goal of second part of the deliverable is extend the capability of Yioop’s text processor to
process Java and Python source code files.

For the first part of the deliverable, the Naive Bayes classifier of deliverable-2 was
recoded in PHP. This helped me to learn the basic concepts of PHP. This assignment revealed
the basic difference between various components available in Java and PHP. One of the
important structures in PHP is an array; an array in PHP allows values in the form of key value
pair whereas value in an array can be another array. Arrays in PHP were used to store the
trigrams and various values associated with the trigrams like individual trigram probabilities,
smoothened trigram probabilities and document count for trigrams.

To handle large floating point numbers in the program, | used the BCMath library which
is available in PHP. BCMath library supports many algebraic operations with large floating point
numbers. It also helps in calculating various values PHP in coded Naive Bayes classifier. The
final output of the PHP coded Naive Bayes classifier was in-line with the Java coded Naive
Bayes classifier for same set of Java and Python source code files in the training set. Aptana
Studio 3.0 was used as IDE to develop the PHP program for classifier.

Results from the Program are shown below:

sridhar-chunduris-MacBook-Pro:GIT sridharchunduri$ php classifier.php java.txt javaRandom.txt python.txt pythonRandom.txt "System.out.println”
>0.0000739480217743856163641571910008508217357475821966875425334087505181754001496103276586363203253242

Figure 3: Results with ten source code documents in Java and Python in the training set
For the second part of the deliverable, I have created locale tags in Yioop for Java and
Python. In tokenizer.php of Java and Python chargram value is set to three to chunk the crawled
Java and Python source code files into trigrams. I have also modified Yioop ‘s config.php to call

10

CS297 Report Adding a Source Code Searching Capability to Yioop

Text Processor when the mime types of Java and Python source code files are discovered. This
change will make Yioop’s internal function to call Text Processor when Java or Python source
code files are crawled.

When source code files are crawled then their extensions are extracted in the
calculateLang method of the TextProcessor.php. Based upon the extension, the language is set
for the crawled file. When Yioop’s internal operations find the $lang variable is Java then the
crawled Java source code file will be chunked into trigrams. Similarly, when Yioop’s internal
operations find that the $lang variable is Python then the crawled Python source code file will

also be chunked into trigrams.

11

CS297 Report Adding a Source Code Searching Capability to Yioop

2.4 Deliverable-4

The main purpose of this deliverable is to create a PHP program which reproduces the
effect of Git clone with the help of cURL calls. Git clone is a Git command used for copying the
files from remote repository into the local machine.

The first step to accomplish the goal of the deliverable was to find out the requests made
by the local machine to the remote repository. To find this out a local Git repository was
configured with help of WebDav. For simplicity sake, | have used XAMPP.

To setup the local Git repository, first of all | have installed XAMPP, after this | have
created repository.qgit directory inside the XAMPP’s document root. It is very important to give
write permissions to the new local repository created and to the xamppfiles folder inside
XAMPP. After providing the write permissions, | have modified the httpd.conf file which is
present inside etc folder of XAMPP to uncomment WebDav and to enable dav for the local Git
repository. | have made this new local Git repository as bare repository and updated the server

information. The directory structure of a local Git repository is shown below:

|| branches Apr 28, 2013 3:24 PM -- Folder
M config Apr 28, 2013 3:24 PM 4 KB Unix E...le File
M description Apr 28, 2013 3:24 PM 4 KB Unix E...le File
M HEAD Apr 28, 2013 3:24 PM 4 KB Unix E...le File
|| hooks Apr 28, 2013 3:24 PM -— Folder
| info Apr 28, 2013 3:38 PM -- Folder
|| obhjects Apr 28, 2013 6:04 PM -- Folder
] refs Apr 28, 2013 3:59 PM - Folder

Figure 4: Local Git repository structure in Mac OS X
To test my PHP-based Git clone program, | have arranged some sample Java and Python
files inside a nested folder structure. Next, | added and committed these files using Git

commands and pushed these committed file to a local Git repository by using Git push

12

CS297 Report Adding a Source Code Searching Capability to Yioop

command. Finally, I cloned the files which I pushed previously to trace the requests made while
cloning the files from the repository. XAMPP access logs give the list of requests made.
The screenshot below shows sample GET requests used for cloning the files from local Git

repository.

- - [L3/May/2013:083:12:30 -8700] "GET Arepository.git/infosrefs?service=git-upload-pack HTTRSL.1" Z@@ 59
- — [13/Mavs 2013:A3:12:30 -@70A] "GET srepository.git/HEAD HTTP/1.1" ZR8 23
- - [13/May,/26013:083:12:38 -8700] "GET srepository.git/objects/6d/bE39eYodzezdf 63dbbasecdbIad4626280%0ehn HTTR/1.1" 288 151

a.a.1
Aa.8.1
A.8.1
127.8.8.1 - - [13/Moy/2013:83:12:38 -8788] "GET Arepository.git/objects/f1/d6123feTBdedchobbesfdhcalfnlafbiahaid HTTRAL.1" 288 774
Aa.8.1
a.8.1

- - [13/Moy,/2013:83:12:38 -8788] "GET repository.git/objects 83,/ 7ERbe2bBEf 2of 9ecl5999 0d36 200128303132 HTTR/1.1" 268 91586

- - [13May/2013:83:12:30 87881 "GET srepozitory.gitsobjects 41797 azbachTd346390204706908hde45ebadyol HTTRAL.1" 268 154

Figure 5: Sample GET requests for Git clone
The next step towards achieving the goal would be to make these GET requests using
cURL via a PHP program. The example below indicates the steps used by the PHP program to
reproduce the effects of Git clone operation.
My PHP program makes the first cURL request to obtain the contents from the first GET

request of the Figure 5. Output of the cCURL request is shown below:

sridhar-chunduris-MacBook-Pro:GIT sridharchunduri$ php GitClone.php

Bdb@99e7cd2eldf89d5balecdbIadb2698596ab5s refs/heads/master

Figure 6: Output obtained from cURL call to the first GET request of the Git clone

After analyzing the output of cURL request as shown in Figure 6, | found that he output
of first GET request of the Git clone operation indicates the SHA hash of the Git object in
hexadecimal. Third row of the Figure 5 contains this hexadecimal SHA hash. The cURL call to
the second GET request of the Figure 5 simply confirms the branch as master. After exploring
how Git stores the object, | found that Git stores data in two kinds of objects namely blob and
tree object. The blob object of Git contains the actual data in zlib compressed format. The tree
object of Git contains structural information in compressed format. Uncompressed output of the

cURL call to the third GET request of the Figure 5 is shown in the next page:

13

CS297 Report Adding a Source Code Searching Capability to Yioop

tridhar-chunduris-MacBook-Pro:GIT sridharchunduri$ php GitClone.php

ommit 228tree fld6l23f6e7@4edcSabbelbdbecald516f53aba3d

huthor Snigdha Parvatneni <snigdha.parvatneni@gmail.com= 1368439483 -2700
ommitter Snigdha Parvatneni <snigdha.parvatneni@gmail.com- 1363430403 -0700

tetting up initial repository

Figure 7: Uncompressed output of cURL call to the third GET request of the Git clone
Again analyzing the output of the cURL request as shown in Figure 7, | found that it has
the SHA hash of the Git object as indicated by the fourth row of the Figure 5. Uncompressed
output obtained from the cURL call to the fourth GET request of Figure 5 indicates presence of
binaries in it. It represents the Git tree object. Hex dump of the output indicated a useful pattern.
Screenshot of the portion of the hex dump of the output obtained from the cURL call to the

fourth GET request of Figure 5 is shown below:

sridhar-chunduris-MacBook-Pro:~ sridharchunduri$ hexdump -C fUsers/sridharchunduri/Desktop/hex.txt
PRRPARAAR T4 T2 65 65 28 31 3@ 32 39 8@ 31 30 30 36 34 34 |tree 10829.100644|
ARePRR1e 20 41 63 T4 69 6 Be 42 61 72 2e ba 61 76 61 @@ | ActionBar.java. |
PPRPARAZA @3 75 5b e2 b@ 5f 2c f9 ec 15 99 92 ad 36 2a B1 |.ul.e_,eeuunn Bk, |
PRRPARA3A 2B 3b 31 3e 34 30 30 3@ 30 20 4a 61 76 61 BB 41 | (;1-48008 Java.A|
AReeRR48 79 fa 2Zb 3c b7 d3 40 39 aZ a4 76 69 c@ bd B4 3Je |y.+=..@0..vi..d=|
PRRPARASA 5a d7 cl 34 3@ 30 3@ 3@ 20 58 79 74 6B 6f Ge BB |Z..408088 Python. |
POPARRER 75 bO a® 1B 22 @0 83 9f f3 6@ @5 34 5b BB 9b BE |u..."....0.8[...
BReeRATe 71 3c 06 de 31 30 30 36 34 34 20 53 BB B5 72 bc |ge..1@8@644 Sherl|
PPPARRER 6f 63 6b 41 63 T4 69 76 69 74 78 2Ze 6a 61 Th Bl |ockActivity.java|
POPARA0A 00 Tb 45 43 64 05 1d bb 5c ab 3d eB 49 Bc 1b 29 |.{ECd...%.=.I..)|
PRRPARRaR 37 c3 35 cZ2 ad 31 30 3@ 36 34 34 20 53 BB 65 72 |7.5..100644 Sher|
PeRPARRbA 6c 6F 63 6b 44 6B 61 6c 6T BT 46 72 61 67 6d 65 |lockDialoagFragme |
BRRPRAcd 6e 74 Ze ba Bl 76 Bl BA@ a7 cB 56 bf @2 f9 a2 cb Int.java...V..... |

Figure 8: Portion of the hex dump of the Git tree object
According to Schwarz (2010) “the Git tree contains the internal representation of Git’s directory
structure. The general format of Git tree object is represented by: tree ZN(A FNS)*. Here Z represents the
size of the objects in byte, N represents the null character, A indicates the UNIX access code, F represents
the file name, and S indicates 20 bytes long SHA hash. The same pattern repeats for each Git object.” |
have observed UNIX access code of 1600644 and 100755 for the Git blob objects and UNIX access code

of 40000 for Git tree objects. In the local Git repository Git objects are stored inside the objects

folder where each object has a folder named with first two bytes of SHA hash and the remaining

14

CS297 Report Adding a Source Code Searching Capability to Yioop

38 bytes shows the file name. The snap shot indicating the structure of the object folder in local

Git repository is shown below:

[objects lToday, 3:£5 AM - Folder
B 0d Today, 3:08 AM - Folder
b099e7c42e2df89.. .b9a462698596eb5 Today, 3:08 AM 4 KB Daocumen
B of Today, 3:08 AM - Folder
24e9cB85664c2851...94cBfeBe863aa75d Today, 3:08 AM 4 KB Daocumen
el 2c Today, 3:08 AM - Folder
. 03 Today, 3:08 AM - Folder
| 3d Today, 3:08 AM - Folder
|| Ba Today, 3:08 AM - Folder
| Bc Today, 3:08 AM - Folder
. 07 Today, 3:08 AM - Folder
 7b Today, 3:08 AM - Folder
e 13 Today, 3:08 AM - Folder
e 15 Today, 3:08 AM - Folder
|]34 Today, 3:08 AM - Folder
] 36 Today, 3:08 AM - Folder
] 41 Today, 3:08 AM - Folder
|] 48 Today, 3:08 AM - Folder
e 55 Today, 3:08 AM - Folder
b 75 Today, 3:08 AM - Folder
|] 94 Today, 3:08 AM - Folder
] a7 Today, 3:08 AM - Folder
|] aa Today, 3:08 AM - Folder
|] ab Today, 3:08 AM - Folder
|] af Today, 3:08 AM - Folder
] be Today, 3:08 AM - Folder
e d3 Today, 3:08 AM - Folder
] d4 Today, 3:08 AM - Folder
. d7 Today, 3:08 AM - Folder
] ed Today, 3:08 AM - Folder
e f1 Today, 3:08 AM - Folder
| info Today, 2:59 AM - Folder
[pack Today, 2:59 AM - Folder

Figure 9: Object folder structure for local Git repository in Mac OS X
With help of the knowledge of Git tree objects, the program extracts the SHA hash of
each Git object and makes the cURL call to get the actual content of each Git object. Each Git
tree object contains the roadmap for the files and folders included inside it; whereas, details of
each folder will be inside its own tree object and the actual contents of the files will be inside Git
blob objects. The program makes successive CURL requests for getting the compressed contents

15

CS297 Report Adding a Source Code Searching Capability to Yioop

of all the Git blob objects. After getting the compressed contents of Git blob files, the program
decompresses the compressed contents. Then the program determines the nested folder structure
with help of the information contained inside Git tree objects. The Git tree object contains
different access codes for files and folders. The Git tree object also contains names for files and
folders. Finally, the program creates the files inside the nested folder structure and finally writes

the uncompressed contents to their respective files.

16

CS297 Report Adding a Source Code Searching Capability to Yioop

3. CONCLUSION

The deliverables in my CS297 project helped me to understand the different concepts that will be
needed in CS298. Deliverable-4 provided me with the hands on experience of downloading
source code from a Git repository, which will be used in the CS298 project to download open
source code files from remote Git repositories. Search operations will be performed over an
inverted index built from these downloaded source code files. Deliverable-2 gave me an
opportunity to understand and implement the Naive Bayes classifier, which will be used in
CS298 to recognize the language of a search query. Deliverable -3 helped me find a way to set
the language for crawled pages and use this language settings to chunk the contents of the page
into trigrams. The entire project of implementing the source code searching feature in Yioop will

be completed in Fall 2013 for the CS298.

17

CS297 Report Adding a Source Code Searching Capability to Yioop

REFERENCES

Bajracharya, S., Baldi, P., Dou, Y., Linstead, E., Lopes, C. Ngo, T., & Rigor, P. (2006, October).
Sourcerer: A search engine for open source code. Paper presented at Proceedings of
the 2006 Annual ACM SIGPLAN Conference on Object-Oriented Programming,
Systems, Languages, and Applications, Oregon, Portland, USA. Retrieved on February
12, 2013 from
http://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=3&sqi=2&ved=
0CEMQFjAC&url=http%3A%2F%2Fwww.researchgate.net%2Fpublication%2F2288
04354 _Sourcerer_A_Search_Engine_for_Open_Source_Code%2Ffile%2F79e4150930
483860a6.pdf&ei=VWaQUTSMEeOQjAKgwWIGAAg&uUsg=AFQJCNHLSP_h9IrEkiJys
TyVdzhLICczgg&bvm=bv.46340616,d.cGE

Cox, R. (2012, January). Regular Expression Matching with a Trigram Index. Retrieved on February 15,
2013, from http://swtch.com/~rsc/regexp/regexp4.html

Schwarz, N. (2010, March 25). Niko Schwarz's science and programming: Git tree objects, how are they
stored? Retrieved April 20, 2013, from

http://smalltalkthoughts.blogspot.com/2010/03/git-tree-objects-how-are-they-stored.html

18

http://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=3&sqi=2&ved=0CEMQFjAC&url=http%3A%2F%2Fwww.researchgate.net%2Fpublication%2F228804354_Sourcerer_A_Search_Engine_for_Open_Source_Code%2Ffile%2F79e4150930483860a6.pdf&ei=VWaQUfSMEeOQjAKgwIGAAg&usg=AFQjCNHLSP_h9lrEkiJysTyVdZhLlCczgg&bvm=bv.46340616,d.cGE
http://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=3&sqi=2&ved=0CEMQFjAC&url=http%3A%2F%2Fwww.researchgate.net%2Fpublication%2F228804354_Sourcerer_A_Search_Engine_for_Open_Source_Code%2Ffile%2F79e4150930483860a6.pdf&ei=VWaQUfSMEeOQjAKgwIGAAg&usg=AFQjCNHLSP_h9lrEkiJysTyVdZhLlCczgg&bvm=bv.46340616,d.cGE
http://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=3&sqi=2&ved=0CEMQFjAC&url=http%3A%2F%2Fwww.researchgate.net%2Fpublication%2F228804354_Sourcerer_A_Search_Engine_for_Open_Source_Code%2Ffile%2F79e4150930483860a6.pdf&ei=VWaQUfSMEeOQjAKgwIGAAg&usg=AFQjCNHLSP_h9lrEkiJysTyVdZhLlCczgg&bvm=bv.46340616,d.cGE
http://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=3&sqi=2&ved=0CEMQFjAC&url=http%3A%2F%2Fwww.researchgate.net%2Fpublication%2F228804354_Sourcerer_A_Search_Engine_for_Open_Source_Code%2Ffile%2F79e4150930483860a6.pdf&ei=VWaQUfSMEeOQjAKgwIGAAg&usg=AFQjCNHLSP_h9lrEkiJysTyVdZhLlCczgg&bvm=bv.46340616,d.cGE
http://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=3&sqi=2&ved=0CEMQFjAC&url=http%3A%2F%2Fwww.researchgate.net%2Fpublication%2F228804354_Sourcerer_A_Search_Engine_for_Open_Source_Code%2Ffile%2F79e4150930483860a6.pdf&ei=VWaQUfSMEeOQjAKgwIGAAg&usg=AFQjCNHLSP_h9lrEkiJysTyVdZhLlCczgg&bvm=bv.46340616,d.cGE
http://swtch.com/~rsc/regexp/regexp4.html
http://smalltalkthoughts.blogspot.com/2010/03/git-tree-objects-how-are-they-stored.html

