SAMR: A self-adaptive MapReduce
Scheduling Algorithm in
Heterogeneous Environment

Goals

* MapReduce does not scale well in a
heterogeneous environment

 Heterogeneous environments are distributed
systems with nodes that vast greatly in
hardware

 SAMR: Self-adaptive MapReduce Scheduling
Algorithm looks to accomplish this by using
historical information for each node

Node classifications

Mappers
— Slow nodes
— Fast nodes

Reducers
— Slow nodes
— Fast nodes

Each classification is based on the average of the total
nodes for each type

Map backup tasks are assigned on map fast nodes

Reduce backup tasks are assigned on reduce slow
nodes

Terms in the Paper

*Many tasks encompass 1 job
*There is only 1 DataNode and
1 NameNode

Table 1

CONCEPTIONS AND NOTIONS IN THIS PAPER
Name Description
NameNode Records where data is stored
DataNode Stores data
JobTracker(JT) Manages MapReduce jobs
TaskTracker(TT) Manages tasks
Job MapReduce application

Map tasks(MT)

Reduce tasks(RT)
ProgressScore(PS)
ProgressRate(PR)
TimeToEnd(TTE)
TrackerRate(TrR)
HISTORY_PRO(HP)
SLOW_TASK_CAP(STaC)
SLOW_TRACKER_CAP(STrC)
SLOW_TRACKER_PRO(STrP)
BACKUP_PRO(BP)

MI1

M2

R1

R2

R3

Tasks which run map function

Tasks which run reduce function
Process score of a task

Progress rate of a task

Remaining time of a task

Progress rate of a TaskTracker

Weight of historical information
Parameter used to distinguish slow tasks
Parameter used to distinguish slow TTs
Maximum proportion of slow TTs
Maximum proportion of backup tasks
Weight of first stage in MTs

Weight of second stage in MTs

Weight of coping data in RTs

Weight of sorting in reduce tasks
Weight of merging in reduce tasks

Progress Score Functions

* M = # of key/value pairs T, has processed
* N =# of key/value pairs T. has to still process

g _ M/N For MT, (1)
- |1/3% (K + M/N) For RT.
T
PSavg :ZPS[Z]/T (2)
=1
For task T;: PS[i] < PSapg — 20% (3)

* Note: Progress score is a value fromOto 1

Shortcomings of PS (Used by Late
Scheduler)

* (1) Hadoop keeps values R1, R2, R3, M1, M2 but these

can change depending on the hardware of the node,
inherent to heterogeneous environments

(2) Suppose T, needs 100 seconds to finish but has a
progress score of 0.7 and T, needs 30 seconds to finish
but has a progress score of 0.5

— If the P, = 0.8, by definition T, would get the backup task

savg
even thovugh it doesn t need it. (Tlme to complete is not

accounted for)

(3) On reduce tasks, if only 1 is considered slow and it’s
the last one, assigning a backup task may not be
needed (since it’s about to finish anyway)

SAMR: reading historical data and
tuning parameters

Algorithm 1 SAMR algorithm

1: procedure SAMR
Z input: Key/Value pairs
3: output: Statistical results

4 Reading historical information and tuning parameters using it
5 Finding slow tasks

6: Finding slow TaskTrackers

7 Launching backup tasks

8: Collecting results and updating historical information

9: end procedure

* Generally, R1 R2 R3 M1 M2 are generated
statically by default

e Step 8 in the algorithm now dynamically
changes these values

SAMR: reading historical data and

tuning parameters

SAMR uses the HISTORY_PRO (HP) to tune the parameters

If HP is close to 1, then SAMR doesn’t do anything, historical
information is already kicking in

If HP is close to 0, then SAMR uses the collected task information
to update the historical data (see Figure 2)
Historical information includes M1, M2, R1, R2 and R3 which let’s

the TaskTracker tune it’s own values accordingly (explained in the
next section) and updates the node

Figure 2. The way to use and update historical information

SAMR: How parameters are weighted
for Map Tasks and Reduce Tasks

* Also, each value o
Ml 5
M1, M2... have a "
. . Execute map function Reorder intermediate
weight associated results

(a) Map Task

with it. For Cony oder | ere
Instance, M1 ~ 60% . R R3

and M2 ~ 40% -
(Flgu re 3) (b) Reduce Task

Figure 3. The two stages of MT and three stages of RT

SAMR: How to find slow tasks

* Ataskis considered slow if T.'s PR, is less than
equation 6 where STaC = SLOW_TASK_CAP

 The average progress rate (APR) is evalued by
equation 7/

PR; < (1.0 - STaC) * APR (6)

N
APR = Z PR;/N (7)

j=1

SAMR: How to find slow TTs

SLOW_TRACKER_CAP (STrC) is used to classify
fast and slow TaskTrackers

Note: There is 1 TT per node

Suppose there are N TTs TrR,,; = z”: PR,/M (8)
For map tasks, the rate of the ith i=1

tracker is denoted as TrR | " | |
(equation 8) TrR,; = Z] PR;/R 9)
Similarly, the average rate of all N

map task trackers is denoted as ATrRy =Y TrRpi/N (10)
ATrR . (equation 10) i=1

Equations 12 and 13 determines a | N |
fast or slow TT (one for map and ATTR, = ZT"‘R"""’"\ (1D
one for reduce tasks) TrR,.; < (1 — STrC) + ATrR,, (12)

TrR,.; < (1—=STrC)*ATrR, (13)

SAMR: when to launch backup tasks

e BACKUP_PRO (BP) defines the max proportion
of backup tasks to all tasks

 BackupNum is the number of Backup Tasks
 TaskNum is the total number of tasks

BackupNum < BP x TaskNum (15)

SAMR: implementation details

* N, =# key/value pairs already processed for a
task

* N, =# key/value pairs in total for a task

SubPS = Ny /N, (16)

For YT PS — 4 M1* SubPS ff S=0, 17,
M1+ M2 SubPS 1if S =1.
(R1 % SubPS if S =0,

RT: PS = { R1 + R2 % SubPS if S=1, (18)

| R1+ R2 + R3 % SubPS if S =2.

SAMR: implementation details

* Atstepl,
the PR’s and
remaining
time of task
(TTE) is
computed

* During step
2, TT’s can
assign
backup
tasks as
needed/
available

~Reduce Elcm”w
\TaskTracker /
|

| TaskTracker | |i—

l

Map task 1

Queve of slow map tasks.

Queue of slow reduce tasks

Map task n

Reduce task 1

Stacks
of new -~ TaskTracker k
tasks <

(,

-

| TaskTracker r |e—
. 3. Launch backup
. Start new tasks
tasks for slow tasks

|

s
l" N
(Slow task)

Reduce task m

Figure 4. Overview on SAMR, TTs tries to launch new tasks first. If stack

of new tasks is empty, they try to launch backup tasks for tasks in queue
of slow tasks

Experimental Results

e § aIgOrith ms ~—#— Use historical info in LATE Hadoop
tEStEd ~—&— Hadoop without backup —>— LATE

— HADOOP w/o ol
backup —
mechanism :

1.6 -

doubled 14

— Regular 1.2
scheduling in 1
HADOOP 82 —M

— LATE (7%) ' ’ ' ‘

_ LATE W/ Maximum value Minimum value Average value
Historical
Information Figure 9. The execute results of “Sort” running on the experiment platform.
(15%) Backup mechanism and Historical information are all very useful in “Sort”.

— SAMR SAMR decreases time of execution about 24% compared to Hadoop.

