Job-scheduling for Multi-user
MapReduce clusters

Outline

Background
Hadoop On Demand Issues
FAIR Scheduler

Obstacles to Fair Sharing

Background

Hadoop scheduling is FIFO, with 5 priority
evels

Due to poor response time between short/
ong jobs, Hadoop introduced Hadoop On
Demand (HOD)

HOD Issues

* Poor locality

— Since nodes have access to the entire HDFS, some
map jobs have to work across the network

e Poor Utilization

— Some nodes can be idle

FAIR Scheduler

* Purpose: give all jobs slot-level granularity

— Isolation: give each job the illusion of having their
own cluster

— Statistical Multiplexing: Redistribute unused
capacity to other “pools”

Pooling jobs

Hadoop cluster
capacity: 100

m,= 10

Pool 3 (prod. job)
allocation: 0

Figure 2: Example of allocations in our scheduler. Pools 1 and 3
have minimum shares of 60, and 10 slots, respectively. Because
Pool 3 is not using its share, its slots are given to Pool 2.

Pool 1 (user 1)
allocation: 60

Pool 2 (user 2)
allocation: 40

Job 1 Job 2 Job 3 Job 4 Job 5

B8 & 8

B8 & 8

o

Redistribution of jobs

slofs to assign
m=50 m=10 m=25 mz=15
d=46 d=18 d=28 d=16
(a)
” E
slots to assign
25
15
10
m=50 m=10 m=25 m=15
dq=48 d=18 d=28 d=16

(c)

88 & 8

(=]

B8 & 8

—
28

18
10

slots to assign

- = =405
16
=15

m=50 m=10 m=25 m=15

d=46 d~18 dy&=28 d=16
(b)
= \./
slots to assign
25
14
..... 15

m=50 m=10 m=25 m=15

d=46 d,=18

dy=28 d=16

(d)

Redistribution Explained

m, = minimum number of shared needed to
start the job

d. = demand needed to complete the job

Redistribution occurs by filling the min slots to
complete as many tasks as possible

d,, d;,d, should complete without needing to
refill

d, will require a refill (the last 4 slots to assign)
to complete

Obstacles to Fair Sharing

Data Locality

— Solution: Delay scheduling
* Tasks are prioritized by locality

* There are 2 wait times, one for the local pool wait, and
one for the remote wait. The job will try to catch a local
pool until the local wait time exceeds, then run on the
next pool that’s available.

* There are 3 types of locality
— Node local tasks

— Rack-local tasks
— Off-rack tasks

Obstacles to FAIR Sharing

* Reduce/Map interdependence

— “slot hoarding”

* Long jobs hold reduce slots for a long time, starving short
jobs
— Solution: Copy-compute splitting
* Split reduce jobs into two different jobs
— Copy task (Network 10 job)
» Fetches and merges map outputs
— Compute task (Reduce job)
* There is a controller CPAC which checks 2 fields
— maxReducers
— maxComputing
* eg. 6 simultaneous reducers, but 2 able to compute

