Dremel: Interactive Analysis of
Web-Scale Datasets

Background
Data Model
Data conversion

Query execution

Outline

Background

 Many times users need to be able to query a
database to access particular records

* Generally, views can be created for multiple
joins, but views are slow

* Alternatively, a replicated table of that join can
ne created to store a “results” table

* Problem 1: “results” tables are not up to date

* Problem 2: DBMS requires to load the data
first, not good with distributed datastores

Data Model

* g D
* g g T

record-
oriented

A
* E 3
B(\E
¢~ >p %
I
g

, rlI

r2I r,

column- Iy
oriented

Figure 1: Record-wise vs. columnar representation of nested data

* Conversion of record stores into column oriented

model

 Advantage: A, B, C can be stored contiguously so that
A, B, C can be retrieved without needing to access D, E

Data Conversion

* Repetition level

— At what repeated field in the field’s path the value
has repeated

e Definition level

— How many fields could be undefined (because it’s
optional or repeated) are actually present

* Encoding

— Levels generally are not large, so bits can be used
to encode

Data Conversion Example

message Document {
required int64 DocId;
optional group Links {

DocId: 10 rl
Links
2 Forward: 20
2 Forward: 40
2 Forward: 60
Name
2 Language
3 Code: 'en-us'
3 Country: 'us’

repeated int64 Backward;
repeated int64 Forward; }
repeated group Name {
repeated group Language {
required string Code;
optional string Country; }
optional string Url; }}

2 Language

3 Code: 'en’
2 Url: 'http://A' | 1 [DocId: 20 r,
Name 1 | Links
2 Url: 'http://B’ 2 Backward: 10
Name 2 Backward: 30
2 Language 2 Forward: 80

3 Code: 'en—gb' | 1 | Name

3 Country: 'gb’ 2Url: 'http://C’

Figure 2: Two sample nested records and their schema

Data Conversion Example (Cont’d)

Docld 'Name.unl | Links.Forward || Links.Backward |
10 |0 0| | nttpA |0 2 20 |0 2| |Nutl o 1
20 |0 ol | nttpB |1 2 40 |1 2 10 |0 2
NULL |1 1 60 |1 2 30 |1 2
http//C | 0 2 80 |0 2
' Name.Language.Code | Name.Language.Country |
en-us 0 2 us 0 3
en 2 2 NULL [2 2
NULL |1 1 NULL |1 1
engb |1 2 g |1 3
NULL |0 1 NULL |0 1

Figure 3: Column-striped representation of the sample data in Fig-
ure 2, showing repetition levels (r) and definition levels (d)

Data record reassembled

Docld
0
1 O Links.Backward }—0-0[Links.Forward 01
0 -~
— .
[Name.Language.Code —O'l'gb[Name.Language.Country]
2
1 Name.Url 0.1

o}

Figure 4: Complete record assembly automaton. Edges are labeled
with repetition levels.

Reassembling the record can be done in a graph
Refer back to slide 6 to see the data definition for precedence

Query record reassembled

SELECT DocId AS Id,
COUNT (Name . Language .Code) WITHIN Name AS Cnt,
Name.Url + ',' + Name.Language.Code AS Str
FROM €t
WHERE REGEXP (Name.Url, '“http') AND DocId < 20;

Id: 10 tl message QueryResult {
Name required int64 Id;
Cnt: 2 repeated group Name {
Language optional uint64 Cnt;
Str: 'http://A,en-us’ repeated group Language {
Str: 'http://A,en’ optional string Str; }}}
Name
Cnt: O

Figure 6: Sample query, its result, and output schema

Query Execution

client query execution tree
root server ” é
w17 | QO
I 2
o BEE-
storage) ” ” ”

storage layer (e.g., GFS)

Figure 7: System architecture and execution inside a server node

* Query execution is done in a three step
process in a tree architechture

Query Execution Steps

* Root server
— Retrieves the incoming query
— Reads metadata from tables

— Routes queries to the intermediate servers (by doing a
rewrite based on the metadata)

e |eaf servers

— Accesses the local data results retrieved from the
predicate

* |ntermediate servers

— Rewrites the query to separate the results to the leaf
servers

— Uses a UNION ALL aggregation to finalize the total results

Query Sample

SELECT A, COUNT(B) FROM T GROUP BY A

Query is received by the root node

SELECT A, SUM(c) FROM (R} UNIONALL ... R1) GROUP BY A

Query is rewritten so that it can be dispersed to the intermediate
server

Tables Ri,..., R}, are the results of queries sent to the nodes

1,...,n atlevel 1 of the serving tree:
R} = SELECT A, COUNT(B) AS ¢ FROM T} GROUP BY A

Queries are given to the leaf nodes based on data locality of T.

Performance experiment: Columnar vs. Record disk access

- 20
18

from r‘eoords

12
10

fromciolumns
O N b O

S————

1 2 3 4 5 6 7 8 9 10

time (sec)

—_—_— (e) parse as
16 -
14 -

: (d) read +
| f decompress

objects

records ©
c) parse as
columns objects
(b) assemble
records
— (@) read +
| | | | | " decompress

number of fields

Figure 9: Performance breakdown when reading from a local disk
(300K-record fragment of Table 7T7)

 As number of fields increases, columnar format increases

* For Record format, operation is static regardless of how
many fields need to be operated on

Experiement: MR vs. Dremel

* Both systems have 3000 workers

* Uses the same query:

— In SQL: SELECT SUM(CountWords(txtField))/
COUNT(*) FROM T1;

— In MR:

numRecs: table sum of int;
numWords: table sum of int;

emit numRecs <- 1;
emit numWords <- CountWords (input.txtField);

Experiement: MR vs. Dremel Results

e Switching MR from records to columns, it gained
a full order of magnitude (hours to mins)

 Another order of magnitude is gained going from
MR-columns to Dremel (mins to secs)

execution time (sec)
10000

1000

100
10 : : i

MR-records MR-columns Dremel

Figure 10: MR and Dremel execution on columnar vs. record-
oriented storage (3000 nodes, 85 billion records)

