Distributed Archive Crawls in Yioop!
CS280 Final Report

Shawn Tice

May 16, 2012

The project goal was to make managing Yioop archive crawls' easier by relaxing
the setup requirements while still utilizing Yioop’s distributed architecture to
perform page processing and indexing. While a normal distributed web crawl
might often make use of several machines to fetch many pages from many servers
simultaneously, a distributed archive crawl requires fetching a collection of pages
from one or more (but rarely more than a hundred or so) large files, all initially
hosted in one location. Previously Yioop accomplished archive crawls by re-
quiring the user to manually place archive bundle files on each of the available
fetcher machines in a specific directory structure, at which point the crawl could
proceed much like a web re-crawl. My modifications allow the user to place an
archive bundle on the name server in a specific location, then initiate a new
archive crawl which will take care of splitting up the archive bundle a few hun-
dred pages at a time and distributing the processing of those pages across several
fetchers and queue servers.

In this brief report I will outline the changes I made to Yioop’s architec-
ture and give an example of running an archive crawl under the new system,
discuss the performance issues I ran into, provide some rationale for choosing
values for the tuning parameters, and conclude with recommendations for fu-
ture work. The new system is currently functional, but has only been lightly
tested on sample archives, and will probably require more genuine use and small
modifications in order to get it running smoothly in general.

The New Archive Crawl Architecture

Where there used to be just two types of crawls—web crawls and archive
crawls—there is now a distinction between a web archive “re-crawl” and a gen-
uine archive crawl. The handling of the former is the same as it always was,
while the handling of the latter is completely new. An archive crawl now begins
with a single directory nested in the Yioop working directory of the name server.

IExcept where stated otherwise, by “archive crawl” I mean indexing an archive bundle
not in Yioop’s native web archive format; I will refer to indexing a web archive as a “web
re-crawl”.



There is one directory per archive bundle to be crawled, and each directory con-
tains a user-created configuration file and a collection of compressed files in a
format specific to the archive type?. For example, the directory structure for a
MediaWiki archive bundle might look like the following:

Yioop/workdir/cache/archives/
mediawiki-en/
arc_description.ini
enwiki.xml-p001p009.bz2
enwiki.xml-p010p019.bz2

another_archive_bundle/
another_archive_bundle/

The name of each archive bundle directory is unimportant; the configuration file
specifies a name and type for the bundle, and the type is used to decide which
archive bundle iterator will be used to extract pages from compressed archive
files. Presently the only valid types are:

e ArcArchiveBundle
e MediaWikiArchiveBundle

e OdpRdfArchiveBundle

I modified the crawl model to search through the archives directory to
build a list of archive bundles available for crawling, and to set the directory
and archive type for each bundle in the initial crawl parameters. When the
fetcher sees that there is an archive directory and type associated with a new
crawl time it knows that it is dealing with a new-style archive crawl rather
than a web re-crawl, and so instead of going to the scheduler to get the crawl
parameters and a fetch schedule it requests this information from the name
server. Each time a fetcher requests a “schedule” from the name server the
name server responds with the current crawl parameters and a batch of some
number of pages extracted from the appropriate archive bundle. The fetcher
process these pages just as though it had downloaded them from remote servers,
extracting links, tokens, and other information, then passes this information on
to the queue servers in the usual round-robin fashion. After the page data gets
from the name server to a fetcher the crawl process looks much like a normal
web crawl. Exactly how many pages the name server should send at once may
depend on a number of considerations, and we will talk about these in the
section on performance.

There is a difficulty in getting the page data from the name server to the
fetcher. The controller which doles out page data to fetcher process only lasts
long enough to handle a single fetcher request, and is then effectively purged

2The three archive types are MediaWiki, ODP RDF, and ARC.



from memory. Consequently, the controller must instantiate a new archive it-
erator for each request, and that iterator must pick up where it left off on the
previous request. Furthermore, if two separate fetchers make a request for page
data at the same time (which is not unlikely at all, since it takes a while to
extract page data from archive bundles), two or more separate controller pro-
cesses must coordinate so that no two fetchers receive the same batch of pages.
The archive iterators were not originally created to deal with these complica-
tions, and so I ended up spending a lot of my implementation time patching the
iterators (and especially the MediaWiki iterator) so that they could efficiently
seek into zipped archive files and pick up where they had left off.

To deal with coordinating concurrent requests for page data, I implemented
an exclusive file lock with blocking and a timeout. When a fetcher makes a
request for page data the controller that handles the request first tries to acquire
an exclusive lock in order to access the bundle archive; if another controller is
already extracting pages then the second controller will block until the lock is
released, and in this manner controllers queue up waiting for their respective
turns. If a controller waits too long to acquire a lock then the corresponding
fetcher process will give up on the request and try again in five seconds; when
the controller eventually gets the lock it will realize that too much time has
passed and immediately release it. As with the number of pages to send in each
batch, the decision as to how much time is “too much” will depend on a number
of considerations which we will discuss in the performance section.

An Example

Suppose we want to index a collection of Wikipedia pages which we have down-
loaded from the WikiMedia “dumps” website as several *.bz2 files. We will use
the directory structure provided previously, and the arc_description.ini file
will look something like:

arc_type = ‘MediaWikiArchiveBundle’;
description = ‘Wikipedia Dump 12 May 2012°;

Once we have created the directory and added the configuration file and bzip
files, we open a web browser and navigate to the “Options” page of the “Manage
Crawls” task in the Yioop web interface hosted on the same machine where we
placed the archive bundle (the name server). We select “ARCFILE::Wikipedia
Dump 12 May 2012” from the drop-down, click on “Save Options”, then return
to the main “Manage Crawls” task, where we give the crawl a name and click
“Start New Crawl” to kick things off.

On their next crawl time checks the fetchers should register a new archive
crawl and start requesting page data from the name server. Once all of the
archive pages have been exhausted the fetchers should just get “No Data” mes-
sages from the name server, and after the crawl has been manually stopped by
clicking the “Stop Crawl” button they will return to periodically checking with
the queue servers for schedule updates.



Performance Considerations

The two main tuning parameters introduced by the new archive crawling system
are the number of pages to fetch from an archive bundle in one go (we will call
this the batch size), and how long (or whether) a fetch controller should wait
to acquire a lock for the archive bundle before giving up and failing the request
(we will call this the lock timeout). These parameters are set by the constants
ARCHIVE BATCH_SIZE and ARCHIVE_LOCK_TIMEQUT respectively. We will consider
the batch size first, then consider the lock timeout, which depends on the batch
size.

There are two primary factors which determine the appropriate batch size:
the number of fetchers and the overhead required to seek into an archive file
and parse out page data. Extracting page data is relatively slow, and even
once an archive iterator has been tuned for performance it might take around
one second to extract a hundred pages, plus some extra overhead that increases
linearly (slowly) with the offset into the archive file at which the pages reside.
Thus even for a small number of fetchers it makes no sense to extract a huge
number of pages at once because the requests for page data will start timing
out frequently while the fetch controllers wait for their turns.

On the other hand, if the batch sizes are made too small then the overhead
due to setting up and tearing down connections, instantiating archive iterators,
and seeking into archive files will outweigh the benefit of having extra fetchers.
Furthermore, because the amount of work a fetcher has to do per batch increases
superlinearly with the batch size while the work the name server and queue
servers must do increases linearly, small batch sizes tend to overwhelm the more
scarce system resources and underutilize the fetchers.

So we want to strike a balance that minimizes overhead costs by making
batch sizes as large as possible without starving the fetchers by causing their
requests to time out. I did not have a lot of time to test various settings, but I
found that a batch size of a hundred was much too small for even two fetchers,
and resulted in the name server and queue server being swamped with work
such that the fetchers spent more time waiting for data to process than they
did processing it. Five hundred turned out to be a much more reasonable batch
size; it kept the fetchers busy processing for around thirty seconds, while it only
took the name server and queue server a few seconds to do their per-request
work. Note that there is a relatively low upper bound on the number of pages
that can be extracted from an archive per second, and so even for an ideal batch
size there are a limited number of fetchers and queue servers that a given archive
crawl can effectively utilize.

The lock timeout depends on the batch size because it must be long enough
to provide a chance for a request to succeed even if there are requests in front
of it, but not so long that it is possible to acquire a lock before a fetcher gives
up on the request, then have the request time out after the iterator has begun
extracting pages. For example, if the batch size were so large that it took nearly
thirty seconds to extract a full batch of pages and the request timeout were set
at thirty seconds, then if the lock timeout were a second or more it would be



possible for the fetcher to give up on the request after the controller had acquired
the lock and started extracting pages, which would result in lost page data. On
the other hand, if the lock timeout were a tiny fraction of a second then it would
be common for requests to fail due to some other fetcher getting there first, and
fetchers would frequently waste time sleeping five seconds between each failed
request. Thus the lock timeout should be as long as possible while still leaving
sufficient time for the worst-case batch of pages to be extracted without the
request timing out.

Conclusion and Future Work

Distributed archive crawls should now be working for each of the three main
kinds of archive bundles (ARC, MediaWiki, and ODP RDF). Furthermore, web
re-crawls and live web crawls should continue to work in the same manner that
they always have. This functionality comprises the majority of my work for this
semester project.

A large part of my efforsts ended up being devoted to figuring out how to
efficiently seek into bzip and gzip files in order to make it feasible to instantiate
a new archive iterator to handle each request for a batch of pages. I was able to
significantly improve the performance of the archive iterators, but consequently
there are a few important aspects of the system that I did not get to. The two
most critical are probably flushing processed page data to disk between dumps
from fetchers to the appropriate queue servers and keeping a copy of raw page
data with the fetchers until it has been processed so that it would be possible
to gracefully recover from an error without losing data.

Additionally, the batch size and lock timeout parameters may be set so as to
roughly accommodate each of the different archive types, but will have different
optimum settings depending on the specific type. Each archive iterator has its
own unique quirks which will determine how long it takes to fetch N pages,
and this can have a large impact on the optimum parameters. It would be
ideal to have rough defaults, but to be able to specify per-archive settings in
the arc_description.ini file, which would then be propagated to the name
server.



