Yioop! Introducing Autosuggest and Spell Check

Advisor/Committee –
Dr. Chris Pollett, Dr. Sami Khuri, Dr. Robert Chun

-Sandhya Vissapragada
Topics

• Introduction and preliminary work
• Basic autosuggestion in Yioop
• Enhancements to the autosuggest feature
• Autosuggest for foreign languages
• Suggestions using previous queries
• Spell correction for English
• Suggestions for transliterated queries
Introduction

• Autosuggestion provides a dropdown menu of choices below the textbox in which a user is typing

• Spell correction helps in correcting the wrongly typed query

• Popularly found in [2]
 • Web browsers – Suggests URLs
 • Search engines – Suggests relevant queries
 • Word processors – Suggestions are generally from a dynamic dictionary built using the words in the doc
 • Code editors – Helps in typing long programs, example, IDE Eclipse
• Aim was to add the autosuggestion and spell correction features to Yioop!

• They help in reducing the typing work and in correcting spelling errors

• Google Instant is a popular implementation
 - Runs machine clusters and uses lists of popular queries from their logs to provide relevant suggestions to users
Yioop! & Constraints

- Yioop! - A PHP based search engine [1]
- Yioop runs on fewer machines
- Multiple server hits for these suggestions will reduce the performance
- There is no external user query data to rely on
- All the processing has to be done locally on the client machine
Storing dictionary words

• Comprehensive set of dictionary words have been chosen from wiki sources [5]

• Efficient storage of such huge data is crucial to avoid higher load times

• Trie is a suitable data structure

• Example of trie is shown in the next slide
Example of trie

Figure 1 – Example of a trie
Initial steps to create a trie

• Trie was constructed using multi-level PHP arrays

• The trie was then JSON encoded and a gzip version was created.

• Words with less than 3 letters or stop words [8] or any words which has non-ASCII characters were discarded

• The final 250 KB gzip file was sent over the network and loaded when website was launched.
Timing tests

Firefox web console [9] was used

<table>
<thead>
<tr>
<th>Trie type</th>
<th>Size in KB</th>
<th>Response time in ms</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plain JSON</td>
<td>2500</td>
<td>2500</td>
</tr>
<tr>
<td>Plain JSON with gzip enabled on HTTP</td>
<td>2500</td>
<td>400</td>
</tr>
<tr>
<td>File with compressed JSON data</td>
<td>250</td>
<td>35</td>
</tr>
<tr>
<td>Zipped JSON file with deflate option</td>
<td>110</td>
<td>3</td>
</tr>
</tbody>
</table>

Table 1 – Trie load time for different formats
Autosuggest in Yioop

• Initially word suggestions were incorporated in Yioop for US English

• Only English alphabet characters were handled

• It did the following –

 • Trie was downloaded when the Yioop page was loaded.
 • On every, ‘onKeyUp’, a Javascript event, relevant suggestion words were retrieved and displayed.
 • Only the top six words are made visible
 • The user can hover the cursor on the suggestions and click one of them as the query.
 • Otherwise, the user can also use the arrow keys to traverse through the list and press the Enter key to submit the query
Figure 2 - Suggestions for character ‘c’
Multi-word suggest

Figure 3 – Multi-word suggestions
Multi-word suggest

- Previous query terms are prepended to suggest a phrase

- Also, scroll bar was added to view more suggestions
Foreign language support

- With growing popularity of search engines, it's important to support multiple languages.

- Yioop! has a flexibility to add support to new languages.

- Multiple byte data was handled to make it able to work for all sorts of inputs.

- Now this feature supports any language with characters in the Unicode representation.
Foreign language support

Figure 4 - Suggestions for French query
Suggestions using previous queries

• Suggestions based on previous queries will be effective when same queries are typed multiple times

• Browser’s local storage has been used in the form of key-value pairs [10]

Algorithm –

• Every query from a user along with its frequency (number of times the query was searched) is stored, specific to each ‘locale’.
• Local storage words will top the suggestion list in the order of their frequency of occurrence
• The words are stored in the following fashion

Locale
Trie of words so far
Frequency

en-US_0 -> {"f":{"a":{"b":{"r":{"i":{"c":{"$":"$"}}}}}}}@@{"fabric":1}
Suggestions using previous queries

• When a user types a query the next time, first the local storage is checked for any existing suggestions

• If available, they appear first in the suggest list and are listed in descending order by the total number of times they have been fired.

• The actual dictionary is searched for further suggestions
Figure 5 – Local storage example
Spell correction for English

• Helps user by correcting misspelled words, in turn saving time

• Google’s ‘Did you mean:’ is a similar feature

• No external query data is available for Yioop, hence dictionary is used

• Dictionary structure was modified to have frequency of occurrence in the trie
Spell correction - Algorithm

- Edit distance algorithm is used [3]

- The number of edits it would take to turn into correct word is the edit distance between the two words.

- The possibilities are – [11]
 - A deletion where a letter is removed,
 - A transposition where there is a swap of adjacent letters,
 - A replacement where another replaces a letter or
 - An insertion where an unwanted letter is inserted
Spell correction - Algorithm

SpellCorrection (word):

Candidates = known (word) or known (Edits1 (word)) or word

Return candidate with maximum frequency in the trie

Edits1 (word):

Deletes: Set of words with one letter deleted

Transposes: Set of words with a swap between the adjacent characters

Replaces: Set of words with every letter replaced by 25 other letters in English alphabet

Inserts: Addition of an unwanted letter at all given positions in a word

Known (words):

Returns the set of words that are in the dictionary
Trade-off

• About 90% of spelling errors are of edit distance 1, as claimed by the literature on spelling correction [11]

• But it is also quite possible that the spelling errors are an edit distance of 2.

• For the word ‘improve’ the candidates with edit distance – 1 will be is 390.

• The number of candidates when edit distance 2 is applied to the word ‘improve’ is 162,150.
<table>
<thead>
<tr>
<th>Query</th>
<th>Corrections</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Edit Distance 1</td>
<td>Edit Distance 2</td>
</tr>
<tr>
<td>tha</td>
<td>the</td>
<td>the</td>
</tr>
<tr>
<td>lagh</td>
<td>laugh</td>
<td>last</td>
</tr>
<tr>
<td>sceince</td>
<td>science</td>
<td>since</td>
</tr>
<tr>
<td>nees</td>
<td>news</td>
<td>been</td>
</tr>
<tr>
<td>latre</td>
<td>later</td>
<td>are</td>
</tr>
</tbody>
</table>

Table 2 – Comparison of Edit Distance 1 & 2
• With one letter errors, edit distance 1 gave better results.

• To avoid the computational overhead of edit distance 2 algorithm, only edit distance 1 is chosen.
Suggestions for transliterated queries

- Transliteration is the process of mapping text written in one language into another by means of a pre-defined mapping [13].

- It's common to use English transliteration for foreign languages.

- Users who do not know the script of a particular language, tend to use this method.

- In the case of unavailability of a direct method to input data in a given language, transliteration becomes handy.
Telugu – English transliteration

- Telugu is the third most spoken language in India, has been chosen. Telugu has 56 letters (18 vowels and 38 consonants) [4]

- Every phoneme in Telugu script when transliterated using English, ends with a vowel.

- Based on this, the approach of constructing a mapping table has been chosen.

```python
  telugu_array['k'] = 's';
  telugu_array['kh'] = 'f';
  telugu_array['+aa'] = 'a';
  telugu_array['+oo'] = 'o';
```
Telugu – English transliteration

- Assumption – The query typed in English should be a widely accepted transliteration

- The input query is divided into chunks based on the criteria of end character being a vowel

- Eg – manasu is divided as Ma + Na + Su

- These are then mapped against the mapping table to generate a Telugu query which is further processed for suggestions
Figure 6 – Suggestions for transliterated Telugu query
Performance

• **Experiment 1:** Queries were typed in the Yioop search box in following two modes.

 • ‘Word Suggest’ option disabled
 • ‘Word Suggest’ option enabled

• Following are the times recorded for five different people with different typing speeds.
Experiment 1

<table>
<thead>
<tr>
<th>Word</th>
<th>Without Autosuggest – Time in sec</th>
<th>With Autosuggest – Time in sec</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Per 1</td>
<td>Per 2</td>
</tr>
<tr>
<td>Science</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>Computer</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>Adapt</td>
<td>3.4</td>
<td>3.5</td>
</tr>
<tr>
<td>Accomplish</td>
<td>5</td>
<td>4</td>
</tr>
</tbody>
</table>

Table 3 – Experiment to test performance of autosuggest
Experiment 2

• To compare autosuggest against browser’s autocomplete feature:

• Even this experiment involves two modes as mentioned above.

• Word suggest is turned off and the queries ‘screen’, ‘scare’ and ‘science’ have been searched 5, 3 and 3 times respectively.

• Later, the same searches have been done in Yioop with the ‘Word Suggest’ option on. The following are the outcomes.
Experiment 2

Figure 7 – Comparison of multi-word suggest with browser autocomplete
Experiment 2

Figure 8 – Comparison of local storage suggest with browser autocomplete
Experiment 2

Foreign language support:

• Foreign language queries are supported by both
• Yioop additionally suggests words from dictionary

Spell correction:

• There is no spell correction in the browser
• Yioop saves retyping work as the search is just a click away
Summary

• Autosuggest and spell correction have been implemented for Yioop, keeping in mind its constrained environment

• Implemented in Javascript, autosuggest includes features like multi-word suggest, foreign language support and usage of locally stored previous queries, to enhance the performance

• Spell correction was implemented for English language, assuming that the frequency of one-letter errors is more than multiple-letter errors

• An attempt was made to suggest queries for English transliterated Telugu queries

• These features proved to reduce the typing work and correct spelling errors in Yioop.
Future work

• Using search result data for better suggestions as it is more likely that an index is reused

• Introducing spelling correction for foreign languages like, French and Russian

• Introducing suggestions for transliterated queries pertaining to languages other than Telugu
References

Thank you!