
 1

CS297 Report

Text Summarization Using Lanczos Algorithm

 By

 Youn sang, Kim

Advisor: Dr. Chris Pollett

Department of Computer Science

San José State University

Spring 2010

 2

Table of Contents

Introduction ……………………………………………............ 3

Deliverable 1 …………………………………………............. 4

Deliverable 2 …………………………………….................... 7

Deliverable 3 ……………………………………………........ 10

Deliverable 4 ……………………………………………........ 11

Conclusion ...……………………………………................... 12

References …….…………………………............................ 14

 3

Introduction

When browsing the Internet, one can easily get overwhelmed by the flood of text

available. No one wants to waste time reading long texts on a web page. By

summarizing a website, one can quickly read an accurate representation of its

contents and save time by knowing what is worth reading and what is not. For

this reason, an efficient text summarizer is needed that will provide a non-

redundant extract from the original site. All the major search engines (Google,

Yahoo, etc.) use automated text summarization and present condensed

descriptions of the search results.

My project also deals with text summarization. Though many summarization

methods exist, I will make use of the Lanczos algorithm for the computation of a

few eigenvalues and eigenvectors of a large sparse matrix and SVD (Singular

Value Decomposition), taking a high-dimensional set of data and reducing it to a

lower-dimensional set of data. This makes it possible to identify the best

approximation of the original text by using the information acquired from the

Lanczos algorithm earlier.

For CS 297, I produced a total of four deliverables. My goal was to understand

linear algebra concepts such as the Lanczos algorithm and SVD, implement

them using Java, and produce a Java program that summarizes original texts. I

will discuss how I approached each deliverable in greater detail, including the

math concepts I used in each section. In the section named “Deliverable 1,” I will

define matrix, matrix properties and operations, eigenvalues and eigenvectors,

determinants, the Newton-Raphson method, and the calculation of SVD in the

brute force approach. In “Deliverable 2,” I will talk about the Lanczos algorithm

 4

and its implementation. In “Deliverable 3,” I will examine the QR algorithm for

finding eigenvalues and the improvement to the previous implementation. In

“Deliverable 4,” I will show how the Lanczos algorithm and SVD are related to the

summarization of texts. Finally, I will give my conclusions and explore areas for

future work.

Deliverable 1

Calculating SVD in the brute force approach

The main objective of Deliverable 1 was to understand SVD and implement it. In

this deliverable, my program decomposed an original matrix into three matrices

(an orthogonal matrix U, a diagonal matrix S, and the transpose of an orthogonal

matrix V) via SVD, and verified the result by multiplying the three decomposed

matrices together and reconstructing the original matrix. I call this the “brute force

approach” because my program does not use any algorithms to quickly find

eigenvalues and eigenvectors, but instead follows mathematical steps for solving

them, as one would do on a piece of paper.

Since I deal with matrices throughout all deliverables, I need to define what a

matrix is. A matrix is a table that contains data, consisting of rows and columns. A

matrix can also be viewed as a collection of row vectors or column vectors. A

vector is a sequence of numbers corresponding to measurements along one

dimension. For example, for the matrix word by sentence, depending on

choosing column vectors or row vectors, the dimensions will be words if we

choose the former and sentences if we choose the latter. Common matrix

operations include addition, subtraction, multiplication, and transposition.

To calculate SVD, it is essential to find eigenvalues and eigenvectors. If a

nonzero vector satisfies the equation below, vector v is called an eigenvector and

scalar  is called an eigenvalue.



vA = where A is square matrix


v

To compute eigenvalues and eigenvectors, we can rewrite the equation =

 as = 0, where



vA



v


 vIA)( I is the n x n identity matrix. In order for a nonzero

vector v to exist, it is necessary and sufficient that IA  must not be invertible.

Otherwise, if IA  has an inverse,

.0

0)()()(11


 

v
IAvIAIA 

Since we want a nonzero vector v, the determinant of IA  should equal 0, as

the matrix is invertible if it has a nonzero determinant. A determinant is a function

of a square matrix that reduces it to a special number, and is denoted as det(A)

or |A|. Thus, if matrix A is a 2 x 2 matrix, then

|A| = .bcad
cc
ba



To determine eigenvalues, we can simply find the roots of the associated

characteristic equation given by det(IA )= 0. For example, if A is , then 







13

31

det = 













13

31
09)1)(1(  .

If we solve the characteristic equation above for the eigenvalues of A, they are

1 = -2 and 2 = 4. But since a matrix can be larger than 2 x 2, I used another

technique to compute the determinants, which is expansion by minor. I found the

 5

determinant of matrix A by , where is minor of A, obtained by

taking the determinant of A with row i and column

ijij

k

i

ji Ma



1

)1(ijM

j crossed out. In my

program, this is done by a recursive call. For a 3 x 3 matrix, the above technique

will produce:

















333231

232221

131211

aaa
aaa
aaa

 = - + 




33

23





31

21
12 aa

aa
a





32

22
11 aa

aa
a 





33

23





32

2221





31
13 a
a

a
a
a

Moreover, to find complex roots, I used the Newton-Raphson method, which is a

fast way to compute roots of polynomial equations. However, the Newton-

Raphson method usually works well only once an initial guess is reasonably

close to the root. Otherwise, it may diverge.

To find eigenvectors v corresponding to each eigenvalue , we simply solve the

system of linear equations given by (IA )v = 0. But since I often needed to

solve large homogeneous systems of linear equations where the constant term

for each equation is zero, converting the matrix into upper triangular form via

Gaussian Elimination and doing the back substitution was required.

SVD is based on a linear algebra theorem that a rectangular matrix A can be

decomposed into the product of three matrices (an orthogonal matrix U, a

diagonal matrix S, and the transpose of an orthogonal matrix V), and

reconstructed by multiplying the three matrices together. The SVD theorem is

usually presented as:

T
pxpnxpnxnnxp VSUA  where UU and IUU TT  IVVVV TT

Calculating SVD consists of finding the eigenvalues and eigenvectors of and

. The eigenvectors of make up the columns of U and those of

make up the columns of V. The singular values in S contain square roots of

TAA

AAAT TAA AT

 6

 7

TAA

eigenvalues from or and are placed along the diagonal of S in

descending order.

TAA

TAA

TAA

AAT

For example, if we have a matrix A such that A = , then in order to find U, 







13

31

We must start with . The transpose of A is . Thus, 







13

31

= . Next, we must find the eigenvalues and corresponding

eigenvectors of . Suppose the eigenvalues are 16 and 4. Then for each

eigenvalue









106

610

1 = 16 and 2 = 4, we must compute eigenvectors by solving

and . Once computed, we convert

eigenvectors to unit vectors by normalizing their lengths. We construct U by

placing vectors along its columns, keeping in mind that we must preserve the

order in which the singular values were placed along the diagonal of S.

Constructing S is done by placing the square roots of 16 and 4 along the

diagonal of S in descending order. Constructing V is a bit tricky. If X is the

eigenvector of with an eigenvalue of k , then

0)16 1 XI

AA

(AAT  0)4 2 XI(AAT

T

TAA X = X. k

We can rewrite the above equation as by multiplying both

sides by , which can be reparenthesized as . Thus,

)(kXAXAAA TTT 

)((AAA TTTA)() XAkX T

XAT is an eigenvector of with an eigenvalue of , which gives us V. kAAT

Deliverable 2

Implementing the Lanczos algorithm

In this section, I studied the Lanczos algorithm, which uses a single vector

Lanczos recursion, and made a program in Java, which takes a symmetric matrix

as an input and generates a tridiagonal matrix; I also tested it successfully on a

4x4 symmetric matrix. My main objective was to understand the Lanczos

algorithm so I could implement it in SQL for CS 298. Learning and implementing

the Lanczos algorithm is necessary because I deal with a large sparse matrix

when summarizing texts. The Lanczos algorithm is used to calculate eigenvalues

of a large sparse matrix quickly, thus greatly improving the speed of the

calculation of SVD.

The Lanczos algorithm can determine the eigenvalues for a large sparse matrix

by using Lanczos recursion, which converts original matrix A into tridiagonal

matrix T through a finite number of orthogonal similarity transformations.

Suppose we have orthonormal vectors and let Q = . ,.....,, 321 qqq kq  kqqq ,...., 21

Thus, . IQQT 

Since we want to change A to a tridiagonal matrix T, we apply a similarity

transformation.

Then T can be decomposed into [1]. AQQT

We can rewrite the equation as AQ=QT by multiplying both sides by Q.

The jth column of the above equation can be viewed as:

 8

 9

  











A









jq =










 11 jjj qqq

























...

..

..

..

...

1

j

j

j





A = jq 1j 1jq + j jq + j 1jq (i)

If we rewrite the above equation by multiplying both sides by , T
jq

T
jq A = jq 1j

T
jq 1jq + j T

jq jq + j
T
jq 1jq

T
jq 1jq and will be zero, and we get T

jq 1jq j = A . T
jq jq

If we rearrange (i), we can obtain j .

jr = j 1jq = A - jq j jq - 1j 1jq (ii)

jr = j () = 11  j
T
j qq j

We can decide the next orthonormal vector by rearranging (ii),

1jq = / jr j

continuing the recursion until j =n, where n is the size of A, is an orthogonal

similarity transformation of A and therefore has the same eigenvalues.

nT

By summarizing the above, the Lanczos algorithm can be written as:

0r = initial vector

0 = 0r

For j =1, 2, 3, ….n

 = /jq 1jr 1j

 a = A jq

 j = a T
jq

 = a - jr 1j 1jq - j jq

 j = jr

After n number of Lanczos recursions, nxn tridiagonal matrix is generated. The

eigenvalues for the tridiagonal matrix are approximate to those of the original

matrix A.

Moreover, the eigenvectors of A can be found by multiplying the eigenvectors of T

by the Lanczos vectors acquired from the recursion. I chose the Lanczos

algorithm because the number of arithmetical operations required to generate a

Lanczos matrix is proportional to the number of nonzero entries of A [2]. This

saves running time for a large sparse matrix.

Deliverable 3

Implementing SVD using the Lanczos algorithm

The main objective of this deliverable was to implement SVD using a Lanczos

algorithm. In this section, my program decomposed an original matrix into three

matrices (an orthogonal matrix U, a diagonal matrix S, and the transpose of an

orthogonal matrix V) via SVD, and verified the result by multiplying the three

decomposed matrices together to reconstruct the original. The big difference

between this and Deliverable 1 was that I transformed an original matrix into a

tridiagonal matrix via Lanczos algorithm in the process of calculating SVD.

I further improved this process by using a QR algorithm on the tridiagonal matrix

to find the eigenvalues, which was a technique developed in 1961 by John G.F.

Francis and Vera N. Kublanovskaya. First, the matrix must be factored into a

 10

product of an orthogonal matrix and an upper triangular matrix with

positive entries along the diagonal, using the Gram-Schmidt orthogonalization

process, a method for converting a set of vectors into orthonormal vectors. Next,

we multiply the two factors(,)in reverse order. Thus, we have = . We

then repeat the steps above until all entries below the subdiagonal are zero. After

a sufficient number of iterations , eigenvalues appear along its diagonal on .

The rest of the calculations for SVD are the same as in Deliverable 1. I also

made some corrections on the Lanczos algorithm in my code. It turned out that

even after a small number of iterations, I quickly lost orthogonality of the Lanczos

vectors due to not being able to completely reduce them to tridiagonal form.

During each Lanczos recursion, full reorthogonalization of the current vector was

needed in relation to all previous vectors. The full reorthogonalization was carried

out using a Gram-Schmidt process, which can be described as:

1Q 1R

1 1Q1R 1Q

k

2A R

.kA

  k

j

k
j

T
kjj qrqrr 






1

1

 j = Lanczos step

Deliverable 4

Extracting summaries from original texts using the Lanczos

algorithm and SVD

The main objective of Deliverable 4 was to use the Lanczos algorithm and SVD

to put the theory into practice. It is very important to emphasize the role of SVD

and the Lanczos algorithm in data reduction.

SVD is a method for reducing a high-dimensional set of data to a lower-

dimensional set of data. It allows us to identify which data exhibit the most

 11

variation by ordering the dimensions. It gives us the best approximation of the

original data by simply ignoring other dimensions below certain thresholds to

reduce the volume of content, while maintaining the main relationships present in

the original data. For Deliverable 4 and my master project, we deal with a word

by sentence matrix A, where represents the frequency of a particular word

appearing in each sentence. Earlier, I mentioned that A can be decomposed into

three matrices (U , , and). Hence, in our case, the word matrix U consists

of one row vector for each word, the sentence matrix consists of one column

vector for each sentence, and the singular matrix S consists of single values

along its diagonal, reflecting the importance of each dimension. To be specific,

each number indicates how strongly related word is to the topic or concept

represented by semantic dimension

ijA

S TV

TV

iijU

j , while each number indicates how

strongly related sentence i is to the topic represented by semantic dimension

ijV

j . Each numbe iiS on diagonal entries of S, indicates the magnitude of the

importance of the corresponding semantic dimension.

r,

I am using the Lanczos algorithm because a word by sentence matrix is very

sparse, meaning that it is populated primarily by zeros, because the same words

seldom reappear in adjoining sentences. The Lanczos algorithm is the fastest

method for solving eigenvalues on large sparse matrices.

Conclusion

The purpose of all my deliverables was to learn SVD and the Lanczos algorithm

and to be able to implement them myself, even if the implementation required

 12

 13

another language.

I produced four deliverables in total, each of which helped me gain knowledge of

various linear algebra theorems and apply them systematically. From Deliverable

1, I learned how to calculate SVD, eigenvalues, and eigenvectors. Deliverable 2

taught me how to convert a symmetric matrix into a tridiagonal matrix by

implementing the Lanczos algorithm. From Deliverable 3, I learned to incorporate

the Lanczos algorithm into calculating SVD and different techniques to make my

implementation more stable. Deliverable 4 showed me how all of the previous

deliverables could be put together to reach my final objective-text summarization.

The deliverables I have completed in this semester have helped me implement

SVD using the Lanczos algorithm.

For CS 298, I will extend the deliverables I developed in CS 297 to create a

program that generates a text summary of a web site. Since I will deal with large

data sets of words and sentences from different pages in a web site, it is natural

that I will use a database. Thus I will create SQL scripts that will calculate SVD

using the Lanczos algorithm, and will be able to extract a summary from a web

site.

 14

References

1. Golub, G. H. and C. F. Van Loan, Matrix Computations, The John

Hopkins University Press, Baltimore, 1983.

2. Cullum, J., and Willoughby, R. (2002). Lanczos Algorithms for

Large Symmetric Eigenvalue Computations Vol.1: Theory. SIAM,

Philadelphia.

	CS297 Report
	Text Summarization Using Lanczos Algorithm
	By
	Youn sang, Kim
	Advisor: Dr. Chris Pollett
	Department of Computer Science
	San José State University
	Spring 2010
	Table of Contents
	Introduction ……………………………………………............ 3
	Deliverable 1 …………………………………………............. 4
	Deliverable 2 …………………………………….................... 7
	Deliverable 3 ……………………………………………........ 10
	Deliverable 4 ……………………………………………........ 11
	Conclusion ...……………………………………................... 12
	References …….…………………………............................ 14
	Introduction
	When browsing the Internet, one can easily get overwhelmed by the flood of text available. No one wants to waste time reading long texts on a web page. By summarizing a website, one can quickly read an accurate representation of its contents and save time by knowing what is worth reading and what is not. For this reason, an efficient text summarizer is needed that will provide a non-redundant extract from the original site. All the major search engines (Google, Yahoo, etc.) use automated text summarization and present condensed descriptions of the search results.
	My project also deals with text summarization. Though many summarization methods exist, I will make use of the Lanczos algorithm for the computation of a few eigenvalues and eigenvectors of a large sparse matrix and SVD (Singular Value Decomposition), taking a high-dimensional set of data and reducing it to a lower-dimensional set of data. This makes it possible to identify the best approximation of the original text by using the information acquired from the Lanczos algorithm earlier.
	For CS 297, I produced a total of four deliverables. My goal was to understand linear algebra concepts such as the Lanczos algorithm and SVD, implement them using Java, and produce a Java program that summarizes original texts. I will discuss how I approached each deliverable in greater detail, including the math concepts I used in each section. In the section named “Deliverable 1,” I will define matrix, matrix properties and operations, eigenvalues and eigenvectors, determinants, the Newton-Raphson method, and the calculation of SVD in the brute force approach. In “Deliverable 2,” I will talk about the Lanczos algorithm and its implementation. In “Deliverable 3,” I will examine the QR algorithm for finding eigenvalues and the improvement to the previous implementation. In “Deliverable 4,” I will show how the Lanczos algorithm and SVD are related to the summarization of texts. Finally, I will give my conclusions and explore areas for future work.
	Deliverable 1
	Calculating SVD in the brute force approach
	The main objective of Deliverable 1 was to understand SVD and implement it. In this deliverable, my program decomposed an original matrix into three matrices (an orthogonal matrix U, a diagonal matrix S, and the transpose of an orthogonal matrix V) via SVD, and verified the result by multiplying the three decomposed matrices together and reconstructing the original matrix. I call this the “brute force approach” because my program does not use any algorithms to quickly find eigenvalues and eigenvectors, but instead follows mathematical steps for solving them, as one would do on a piece of paper.
	Since I deal with matrices throughout all deliverables, I need to define what a matrix is. A matrix is a table that contains data, consisting of rows and columns. A matrix can also be viewed as a collection of row vectors or column vectors. A vector is a sequence of numbers corresponding to measurements along one dimension. For example, for the matrix word by sentence, depending on choosing column vectors or row vectors, the dimensions will be words if we choose the former and sentences if we choose the latter. Common matrix operations include addition, subtraction, multiplication, and transposition.
	To calculate SVD, it is essential to find eigenvalues and eigenvectors. If a nonzero vector satisfies the equation below, vector v is called an eigenvector and scalar is called an eigenvalue.
	 = where A is square matrix
	To compute eigenvalues and eigenvectors, we can rewrite the equation = as = 0, where is the n x n identity matrix. In order for a nonzero vector v to exist, it is necessary and sufficient that must not be invertible. Otherwise, ifhas an inverse,
	Since we want a nonzero vector v, the determinant of should equal 0, as the matrix is invertible if it has a nonzero determinant. A determinant is a function of a square matrix that reduces it to a special number, and is denoted as det(A) or |A|. Thus, if matrix A is a 2 x 2 matrix, then
	|A| =
	To determine eigenvalues, we can simply find the roots of the associated characteristic equation given by det()= 0. For example, if A is , then
	det = .
	If we solve the characteristic equation above for the eigenvalues of A, they are = -2 and = 4. But since a matrix can be larger than 2 x 2, I used another technique to compute the determinants, which is expansion by minor. I found the determinant of matrix A by , where is minor of A, obtained by taking the determinant of A with row and column crossed out. In my program, this is done by a recursive call. For a 3 x 3 matrix, the above technique will produce:
	 = - +
	Moreover, to find complex roots, I used the Newton-Raphson method, which is a fast way to compute roots of polynomial equations. However, the Newton-Raphson method usually works well only once an initial guess is reasonably close to the root. Otherwise, it may diverge.
	To find eigenvectors v corresponding to each eigenvalue , we simply solve the system of linear equations given by ()v = 0. But since I often needed to solve large homogeneous systems of linear equations where the constant term for each equation is zero, converting the matrix into upper triangular form via Gaussian Elimination and doing the back substitution was required.
	SVD is based on a linear algebra theorem that a rectangular matrix A can be decomposed into the product of three matrices (an orthogonal matrix U, a diagonal matrix S, and the transpose of an orthogonal matrix V), and reconstructed by multiplying the three matrices together. The SVD theorem is usually presented as:
	 where and
	Calculating SVD consists of finding the eigenvalues and eigenvectors of and . The eigenvectors of make up the columns of U and those of make up the columns of V. The singular values in S contain square roots of eigenvalues from or and are placed along the diagonal of S in descending order.
	For example, if we have a matrix A such that A = , then in order to find U,
	We must start with. The transpose of A is . Thus,
	= . Next, we must find the eigenvalues and corresponding eigenvectors of . Suppose the eigenvalues are 16 and 4. Then for each eigenvalue = 16 and = 4, we must compute eigenvectors by solving and . Once computed, we convert eigenvectors to unit vectors by normalizing their lengths. We construct U by placing vectors along its columns, keeping in mind that we must preserve the order in which the singular values were placed along the diagonal of S. Constructing S is done by placing the square roots of 16 and 4 along the diagonal of S in descending order. Constructing V is a bit tricky. If X is the eigenvector of with an eigenvalue of, then
	X = X.
	We can rewrite the above equation as by multiplying both sides by, which can be reparenthesized as . Thus, is an eigenvector of with an eigenvalue of , which gives us V.
	Deliverable 2
	Implementing the Lanczos algorithm
	In this section, I studied the Lanczos algorithm, which uses a single vector Lanczos recursion, and made a program in Java, which takes a symmetric matrix as an input and generates a tridiagonal matrix; I also tested it successfully on a 4x4 symmetric matrix. My main objective was to understand the Lanczos algorithm so I could implement it in SQL for CS 298. Learning and implementing the Lanczos algorithm is necessary because I deal with a large sparse matrix when summarizing texts. The Lanczos algorithm is used to calculate eigenvalues of a large sparse matrix quickly, thus greatly improving the speed of the calculation of SVD.
	The Lanczos algorithm can determine the eigenvalues for a large sparse matrix by using Lanczos recursion, which converts original matrix A into tridiagonal matrix T through a finite number of orthogonal similarity transformations.
	Suppose we have orthonormal vectors and let Q = .
	Thus, .
	Since we want to change A to a tridiagonal matrix T, we apply a similarity transformation.
	Then T can be decomposed into [1].
	We can rewrite the equation as AQ=QT by multiplying both sides by Q.
	The jth column of the above equation can be viewed as:
	 =
	A= ++ (i)
	If we rewrite the above equation by multiplying both sides by ,
	A = + +
	 and will be zero, and we get = A.
	If we rearrange (i), we can obtain .
	= = A- - (ii)
	= () =
	We can decide the next orthonormal vector by rearranging (ii),
	 = /
	continuing the recursion until j =n, where n is the size of A, is an orthogonal similarity transformation of A and therefore has the same eigenvalues.
	By summarizing the above, the Lanczos algorithm can be written as:
	 = initial vector
	=
	For j =1, 2, 3, ….n
	= /
	a = A
	= a
	 = a - -
	=
	After n number of Lanczos recursions, nxn tridiagonal matrix is generated. The eigenvalues for the tridiagonal matrix are approximate to those of the original matrix A.
	Moreover, the eigenvectors of A can be found by multiplying the eigenvectors of T by the Lanczos vectors acquired from the recursion. I chose the Lanczos algorithm because the number of arithmetical operations required to generate a Lanczos matrix is proportional to the number of nonzero entries of A [2]. This saves running time for a large sparse matrix.
	Deliverable 3
	Implementing SVD using the Lanczos algorithm
	The main objective of this deliverable was to implement SVD using a Lanczos algorithm. In this section, my program decomposed an original matrix into three matrices (an orthogonal matrix U, a diagonal matrix S, and the transpose of an orthogonal matrix V) via SVD, and verified the result by multiplying the three decomposed matrices together to reconstruct the original. The big difference between this and Deliverable 1 was that I transformed an original matrix into a tridiagonal matrix via Lanczos algorithm in the process of calculating SVD.
	I further improved this process by using a QR algorithm on the tridiagonal matrix to find the eigenvalues, which was a technique developed in 1961 by John G.F. Francis and Vera N. Kublanovskaya. First, the matrix must be factored into a product of an orthogonal matrix and an upper triangular matrix with positive entries along the diagonal, using the Gram-Schmidt orthogonalization process, a method for converting a set of vectors into orthonormal vectors. Next, we multiply the two factors(,)in reverse order. Thus, we have =. We then repeat the steps above until all entries below the subdiagonal are zero. After a sufficient number of iterations , eigenvalues appear along its diagonal on . The rest of the calculations for SVD are the same as in Deliverable 1. I also made some corrections on the Lanczos algorithm in my code. It turned out that even after a small number of iterations, I quickly lost orthogonality of the Lanczos vectors due to not being able to completely reduce them to tridiagonal form. During each Lanczos recursion, full reorthogonalization of the current vector was needed in relation to all previous vectors. The full reorthogonalization was carried out using a Gram-Schmidt process, which can be described as:
	 j = Lanczos step
	Deliverable 4
	Extracting summaries from original texts using the Lanczos algorithm and SVD
	The main objective of Deliverable 4 was to use the Lanczos algorithm and SVD to put the theory into practice. It is very important to emphasize the role of SVD and the Lanczos algorithm in data reduction.
	SVD is a method for reducing a high-dimensional set of data to a lower-dimensional set of data. It allows us to identify which data exhibit the most variation by ordering the dimensions. It gives us the best approximation of the original data by simply ignoring other dimensions below certain thresholds to reduce the volume of content, while maintaining the main relationships present in the original data. For Deliverable 4 and my master project, we deal with a word by sentence matrix A, where represents the frequency of a particular word appearing in each sentence. Earlier, I mentioned that A can be decomposed into three matrices (,, and). Hence, in our case, the word matrix U consists of one row vector for each word, the sentence matrix consists of one column vector for each sentence, and the singular matrix S consists of single values along its diagonal, reflecting the importance of each dimension. To be specific, each number indicates how strongly related word is to the topic or concept represented by semantic dimension , while each number indicates how strongly related sentence is to the topic represented by semantic dimension . Each number, on diagonal entries of S, indicates the magnitude of the importance of the corresponding semantic dimension.
	I am using the Lanczos algorithm because a word by sentence matrix is very sparse, meaning that it is populated primarily by zeros, because the same words seldom reappear in adjoining sentences. The Lanczos algorithm is the fastest method for solving eigenvalues on large sparse matrices.
	Conclusion
	The purpose of all my deliverables was to learn SVD and the Lanczos algorithm and to be able to implement them myself, even if the implementation required another language.
	I produced four deliverables in total, each of which helped me gain knowledge of various linear algebra theorems and apply them systematically. From Deliverable 1, I learned how to calculate SVD, eigenvalues, and eigenvectors. Deliverable 2 taught me how to convert a symmetric matrix into a tridiagonal matrix by implementing the Lanczos algorithm. From Deliverable 3, I learned to incorporate the Lanczos algorithm into calculating SVD and different techniques to make my implementation more stable. Deliverable 4 showed me how all of the previous deliverables could be put together to reach my final objective-text summarization. The deliverables I have completed in this semester have helped me implement SVD using the Lanczos algorithm.
	For CS 298, I will extend the deliverables I developed in CS 297 to create a program that generates a text summary of a web site. Since I will deal with large data sets of words and sentences from different pages in a web site, it is natural that I will use a database. Thus I will create SQL scripts that will calculate SVD using the Lanczos algorithm, and will be able to extract a summary from a web site.
	References
	1. Golub, G. H. and C. F. Van Loan, Matrix Computations, The John Hopkins University Press, Baltimore, 1983.
	2. Cullum, J., and Willoughby, R. (2002). Lanczos Algorithms for Large Symmetric Eigenvalue Computations Vol.1: Theory. SIAM, Philadelphia.

