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Introduction 

 

When browsing the Internet, one can easily get overwhelmed by the flood of text 

available. No one wants to waste time reading long texts on a web page. By 

summarizing a website, one can quickly read an accurate representation of its 

contents and save time by knowing what is worth reading and what is not. For 

this reason, an efficient text summarizer is needed that will provide a non-

redundant extract from the original site. All the major search engines (Google, 

Yahoo, etc.) use automated text summarization and present condensed 

descriptions of the search results.  

My project also deals with text summarization. Though many summarization 

methods exist, I will make use of the Lanczos algorithm for the computation of a 

few eigenvalues and eigenvectors of a large sparse matrix and SVD (Singular 

Value Decomposition), taking a high-dimensional set of data and reducing it to a 

lower-dimensional set of data. This makes it possible to identify the best 

approximation of the original text by using the information acquired from the 

Lanczos algorithm earlier.  

For CS 297, I produced a total of four deliverables. My goal was to understand 

linear algebra concepts such as the Lanczos algorithm and SVD, implement 

them using Java, and produce a Java program that summarizes original texts. I 

will discuss how I approached each deliverable in greater detail, including the 

math concepts I used in each section. In the section named “Deliverable 1,” I will 

define matrix, matrix properties and operations, eigenvalues and eigenvectors, 

determinants, the Newton-Raphson method, and the calculation of SVD in the 

brute force approach. In “Deliverable 2,” I will talk about the Lanczos algorithm 
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and its implementation. In “Deliverable 3,” I will examine the QR algorithm for 

finding eigenvalues and the improvement to the previous implementation. In 

“Deliverable 4,” I will show how the Lanczos algorithm and SVD are related to the 

summarization of texts. Finally, I will give my conclusions and explore areas for 

future work.  

 

Deliverable 1 

Calculating SVD in the brute force approach 

 

The main objective of Deliverable 1 was to understand SVD and implement it. In 

this deliverable, my program decomposed an original matrix into three matrices 

(an orthogonal matrix U, a diagonal matrix S, and the transpose of an orthogonal 

matrix V) via SVD, and verified the result by multiplying the three decomposed 

matrices together and reconstructing the original matrix. I call this the “brute force 

approach” because my program does not use any algorithms to quickly find 

eigenvalues and eigenvectors, but instead follows mathematical steps for solving 

them, as one would do on a piece of paper.  

Since I deal with matrices throughout all deliverables, I need to define what a 

matrix is. A matrix is a table that contains data, consisting of rows and columns. A 

matrix can also be viewed as a collection of row vectors or column vectors. A 

vector is a sequence of numbers corresponding to measurements along one 

dimension. For example, for the matrix word by sentence, depending on 

choosing column vectors or row vectors, the dimensions will be words if we 

choose the former and sentences if we choose the latter. Common matrix 

operations include addition, subtraction, multiplication, and transposition.  



To calculate SVD, it is essential to find eigenvalues and eigenvectors. If a 

nonzero vector satisfies the equation below, vector v is called an eigenvector and 

scalar   is called an eigenvalue. 



vA  =  where A is square matrix 


v

To compute eigenvalues and eigenvectors, we can rewrite the equation  = 

 as = 0, where 



vA



v


 vIA )(  I  is the n x n identity matrix. In order for a nonzero 

vector v to exist, it is necessary and sufficient that IA   must not be invertible. 

Otherwise, if IA  has an inverse,  

.0

0)()()( 11


 

v
IAvIAIA 

 

Since we want a nonzero vector v, the determinant of IA   should equal 0, as 

the matrix is invertible if it has a nonzero determinant. A determinant is a function 

of a square matrix that reduces it to a special number, and is denoted as det(A) 

or |A|. Thus, if matrix A is a 2 x 2 matrix, then 

|A| = .bcad
cc
ba

  

To determine eigenvalues, we can simply find the roots of the associated 

characteristic equation given by det( IA  )= 0. For example, if A is , then 







13

31

det  = 













13

31
09)1)(1(   . 

If we solve the characteristic equation above for the eigenvalues of A, they are 

1 = -2 and 2 = 4. But since a matrix can be larger than 2 x 2, I used another 

technique to compute the determinants, which is expansion by minor. I found the 
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determinant of matrix A by , where is minor of A, obtained by 

taking the determinant of A with row i  and column 

ijij

k

i

ji Ma



1

)1( ijM

j  crossed out. In my 

program, this is done by a recursive call. For a 3 x 3 matrix, the above technique 

will produce: 
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














333231

232221

131211

aaa
aaa
aaa

 =  -  +  




33

23





31

21
12 aa

aa
a





32

22
11 aa

aa
a 





33

23





32

2221





31
13 a
a

a
a
a

Moreover, to find complex roots, I used the Newton-Raphson method, which is a 

fast way to compute roots of polynomial equations. However, the Newton-

Raphson method usually works well only once an initial guess is reasonably 

close to the root. Otherwise, it may diverge.  

To find eigenvectors v corresponding to each eigenvalue , we simply solve the 

system of linear equations given by ( IA  )v = 0. But since I often needed to 

solve large homogeneous systems of linear equations where the constant term 

for each equation is zero, converting the matrix into upper triangular form via 

Gaussian Elimination and doing the back substitution was required.  

SVD is based on a linear algebra theorem that a rectangular matrix A can be 

decomposed into the product of three matrices (an orthogonal matrix U, a 

diagonal matrix S, and the transpose of an orthogonal matrix V), and 

reconstructed by multiplying the three matrices together. The SVD theorem is 

usually presented as: 

T
pxpnxpnxnnxp VSUA   where UU  and  IUU TT  IVVVV TT

Calculating SVD consists of finding the eigenvalues and eigenvectors of and 

. The eigenvectors of  make up the columns of U and those of  

make up the columns of V. The singular values in S contain square roots of 

TAA

AAAT TAA AT
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TAA

eigenvalues from  or  and are placed along the diagonal of S in 

descending order.  

TAA

TAA

TAA

AAT

For example, if we have a matrix A such that A = , then in order to find U, 







13

31

We must start with . The transpose of A is . Thus,  







13

31

= . Next, we must find the eigenvalues and corresponding 

eigenvectors of . Suppose the eigenvalues are 16 and 4. Then for each 

eigenvalue 









106

610

1 = 16 and 2 = 4, we must compute eigenvectors by solving 

and . Once computed, we convert 

eigenvectors to unit vectors by normalizing their lengths. We construct U by 

placing vectors along its columns, keeping in mind that we must preserve the 

order in which the singular values were placed along the diagonal of S. 

Constructing S is done by placing the square roots of 16 and 4 along the 

diagonal of S in descending order. Constructing V is a bit tricky. If X is the 

eigenvector of with an eigenvalue of k , then 

0)16 1 XI

AA

( AAT  0)4 2 XI( AAT

T

TAA X = X. k

We can rewrite the above equation as  by multiplying both 

sides by , which can be reparenthesized as . Thus, 

)(kXAXAAA TTT 

)(( AAA TTTA )() XAkX T

XAT  is an eigenvector of  with an eigenvalue of , which gives us V.  kAAT

 

 

 

 



Deliverable 2 

Implementing the Lanczos algorithm 

 

In this section, I studied the Lanczos algorithm, which uses a single vector 

Lanczos recursion, and made a program in Java, which takes a symmetric matrix 

as an input and generates a tridiagonal matrix; I also tested it successfully on a 

4x4 symmetric matrix. My main objective was to understand the Lanczos 

algorithm so I could implement it in SQL for CS 298. Learning and implementing 

the Lanczos algorithm is necessary because I deal with a large sparse matrix 

when summarizing texts. The Lanczos algorithm is used to calculate eigenvalues 

of a large sparse matrix quickly, thus greatly improving the speed of the 

calculation of SVD. 

The Lanczos algorithm can determine the eigenvalues for a large sparse matrix 

by using Lanczos recursion, which converts original matrix A into tridiagonal 

matrix T through a finite number of orthogonal similarity transformations. 

Suppose we have orthonormal vectors  and let Q = . ,.....,, 321 qqq kq  kqqq ,...., 21

Thus, .  IQQT 

Since we want to change A to a tridiagonal matrix T, we apply a similarity 

transformation. 

Then T can be decomposed into [1].  AQQT

We can rewrite the equation as AQ=QT by multiplying both sides by Q. 

The jth column of the above equation can be viewed as: 
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









...

..

..

..

...

1

j

j

j





A = jq 1j 1jq + j jq + j 1jq        (i) 

If we rewrite the above equation by multiplying both sides by , T
jq

T
jq A  = jq 1j

T
jq 1jq + j T

jq jq + j
T
jq 1jq  

T
jq 1jq  and  will be zero, and we get T

jq 1jq j = A . T
jq jq

If we rearrange (i), we can obtain j . 

jr = j 1jq  = A - jq j jq - 1j 1jq        (ii) 

jr = j ( ) = 11  j
T
j qq j  

We can decide the next orthonormal vector by rearranging (ii), 

1jq  =  / jr j  

continuing the recursion until j =n, where n is the size of A, is an orthogonal 

similarity transformation of A and therefore has the same eigenvalues. 

nT

By summarizing the above, the Lanczos algorithm can be written as: 

0r  = initial vector 

0 = 0r  

For j =1, 2, 3, ….n 

 = /jq 1jr 1j  

 a = A jq  

 j = a T
jq



  = a - jr 1j 1jq  - j jq  

 j = jr  

After n number of Lanczos recursions, nxn tridiagonal matrix is generated. The 

eigenvalues for the tridiagonal matrix are approximate to those of the original 

matrix A. 

Moreover, the eigenvectors of A can be found by multiplying the eigenvectors of T 

by the Lanczos vectors acquired from the recursion. I chose the Lanczos 

algorithm because the number of arithmetical operations required to generate a 

Lanczos matrix is proportional to the number of nonzero entries of A [2]. This 

saves running time for a large sparse matrix.  

 

Deliverable 3 

Implementing SVD using the Lanczos algorithm 

 

The main objective of this deliverable was to implement SVD using a Lanczos 

algorithm. In this section, my program decomposed an original matrix into three 

matrices (an orthogonal matrix U, a diagonal matrix S, and the transpose of an 

orthogonal matrix V) via SVD, and verified the result by multiplying the three 

decomposed matrices together to reconstruct the original. The big difference 

between this and Deliverable 1 was that I transformed an original matrix into a 

tridiagonal matrix via Lanczos algorithm in the process of calculating SVD.  

I further improved this process by using a QR algorithm on the tridiagonal matrix 

to find the eigenvalues, which was a technique developed in 1961 by John G.F. 

Francis and Vera N. Kublanovskaya. First, the matrix must be factored into a 
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product of an orthogonal matrix  and an upper triangular matrix  with 

positive entries along the diagonal, using the Gram-Schmidt orthogonalization 

process, a method for converting a set of vectors into orthonormal vectors. Next, 

we multiply the two factors( , )in reverse order. Thus, we have = . We 

then repeat the steps above until all entries below the subdiagonal are zero. After 

a sufficient number of iterations , eigenvalues appear along its diagonal on . 

The rest of the calculations for SVD are the same as in Deliverable 1. I also 

made some corrections on the Lanczos algorithm in my code. It turned out that 

even after a small number of iterations, I quickly lost orthogonality of the Lanczos 

vectors due to not being able to completely reduce them to tridiagonal form. 

During each Lanczos recursion, full reorthogonalization of the current vector was 

needed in relation to all previous vectors. The full reorthogonalization was carried 

out using a Gram-Schmidt process, which can be described as: 

1Q 1R

1 1Q1R 1Q

k

2A R

.kA

  k

j

k
j

T
kjj qrqrr 






1

1

      j = Lanczos step 

 

Deliverable 4 

Extracting summaries from original texts using the Lanczos 

algorithm and SVD 

 

The main objective of Deliverable 4 was to use the Lanczos algorithm and SVD 

to put the theory into practice. It is very important to emphasize the role of SVD 

and the Lanczos algorithm in data reduction. 

SVD is a method for reducing a high-dimensional set of data to a lower-

dimensional set of data. It allows us to identify which data exhibit the most 
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variation by ordering the dimensions. It gives us the best approximation of the 

original data by simply ignoring other dimensions below certain thresholds to 

reduce the volume of content, while maintaining the main relationships present in 

the original data. For Deliverable 4 and my master project, we deal with a word 

by sentence matrix A, where represents the frequency of a particular word 

appearing in each sentence. Earlier, I mentioned that A can be decomposed into 

three matrices (U , , and ). Hence, in our case, the word matrix U consists 

of one row vector for each word, the sentence matrix consists of one column 

vector for each sentence, and the singular matrix S consists of single values 

along its diagonal, reflecting the importance of each dimension. To be specific, 

each number indicates how strongly related word  is to the topic or concept 

represented by semantic dimension 

ijA

S TV

TV

iijU

j , while each number  indicates how 

strongly related sentence i  is to the topic represented by semantic dimension 

ijV

j . Each numbe iiS  on diagonal entries of S, indicates the magnitude of the 

importance of the corresponding semantic dimension.  

r, 

I am using the Lanczos algorithm because a word by sentence matrix is very 

sparse, meaning that it is populated primarily by zeros, because the same words 

seldom reappear in adjoining sentences. The Lanczos algorithm is the fastest 

method for solving eigenvalues on large sparse matrices. 

 

Conclusion 

 

The purpose of all my deliverables was to learn SVD and the Lanczos algorithm 

and to be able to implement them myself, even if the implementation required 
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another language.  

I produced four deliverables in total, each of which helped me gain knowledge of 

various linear algebra theorems and apply them systematically. From Deliverable 

1, I learned how to calculate SVD, eigenvalues, and eigenvectors. Deliverable 2 

taught me how to convert a symmetric matrix into a tridiagonal matrix by 

implementing the Lanczos algorithm. From Deliverable 3, I learned to incorporate 

the Lanczos algorithm into calculating SVD and different techniques to make my 

implementation more stable. Deliverable 4 showed me how all of the previous 

deliverables could be put together to reach my final objective-text summarization. 

The deliverables I have completed in this semester have helped me implement 

SVD using the Lanczos algorithm.  

For CS 298, I will extend the deliverables I developed in CS 297 to create a 

program that generates a text summary of a web site. Since I will deal with large 

data sets of words and sentences from different pages in a web site, it is natural 

that I will use a database. Thus I will create SQL scripts that will calculate SVD 

using the Lanczos algorithm, and will be able to extract a summary from a web 

site. 
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	I am using the Lanczos algorithm because a word by sentence matrix is very sparse, meaning that it is populated primarily by zeros, because the same words seldom reappear in adjoining sentences. The Lanczos algorithm is the fastest method for solving eigenvalues on large sparse matrices.
	Conclusion
	The purpose of all my deliverables was to learn SVD and the Lanczos algorithm and to be able to implement them myself, even if the implementation required another language. 
	I produced four deliverables in total, each of which helped me gain knowledge of various linear algebra theorems and apply them systematically. From Deliverable 1, I learned how to calculate SVD, eigenvalues, and eigenvectors. Deliverable 2 taught me how to convert a symmetric matrix into a tridiagonal matrix by implementing the Lanczos algorithm. From Deliverable 3, I learned to incorporate the Lanczos algorithm into calculating SVD and different techniques to make my implementation more stable. Deliverable 4 showed me how all of the previous deliverables could be put together to reach my final objective-text summarization. The deliverables I have completed in this semester have helped me implement SVD using the Lanczos algorithm. 
	For CS 298, I will extend the deliverables I developed in CS 297 to create a program that generates a text summary of a web site. Since I will deal with large data sets of words and sentences from different pages in a web site, it is natural that I will use a database. Thus I will create SQL scripts that will calculate SVD using the Lanczos algorithm, and will be able to extract a summary from a web site.
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