

ONE SOCIAL

A Writing Project

Presented to

The Faculty of the Department of Computer Science

San José State University

In Fulfillment of the

Requirements for the

Degree Master of Computer Science

By

Sowmya Sampath

December 2010

ii

© 2010

Sowmya Sampath

ALL RIGHTS RESERVED

iii

 ONE SOCIAL

By

Sowmya Sampath

 APPROVED FOR THE DEPARTMENT OF COMPUTER SCIENCE

Dr. Chris Pollett, Department of Computer Science 15/12/2010

Dr. Teng Moh, Department of Computer Science 15/12/2010

Dr. Mark Stamp, Department of Computer Science 15/12/2010

iv

ACKNOWLEDGEMENTS

I feel extremely grateful to Dr. Chris Pollett, for his encouragement, management

and support. This project would not have been possible without his technical advice and

guidance. I’m very thankful to the almighty who has given me the strength and courage to

successfully complete my Master’s program. I also want to thank my committee members

Dr. Teng Moh and Dr. Mark Stamp, who took the time to discuss the project and offer me

helpful suggestions and support.

I also would like to thank my husband, Prasanna Padmanabhan, and my parents, Sampath

Kumar Narasimhan and Lalitha Sampath, for helping me with good suggestions and

supporting me in countless ways. Last but not the least, I would like to thank my sisters,

Ramya Sampath and Kavitha Padmanabhan, SJSU peer mentor, Manuel Silva, who

proofread my report.

v

ABSTRACT

Facebook streams and Twitter tweets represent user content in two common social media

systems. Users often have accounts on both these systems and to keep their content current

for both of them they must update each separately. It is thus difficult to manage and

maintain both of these social networks together. The goal of this project is to build a social

website called One Social, where users can view their Facebook streams and Twitter tweets

in one single view and thereby easily organize and maintain their updates. In One Social,

users can enter a status message and can share it with both their Facebook and Twitter

connections in just one click. Moreover, all the Facebook and Twitter comments for a status

are threaded together to improve user experience. REST APIs are published for external

developers to access and update the merged threaded streams and leverage the work done by

OneSocial, when creating new social applications. These REST APIs also provide a common

data format for both Facebook and Twitter streams, thereby making application

development quicker and easier.

vi

Table of Contents

1. Introduction ...8

1.1 Competitors.. 9

1.2 OneSocial.. 11

1.3 Organization... 12

2. Design pattern.. 13

2.1 MVC Design Pattern .. 13

2.2 Class Diagram .. 13

3. Environmental Setup ... 15

3.1 Apache, PHP and MySQL Environment Setup... 15

3.2 Facebook and Twitter Application Settings.. 16

3.3 Database Schema... 17

4. Authentication and Authorization ... 18

4.1 Password Security.. 20

4.2 Facebook Authentication... 20

4.3 Twitter authentication .. 22

4.4 Sessions and Cookies.. 24

5. Publish Stream ... 25

5.1 Facebook Set Updates .. 25

5.2 Twitter Set Updates .. 26

5.3 Set Comments.. 27

6. Fetch, Group and Thread Feeds.. 28

6.1 Facebook Get Stream... 29

6.2 Twitter Get Tweets ... 31

vii

6.3 Threading Facebook and Twitter feeds together ... 32

7. Feed Rendering.. 34

7.1 Rendering HTML pages... 35

8. Publishing a REST API ... 36

9. Test Cases .. 40

9.1 Unit Testing.. 40

9.2 API Testing .. 40

9.3 Usability Testing .. 41

10. Conclusion.. 43

APPENDIX ... 44

Login Page of OneSocial .. 44

Create a New User ... 44

Login with the User id and Password ... 45

Link OneSocial Account with Facebook Account .. 45

Link OneSocial Account with twitter Account ... 46

Login to Twitter account.. 47

Feeds from Facebook and Twitter threaded together ... 47

Publishing REST API .. 48

Curl – Get Updates from both Facebook and Twitter.. 48

Curl – Set status to both Facebook and Twitter ... 48

Curl – Set status to both Facebook and Twitter (to the above status) 49

References.. 51

8

1. Introduction

Social networks connect people with their friends and acquaintances. Users visit

these sites to keep up with their friends, upload their photos and share links and videos. In

the project developed for One Social, users can post and comment to messages, to both

their Facebook and Twitter friends. Users can also view the messages posted by their friends

in both these social networks as a single threaded view in OneSocial.

 Various studies show that people connect with more people using social networks

than they would connect with using emails and instant messages [10][11][12]. These social

networks attract the younger generation by offering fast-paced, inexpensive online

communication. The concept of social networks has been around for quite sometime now,

but the newer generation of social networking sites such as Facebook, Twitter, MySpace,

Friendster and Bebo have redefined the way users share and communicate information with

their friends [13]. Facebook and Twitter together have over 700 million users as of today,

and their growth rate is exponential [14][15].

In a recent study, it was found that many social networking users create their user

profile in more than one social network [16]. Over a period of time, not only do these users

get confused on what status they posted where, but also on what comments they received in

which network as they might have different set of friends in different social networks.

Eventually, users find it very hard to keep up with their connections in these different social

networks.

9

1.1 Competitors

 Facebook and Twitter offer similar functionality. Many websites have combined the

feeds from Facebook and Twitter because of their popularity. Bing’s Social iPhone App and

threadsy.com are two of the websites that pull in the feeds from Facebook and Twitter. It is

useful to briefly look at the features of these products to understand the improved

functionality that was achieved in our project, One Social.

Both these websites do an exceptionally good job of fetching all the feeds from

Facebook and Twitter and displaying them in reverse chronological order. However, they

still miss out on a few valuable features that would help users have better experience and

engagement. Firstly, neither Bing nor Threadsy, thread Twitter statuses with their respective

comments. Hence, for a given tweet, users do not have a clear way to identify comments to

their tweets. Even, twitter.com does not thread tweets with their respective comments.

Secondly, Bing and Threadsy do not thread the Facebook and Twitter messages together,

even if the statuses are the same. Threading messages across social networks is even more

challenging as the response data format would be different for different networks. Finally,

neither Bing nor Threadsy update statuses to both Facebook and Twitter. Threadsy allows

users to at-least post their status to either Facebook or Twitter. However, Bing’s Social App

doesn’t perform any updates at all. Moreover, neither of these websites can render picture or

video feeds from Facebook or Twitter.

 One of the main goals of using a social network is to stay up-to-date with people’s

connections and friends. However, unless there is a better way to manage the

communications between these social networks, users still find it hard to keep up with their

connections. The following are the screenshots of these two websites that exemplify how

their feeds are mixed.

10

Bing Social IPhone App

Threadsy.com

11

1.2 OneSocial

The goal of this project was to build a social networking website that can leverage

the features offered by both Facebook and Twitter and still be able to easily organize and

maintain users and user’s connection’s status streams. Merging the feeds of both Facebook

and Twitter, threading their messages and displaying them in a single view accomplished this

goal. A single update to this website also in turn updates both Facebook and Twitter. A

sample prototype of threading Facebook and Twitter feeds is shown below. A user will be

able to see all the comments for a status posted in both Facebook and Twitter together in a

single thread.

12

Finally, OneSocial should publish REST APIs of its implementation for external developers

to take leverage on the work that has already been done by OneSocial to combine the two

social networks.

1.3 Organization

The remainder of this paper is organized as follows. Section 2 discusses the design

patterns and class diagrams used in OneSocial. Section 3 discusses the environment setup

required for hosting OneSocial website and the steps needed to create a Facebook and

Twitter application. The implementation details of OneSocial are covered in the subsequent

sections. Section 4 discusses the authentication flow used in OneSocial and how these two

networks are linked together. Section 5 discusses how status updates are posted from

OneSocial. Section 6 discusses how these two social network streams are combined and

threaded together. Section 7 discusses the web services API that OneSocial exposes to

external developers. Section 8 discusses the front-end page rendering. Section 9 discusses

various test cases developed for OneSocial. Section 10 concludes the paper and identifies

future directions. Finally, user interface design screen shots for OneSocial are shown in the

Appendix.

13

2. Design pattern

OneSocial was designed using MVC design pattern. Hence the modules for fetching

and getting feeds from Facebook and Twitter are aligned with MVC design pattern. MVC

design pattern is not only an apt framework for the current project; it also helps all the

pieces to fall together. It is also the most commonly used and popular design pattern.

2.1 MVC Design Pattern

Model–View–Controller (MVC) is a software architecture, currently considered an

architectural pattern used in software engineering. The pattern isolates "domain logic" (the

application logic for the user) from the user interface (input and presentation), permitting

independent development, testing and maintenance [1]. In OneSocial, Facebook.php and

Twitter.php act as models that manage the behavior and data of these social networks and

respond to requests for information about their states. OneSocial.php acts as the view to

render the model into a webpage. Two different views, HTML and XML, exist for displaying

the web page and the web service data respectively. Main.php acts as the controller that

receives input and initiates a response by making calls on model objects.

2.2 Class Diagram

Facebook and Twitter have various common functionalities like

1. getUpdates

2. showLoginURL

3. setUpdates

4. setComments

14

OneSocial is designed in such a way that the common functionalities are implemented in a

base or the parent class called OneSocial. This class contains the common methods for

Facebook and Twitter. This class also contains the custom algorithm and the structure,

which holds all the statuses, tweets and their comments.

The above class diagram helps us to get a gist of the overall code organization. The

OneSocial is an abstract class and hence it has some functions defined and some functions

abstract. The above-mentioned functions are all abstract as they have different

implementations in their child classes.

Facebook Twitter

OneSocial
• getUpdates()
• setUpdates()
• showLoginURL()
• setComments()
• …

15

3. Environmental Setup

3.1 Apache, PHP and MySQL Environment Setup

In this project, Apache is used as the web server. The release version of Apache 2.2

is first downloaded and installed. PHP 5.2.14 is then downloaded is used as the backend

server side language. MySQL 5.1 that is used for storing user and session specific

information. After installing Apache, PHP and MySQL following are some of the steps

taken to setup a secure Apache web server that works together with PHP and MySQL.

These changes are done in httpd-ssl.conf.

1) Listen: 443 is the default secure port that apache will be listening.

2) DocumentRoot: This will point to the directory, which will contain all the required

PHP/CSS/Images files for OneSocial.

3) SSLEngine: This will be ON to enable SSL requests.

4) SSLCertificateFile: This will point to the PEM encoded server certificate. This

certificate identifies that the server a user is connecting to be the correct OneSocial

server.

5) SSLCertificateKeyFile: This will point to the SSL key file.

6) LoadModule php5_module: This loads the PHP Apache DLL that is required for

running PHP web application in Apache.

7) RewriteEngine: This is turned ON for allowing rewrite rules. The most basic rewrite

rule is to redirect all index.html, index.htm and index.php to Main.php, which is the

entry point for OneSocial.

16

Curl and MySQL are not part of the default PHP settings and have to be configured

manually in php.ini.

3.2 Facebook and Twitter Application Settings

The first step in creating OneSocial is to create a Facebook and Twitter application

in their respective portals. http://www.facebook.com/developers/createapp.php and

http://twitter.com/apps/new are where we can create new Facebook and Twitter

applications respectively.

After creating a Facebook application, Application ID, API key and an Application secret

will be issued and these need to be used in all further communications with Facebook.

Similarly, after creating a Twitter application, a consumer key and a consumer secret will be

issued and they need to be used in all further communications with Twitter. Following are

the list of parameters that are required to successfully setup a Facebook/Twitter application:

1) Site URL: OneSocial’s web application URL. For OneSocial, this URL is set to

https://onesocial.dyndns.org/.

2) Application Name and Description: As the name implies, this is the name of the

application that is created with its associating description for new users to know

about the application.

3) Post-Authorize Redirect URL: Facebook and Twitter redirects users to this URL

when they first authorize the application. For OneSocial, this redirect URL is set to

https://onesocial.dyndns.org/callback.php?fb=1 and

https://onesocial.dyndns.org/callback.php?tw=1 respectively.

17

4) Application Type: OneSocial is a web application, and hence, the application type

should be web.

5) Contact Email: This is the email address where OneSocial users can reach out.

Every time we change any of these settings, Facebook and Twitter will update the secret.

Alternatively, application developers could also reset this secret as and when needed for

security reasons. Facebook and Twitter will return a return code 403 if application use an

invalid secret.

3.3 Database Schema

There are primarily 2 MySQL tables used for OneSocial. One is the User table,

which stores the meta-information of all OneSocial users. The other is the Sessions table,

which stores the Facebook and Twitter request and access tokens of OneSocial users. There

is a 1:N relationship between the Users and the Sessions table. Following is the schema and

sample records in these tables:

Users table

UserID Password FirstName LastName

Sowmya.sampath ********** Sowmya Sampath

john.doe ******** John Doe

Sessions table

UserID AppID Session Token Req Token

Sowmya.sampath Facebook 343gkfgf0343mflfdd3mll43343439 Rern3knff9dfgddrefdhbf

Sowmya.sampath Twitter 5knkfg9565fknkppcletitnfpd6ee67 Gfe973nsog5gds3tojl74f

18

4. Authentication and Authorization

Facebook and Twitter API specifications can be found at:

1. Facebook wiki - http://developers.facebook.com/docs/reference/api/

2. Twitter wiki - http://apiwiki.twitter.com/Twitter-API-Documentation

The first iteration of OneSocial was developed using Facebook’s old REST APIs, which had

a lot of issues including problems with post authorization callback and access token’s

lifetime. Eventually, they were marked as deprecated by Facebook itself. Now with the

introduction of Facebook’s new Graph APIs, OneSocial was rewritten using these new

APIs. Facebook’s graph APIs is similar to Twitter’s REST APIs, and hence, we can follow a

similar structure and the integration just falls into place.

Facebook or Twitter APIs have a common format, which is described as follows.

http://<url-for-the-api>.com/<version-number>/<function-name>/<format>. An

example would be - http://api.twitter.com/v1/statuses/update.json

This phase is dedicated to Login, Authentication and Authorization. Facebook and Twitter

handle the Login in different ways. OneSocial uses a single sign-on methodology where

when the user logs-in, they can associate his OneSocial id, with their Facebook and Twitter

accounts. OneSocial does not handle the authentication for Facebook and Twitter. Rather,

the security is passed over to the respective social networks. It also helps in a way, if the user

19

has signed into Facebook and Twitter in the same browser session then they need not renter

their credentials. Hence, users do not feel unsecured to be in an alien site to provide their

login information for Facebook and Twitter. HTTPS protocol is also used to ensure that the

credentials are passed over a secured network. The code implementation starts based on the

user's login information that is being provided. For first time users a link is provided when

they login to create a new account with OneSocial. User types in the following information:

• First Name

• Last Name

• User id

• Password

• Confirm Password

These details are fetched from the page and stored into the database. While storing

the password a hash is taken and then stored. This is to ensure further security. If his details

are successful he is passed on to the next steps. On the case if the user id already exists for

OneSocial, he is prompted with a message saying that the userid already exits and hence he

creates a new user id.

For returning users, they just login with their username and password. Hence, as

soon as the user enters his credentials for OneSocial, the authenticity of the user is compared

with the database entries and validated. Based on the comparison the user is provided with a

feedback. If the user finds out that he has an invalid user name or password by the feedback

message, he can attempt to login again.

After the user clears his credential checks he is next provided with steps to associate

his Facebook and Twitter Account. The above figure depicts the singe sign-on with One

Social and how the redirection for the individual sign-ins to Facebook and Twitter happens.

20

4.1 Password Security

 When the user details are stored in the database table, everything except the

password is stored in clear. The hash of the password is stored. This is because hashing is a

one-way process, and hence, any hack done on the database table will not reveal the

passwords to the hacker. Since hashing is one way, to verify that the user after he has logged

in, the password has to be hashed again before it is compared with the database entry.

 Not only this, user credentials are passed via HTTPS protocol, also the website has

its own SSL certificate leading to a secured login/authentication. Hence gains users

confidence and trust. More on HTTPS protocol is discussed in Phase VI.

4.2 Facebook Authentication

 Facebook uses the OAuth 2.0 protocol for user authentication and application

authorization. The first step in authenticating a user is to obtain an access token. Following

are the steps required to obtain an access token:

User Name

Password

johndoe

 Login

21

a) Redirect the user to https://graph.facebook.com/oauth/authorize and pass the

application id and post authorize callback URL as parameters to this API.

b) User enters their credential in the above Facebook URL and after successfully

authorizing the application, Facebook would redirect the user to the authorize

callback url along with a verification string in the argument code, which can be

exchanged for an OAuth access token.

c) Generate an access token using the above verification code by fetching

https://graph.facebook.com/oauth/access_token

Once the access token is obtained, all further communications to Facebook will only require

this token instead of the user’s credentials. There are various authorization levels, which can

be requested from an OneSocial Facebook user by passing arguments to

https://graph.facebook.com/oauth/authorize. They are as follows:

1) publish_stream: If the user authorized this level, OneSocial will be able to post

statuses, comments and likes to a user’s and their friends’ stream.

2) offline_access: If the user authorized this level, OneSocial will be able to perform

authorized requests on behalf of the user at any time.

3) create_event: If the user authorized this level, OneSocial will be able to create and

modify events on the user's behalf.

4) sms: If the user authorized this level, OneSocial will be able to send messages to the

user and respond to messages from the user via text message.

22

Currently, for OneSocial, only publish_stream and offline_access permission levels are

requested for OneSocial users.

Code Snippet

4.3 Twitter authentication

Similar to Facebook, Twitter also supports OAuth for authentication. Following are

the three steps needed to acquire an access token for Twitter, which would eventually be

used in all further communications with twitter for user identification purposes.

1. The first step to authenticating a user in Twitter is to obtain an unauthorized request

token from twitter using http://api.twitter.com/oauth/request_token. The

consumer key we obtained during app creation is also passed to this API. Any

request that we make to Twitter should include a signature for security purposes.

HMAC-SHA1 is used on the API URL, its parameters and headers (if applicable) to

public function getSession($user, $args) {
 $sessionData = parent::getSessionFromDB($user,
Constants::FACEBOOK_APP_ID);
 if (!empty($sessionData['secret'])) {
 return $sessionData;
 }

 if (!empty($args['code'])) {
 $out = $this->getAccessToken($args['code']);
 list ($key, $accessToken) = split("=", $out);
 parent::insertSessionIntoDB($user,
Constants::FACEBOOK_APP_ID, null, $accessToken);
 return array('token' => null, 'secret' => $accessToken);
 } else {
 return $sessionData;
 }
}

23

generate the request signature. Twitter returns a 403 if the signature does not match

with the one that is generated by Twitter after receiving the request.

2. In the next step, the user is taken to https://api.twitter.com/oauth/authorize where

the user is asked to enter their credentials and is authenticated by Twitter. This API

also takes a callback URL where the user will be redirected upon successful

authentication and user authorization to OneSocial.

3. The last step is to exchange the request token for an access token, which would be

used in all subsequent requests to Twitter. This is done by calling

https://api.twitter.com/oauth/access_token and by passing the request token,

consumer key and the request signature.

The code snippet for this algorithm is as shown following:

Code Snippet

public function getSession($user, $args) {

 $sessionData = parent::getSessionFromDB($user, Constants::TWITTER_APP_ID);
 if (!empty($sessionData['secret']) && !empty($sessionData['token'])) {
 return $sessionData;
 }

 if (!empty($args['oauth_token'])) {
 $auth = $this->getAccessToken($args['oauth_token']);
 $authToken = $auth['oauth_token'];
 $authSecret = $auth['oauth_token_secret'];
 $this->insertSessionIntoDB($user, Constants::TWITTER_APP_ID, $authToken,
$authSecret);
 return (array('token' => $authToken, 'secret' => $authSecret));
 } else {
 return $sessionData;
 }
}

24

Both the request and access tokens are stored in a MySQL database for the user’s

Facebook and Twitter accounts. These tokens are not restricted with time unless

Facebook/Twitter changes their policy and make them expire after a particular period of

time. When a user logs into OneSocial, access tokens from the database is retrieved and used

directly, if they are available. All the above requests to obtain an access token are made only

when they are not available in the MySQL database. Hence, a user will have to link their

Facebook and Twitter accounts only once in OneSocial.

 Twitter, in contrast to Facebook, does not offer various levels of user authorization.

By default, once a twitter user authorizes an application, the application will be able to send

requests on user’s behalf unless the user explicitly removes the authorization. In the case of

Facebook, this does not happen by default and happens only when the user explicitly grants

offline_access.

4.4 Sessions and Cookies

 In OneSocial, user sessions are maintained in a cookie. Cookies are used to

determine the user who logged into OneSocial for the current browser session. The cookie

domain is set to onesocial.dyndns.org. The name of the cookie is onesocial_user. The value

of the cookie, which is the (one way) hash of the OneSocial user, is set as soon as a user logs

into OneSocial. This cookie is cleared as soon as the user logs off or the browser session is

closed. When this cookie is already set, the users credentials are not required to interact with

OneSocial. PHP’s setCookie() and global variable $_COOKIES are used to set and get the

user’s session cookie.

25

5. Publish Stream

 Once the user is authenticated and the application authorized, the next obvious step

is to read and write statuses or tweets from OneSocial. In this section, we will dive deep into

the write or update use case. Facebook and Twitter APIs give us an easy way to set the

statuses/tweets and also comments on existing statuses or tweets. PHP curl libraries are used

to make all the HTTP web services requests. The functionality of setUpdates API is

discussed prior moving to the functionality of setComments API.

5.1 Facebook Set Updates

 When a user updates their status from OneSocial, the following API with the

necessary parameters is called to update the status in Facebook.

API Usage:

a) URL: https://graph.facebook.com/me/feed

b) Request Parameters:

a. Access Token – This is the user’s secret that uniquely identifies a user

b. Status – The status message to be posted to Facebook

c) Request Method: POST

d) Response data: 1 on success, 0 on failure or an error code.

26

Code Snippet:

5.2 Twitter Set Updates

When a user updates their status from OneSocial, apart from calling the above

Facebook API, the following API with the necessary parameters are also called to update the

status in Twitter simultaneously.

API Usage:

a) URL: http://api.twitter.com/1/statuses/update.json

b) Request Parameters:

a. Auth token – This is the user’s secret that uniquely identifies a user

b. Status – The status message to be posted

c. Signature – This is the hash of the request URL and all the request

parameters.

c) Request Method: POST

d) Response data: Returns HTTP status 403 when the status message is more than 140

characters or when the current status is the same text as the most recently posted

public function setUpdates($authSecret, $authToken, $status) {
 $xPost['access_token'] = $authSecret;
 $xPost['message'] = $status;

 $ch = curl_init();
 curl_setopt($ch, CURLOPT_URL,
"https://graph.facebook.com/me/feed");
 curl_setopt($ch, CURLOPT_SSL_VERIFYPEER, 0);
 curl_setopt($ch, CURLOPT_POSTFIELDS, $xPost);
 curl_setopt($ch, CURLOPT_CUSTOMREQUEST, 'POST');

 curl_exec($ch);
}

27

status. On success, all the meta information of the status message and the

authenticated user is returned.

Code Snippet

5.3 Set Comments

Setting Comments to statuses or feeds in Facebook is slightly different from posting

statuses. This is because when posting statuses, we do not have to reference the status id that

gets generated from the post. Whereas, while posting comments we need to refer the status

id for which the comment or tweet needs to be posted.

API Usage:

a) URL: https://graph.facebook.com/STATUS_ID/comments. The Status ID, for

which the comment has to be added, should be replaced in the above url.

public function setUpdates($authSecret, $authToken, $status) {

 $url = "http://api.twitter.com/1/statuses/update.json";
 $params = array('oauth_consumer_key' => self::API_KEY,
 'oauth_token' => $authToken,
 'oauth_signature_method' => 'HMAC-SHA1',
 'oauth_timestamp' => time(),
 'oauth_nonce' =>
md5(microtime() . mt_rand()));
 $sigParams = $this->getSignedHeader($url, $params, array('status'
=> $status), 'POST', $authSecret);

 $ch = curl_init();
 curl_setopt($ch, CURLOPT_URL, $url);
 curl_setopt($ch, CURLOPT_RETURNTRANSFER, 1);
 curl_setopt($ch, CURLOPT_HTTPHEADER, array($sigParams));
 curl_setopt($ch, CURLOPT_POST, 1);
 curl_setopt($ch, CURLOPT_POSTFIELDS, "status=$status");

 $out = curl_exec($ch);

 if(curl_errno($ch)) {
 print 'Curl error: ' . curl_error($ch); exit;
 }

 $tweets = json_decode($out, true);
 }

28

b) Request Parameters:

a. Access Token – This is the user’s secret that uniquely identifies a user

b. Message – The comment to be posted to Facebook.

c) Request Method: POST

Response data: 1 on success, 0 on failure or an error code.

6. Fetch, Group and Thread Feeds

The next obvious step is to provide a mechanism to fetch or read all the statuses or

tweets from Facebook and Twitter and to thread these two feeds together. Facebook and

Twitter APIs also give us an easy way to read a user’s statuses and tweets.

 Facebook.com, by default, combines all the comments of a given status together into

a single thread. Similarly, their APIs also include the comments to the statuses within the

same json structure. Twitter on the other hand, does not handle threading of the comments

within their tweets. Hence an initial threading has to be implemented within Twitter tweets

and its replies or comments.

 Further, additional threading needs to be implemented between Facebook and

Twitter feeds to show a single view of a user’s Facebook and Twitter friends’ comment on a

common post. The getUpdates() method in Facebook and Twitter class handles fetching

both the statuses and their comments and threading them together. To ease the threading

between the feeds from Facebook and Twitter a common data structure is used in which all

the statuses and the comments from Facebook, tweets from Twitter are collected.

29

6.1 Facebook Get Stream

API Usage:

a) URL: https://graph.facebook.com/me/home?access_token=SECRET. SECRET

should be replaced by the actual user’s access token.

b) Request Parameters: None

c) Request Method: GET

d) Response data: On success, Facebook returns the user’s News feed in a json format.

In the event of a failure, Facebook returns an appropriate HTTP error code and a

message.

The response structure from Facebook for each status is of the following form:

The response structure with sample data of comments for the above status is of the

following form:

[id] => 1437286239_172765289409397
 [from] => (

[name] => John Doe
 [id] => 1437286239
)

 [message] => It is so cold in SFO this winter
 [type] => status
 [created_time] => 2010-11-26T19:10:59+0000
 [updated_time] => 2010-11-26T22:26:20+0000

30

The entire Facebook news feed is a collection of statuses with each status containing a

collection of comments.

Code Snippet

[comments] => (
[data] => (

 [0] => Array (
[id] => 1437286239_172765289409397_2081304

 [from] => Array (
 [name] => Will Rafael
 [id] => 3434451
)

[message] => Welcome to my life in New York
 [created_time] => 2010-11-26T21:11:12+0000
)
 [1] => Array (
 [id] => 1437286239_172765289409397_2081655
 [from] => Array (
 [name] => Glen Mcgrath
 [id] => 634622076
)

[message] => How cold is it now?
 [created_time] => 2010-11-26T22:26:20+0000
)
)

[count] => 2
)

$ch = curl_init();

curl_setopt($ch, CURLOPT_URL, https://graph.facebook.com/me/home?access_token=$secret");
curl_setopt($ch, CURLOPT_SSL_VERIFYPEER, 0);
curl_setopt($ch, CURLOPT_RETURNTRANSFER, 1);
curl_setopt($ch, CURLOPT_TIMEOUT_MS, 10000);

$out = curl_exec($ch);
$info = curl_getinfo($ch);

// Likely that there is something wrong with the session
if ($info['http_code'] != 200) {
 return false;
}

$data = json_decode($out, true);
$stream = $data['data'];

31

6.2 Twitter Get Tweets

API Usage:

a) URL: http://api.twitter.com/1/statuses/home_timeline.json

b) Request Parameters:

a. Auth token – This is the user’s secret that uniquely identifies a user

b. Signature – This is the hash of the request URL and all the request

parameters.

c) Request Method: POST

d) Response data: On success, the top 20 most recent tweets, including re-tweets if they

exist, posted by the authenticating user and the user's they follow. In the event of a

failure, appropriate http code and an associated error message is returned.

Following is the sample response of the Twitter Get Stream API:

<statuses type=’array’>
<status>
 <created_at>Fri Jul 16 16:58:46 +0000 2010</created_at>
 <id>18700887835</id>
 <text>got a lovely surprise from @craftybeans</text>
 <source>web</source>
 <in_reply_to_status_id></in_reply_to_status_id>
 <favorited>false</favorited>
 <user>
 <id>29733</id>
 <name>cindy li</name>
 <screen_name>cindyli</screen_name>
 .
 .
 .
 </user>
</status>
…

</statuses>

32

CodeSnippet

6.3 Threading Facebook and Twitter feeds together

Following are the goals to be achieved by threading Facebook and Twitter feeds

together:

1) Single view of what is happening in both Facebook and Twitter worlds and to get

users socially up-to-date in an easier fashion.

2) Threading messages within a given topic would help users keep track of their context

better.

3) Threading messages could also drive users to try both Facebook and Twitter and

eventually drive user growth in both these social networks.

The algorithm to thread messages is as follows:

$params = array('oauth_consumer_key' => self::API_KEY,
 'oauth_token' => $authToken,
 'oauth_signature_method' => 'HMAC-SHA1',
 'oauth_timestamp' => time(),
 'oauth_nonce' => md5(microtime() . mt_rand()));

$sigParams = $this-getSignedHeader("http://api.twitter.com/1/statuses/home_timeline.json",
$params, array(), 'GET', $authSecret);

$ch = curl_init();
curl_setopt($ch, CURLOPT_URL,"http://api.twitter.com/1/statuses/home_timeline.json");
curl_setopt($ch, CURLOPT_RETURNTRANSFER, 1);
curl_setopt($ch, CURLOPT_HTTPHEADER, array($sigParams));

$out = curl_exec($ch);

if(curl_errno($ch)) {
 print 'Curl error: ' . curl_error($ch); exit;
}

$tweets = array();
$updates = json_decode($out, true);
foreach ($updates as $update) {
 $id = '' . $update['id'];
 $tweets[$id] = $update;
}

33

1) As we have mentioned earlier, the stream format is very different between Facebook

and Twitter. Hence, the first objective would be to convert these streams formats

into a standard format called as OneSocial stream format. Following is the sample

OneSocial stream format:

2) Twitter, as said before, does not group messages even in their website. Hence, the

next step is to identify a way to group twitter messages. Every tweet in Twitter has

an associated “id” for it. Fortunately, twitter exposes another meta data for each

tweet called “in_reply_to_status_id”, which could be used to easily group messages.

Tweets that do not have “in_reply_to_status_id” are considered the Root tweets.

Any tweet that has an “in_reply_to_status_id” set to the “id” of the Root tweet is

considered as its Comment Tweet. Comment Tweets can still be Root tweets for

sub-comment tweets and so on and so forth. By the end of Step 2, we would be able

to successfully chain common tweets within Twitter.

3) Use array merge in PHP to merge the results between Twitter and Facebook with

keys to each Facebook and twitter feed being its feed created time.

<message>
<id>1437286239_172765289409397</id>

<user>Kalyan Sundaram</user>
<text>Break the Rules for next 6 months.....</text>
<app>Facebook</app>
<time>12 hour(s) ago</time>
<likes>1</likes>
<comments>

 
 <user>Kalyan Sundaram</user>
 <text>

@Harjot : Yes
 @Bala : yes,early start to enjoy the Thanks Giving :-)

@Maha : Cheers .. Party lam already started. unforgettable
start :-)

 </text>
 <app>Facebook</app>
 <time>51 minute(s) ago</time>
 </comments>
</message>

34

4) Perform a numeric sort on the resultant array keys to give us the merged feeds sorted

by created time. Parse through the sorted feeds array and figure out if any of the

messages have the same text. If so, those messages are grouped with their associated

comments into a single feed.

7. Feed Rendering

 This section is where the display or the rendering for the pages is covered. The

HTML code sections are present in the base class to be used common to all the sub-classes.

Even though Facebook and Twitter classes are the derived classes from OneSocial, they are

not the ones that are called upon for rendering. The code runs based on a class called

Main.php. This class creates objects for all the other classes and calls the appropriate

functions. Since the feeds from Facebook and Twitter are time dependent and the relevancy

to the user depends on when they are posted, a custom algorithm was devised to calculate

the time since a status was posted. Some examples are like “15 seconds ago”, “1 hour ago”,

 foreach ($oneSocialResponse as $key => $response) {
 foreach ($oneSocialResponse as $ikey => $iresponse) {
 if ($key != $ikey && $response['0']['text'] == $iresponse['0']['text'])
{
 $found = true;
 break;
 }
 }
 if ($found == true) {
 if ($key < $ikey) {
 $finalResponse[$key] = $response;
 if (isset($iresponse['0']['message'])) {
 foreach ($iresponse['0']['message'] as $msg) {
 $finalResponse[$key]['0']['message'][] = $msg;
 }
 }
 }
 } else {
 $finalResponse[$key] = $response;
 }
 }

35

and “1 month ago”. This aids in identifying the most recent messages the user needs to

concentrate, and also to locate a particular piece of message, which was posted a specific

time ago.

The algorithm to determine this time gap is as follows:

1) The time difference (in Unix timestamp) between the system timestamp and the

message timestamp is obtained.

2) If the time difference is less than 60 – The message must be posted seconds ago.

3) If the time difference is less than 60 * 60 – The message must be posted minutes ago.

4) If the time difference is less than 60 * 60 * 24 – The message must be posted hours

ago.

5) If the time difference is less than 60 * 60 * 24 * 7 – The message must be posted

days ago.

7.1 Rendering HTML pages

 This section is dedicated to the front-end rendering. The CSS or the Cascading

Styling sheet was used extensively for designing the front-end of the website. Although

designing the website was not the main theme of this project, good efforts were put on

coming up with a good background, font and color for the website. The front page or the

login page is well suited with a custom designed image. The inner page which displays the

Facebook and the Twitter feeds also makes use of the common CSS. While displaying the

Facebook and the Twitter feeds special attention is given to differentiate the statuses or the

tweets from the comments obtained. All the images that have been used in the CSS are

36

custom designed. The screen shots for the front-end design are attached in the Appendix

section.

8. Publishing a REST API

 This section describes the functionalities in OneSocial that are offered as REST APIs.

The code path for the REST API is exactly the same as the regular request flow. The only

difference between the REST API and the regular request is that the output format for the

REST API is XML, whereas the output format for the regular request is HTML.

 As mentioned in earlier sections, the same response structure is maintained for both

Facebook and Twitter in OneSocial. An external developer who would like to tie another

blooming social networking site to Facebook and Twitter will have to simply convert the

network specific feed format into OneSocial format. The three REST APIs that are

published are as follows:

1) Set Updates: This API is used to write a status message into both Facebook and Twitter.

Following are the API attributes:

a) URL: https://onesocial.dyndns.org/api/v1/setupdates

b) Request Parameters:

a. User ID – OneSocial user ID

b. Password – The password of the OneSocial user

c. Status – The status message to be updated in both Facebook and Twitter

c) Request Method: POST

37

d) Response data: On success, the ID of the status is returned. In the event of a failure,

appropriate http code and an associated error message is returned.

Following is a sample curl command used to call SetUpdates REST API:

The “k” option in curl surpasses the ssl certificate authentication. As OneSocial, does not yet

offer a rusted SSL certificate, users are confronted with a question to trust the certificate.

The option “k” explicitly allows curl to perform insecure SSL connections and transfers. All

SSL connections are attempted to be done secure by using the CA certificate bundle installed

by default. Here the values for the userid, password and the status are passed via POST. The

setUpdates API allows the developer to set a specific update. In the above example

“Example Status Update” is the status that is set to OneSocial, which in-turn updates both

Facebook and Twitter. After the curl is executed, the status id of the posted status is

returned. This helps the developer to locate the statuses, or in the case of setting comments

to these statuses.

2) Set Comments: This API allows an external developer to set comments for a particular

status. Following are the API attributes:

a) URL: https://onesocial.dyndns.org/api/v1/setupdates

b) Request Parameters:

a. User ID – OneSocial user ID

curl -k "https://onesocial.dyndns.org/api/v1/setupdates" -d
 "userid=master&pwd=master&status=Example Status Update"

38

b. Password – The password of the OneSocial user

c. Status ID – The ID of the status message for which the comment has to be

applied

d. Comment – The comment to be updated in both Facebook and Twitter

c) Request Method: POST

d) Response data: On success, the ID of the status is returned. In the event of a failure,

appropriate http code and an associated error message is returned.

For the SetComments functionality the sample curl command would look like:

The above set of parameters used look similar to SetUpdates API except for the additional

information such as the status-id and the comment for that particular status. This comment

sent to OneSocial, identifies the application type for the status and updates the comment in

the appropriate social network.

3) Get Updates: This API allows an external developer to read both the Facebook and

Twitter stream in a single feed. The feed will also be threaded appropriately in the correct

reverse order of time. Following are the API attributes:

a) URL: https://onesocial.dyndns.org/api/v1/getupdates

b) Request Parameters:

a. User ID – OneSocial user ID

curl -k "https://onesocial.dyndns.org/api/v1/setupdates" -d
"userid=master&pwd=master&statusID=100001530595145_15804212
7570475&comment=Response thru API"

39

b. Password – The password of the OneSocial user

c) Request Method: POST

d) Response data: On success, the combined stream of Facebook and Twitter is

returned. In the event of a failure, appropriate http code and an associated error

message is returned.

To do a curl on the Get Updates API the following command is used.

Code Snippet

Following are the rewrite rules set in apache to support these REST APIs:

1. RewriteRule ^/api/v1/getupdates /Main.php?format=xml

2. RewriteRule ^/api/v1/setupdates /Main.php?format=xml

if ($xml) {
 print "<message>";
 if (isset($oneResponse['id'])) {
 print "<id><![CDATA[{$oneResponse['id']}]]></id>";
}
 print "";
 print "<user><![CDATA[{$oneResponse['user']}]]></user>";
 print "<text><![CDATA[{$oneResponse['text']}]]></text>";
 if ($oneResponse['app'] == Constants::FACEBOOK_APP_ID) {
 print "<app>Facebook</app>";
 } else {
 print "<app>Twitter</app>";
 }
} else {
 print "<tr><td valign='top'><img height='50px' width='50px' align='top'
src='" . $oneResponse['image'] . "'/></td>";
 print "<td colspan='2' valign='top'>" . $oneResponse['user'] .
" " . $oneResponse['text'] . "
";
}

curl -k "https://onesocial.dyndns.org/api/v1/getupdates" -d
"userid=master&pwd=master"

40

9. Test Cases

9.1 Unit Testing

 Unit testing was done on the code using different inputs, which validated the code.

This will be briefed in the following sections. The code is written in a modular fashion;

hence each function was individually tested and combined them and tested as a whole. Login

and user authentication testing was one of the modules that were tested. PHP test scripts

that fed different inputs like proper user credentials and also incorrect user name and

password generated output and feedback messages. Users were notified while creating a

login for OneSocial if a user id already exists with the same name. Users were also notified if

they tried to login with an incorrect user-name or password.

9.2 API Testing

 This project utilized a lot of Facebook and Twitter open source APIs. All the APIs

used were first tested with curl commands and small php scripts to ensure their validity.

These APIs are used by Facebook developers around the world who might attach the

Facebook feeds to their website homepages. Facebook and Twitter constantly keep updating

some of the API formats or the structure of the data returned by these APIs. For example,

Facebook had changed its API from REST to Graph APIs. This greatly improved the

performance of the code and helped while integrating with the Twitter API. Twitter, on the

other hand, had changed the structure of the data returned by the API. The json structure

had an element tag named “id” and “in_reply_to_status_id” which were used for the status

id and to mention the id of the status to which it is in reply to. Twitter recently changed the

tags to “id_str” and “in_reply_to_status_id_str” to expand the ids to the large number of

41

user load. This change could break the code hence PHP scripts were used to test the APIs

every time they curl and changes need to be made based the API modifications.

 If Facebook or Twitter is down, OneSocial should not face the same fate. Hence

while curling each API a timeout of specific number of seconds is maintained and hence if

either of the sites are down, OneSocial does not wait and continues retrieving feeds from the

other one. The timeout seconds also depend on the API that needs to be curled. For a read

stream the timeout is 3 seconds and for an update stream it is 2 seconds. For showing the

login url of Facebook and Twitter the timeout is just 500 milli seconds.

9.3 Usability Testing

 Since OneSocial is a website, it requires a good amount of usability testing. Many

aspects that are familiar to the user were utilized while designing the website having Login

page and Registration page similar to other websites and displaying the messages and

comments similar to Facebook. Images and designing was custom done using Photoshop

and Microsoft Paint. Further, the website was compared with Threadsy, a competitor to

analyze its effectiveness and the performance. A group of 5 users was picked with varying

age, sex, computer knowledge, and social networking interests and was asked to perform 3

different tasks to analyze the usability and user performance testing of OneSocial when

compared to Threadsy.

 First, the users were asked to search for a particular message and comment from

Facebook and Twitter and via Threadsy and OneSocial. The users were able to locate the

messages within 2 seconds as shown in the below chart. It was the same time taken by both

Threadsy and OneSocial.

42

 Next, the users were asked to post the same message to Facebook and Twitter using both

Threadsy and OneSocial. Users had to repeat the message for Facebook and Twitter and

ended up typing the same message twice while using Threadsy. Users just had to type the

message once in the case of OneSocial. This can be noticed in the chart where there is a

considerable difference between the performance of OneSocial and Threadsy.

Thirdly, users were asked to read the status and its comments they updated

previously to Facebook and Twitter. While using Threadsy, users had to move back and

forth to read the status and comments, as they were not threaded together as the same

message, which was possible in OneSocial. As seen in the above chart OneSocial had

performed the threading in 4 to 5 seconds whereas for Threadsy it was around a minute.

43

10. Conclusion

While Facebook and Twitter have changed the lives of millions of users and how to

share social information in the Internet, people still find it hard to manage these different

social networks and stay up-to-date with their friends in different networks. Bing Social and

threadsy.com were able to combine the feeds from Facebook and Twitter. However, they

lacked various other features that OneSocial supports to address the issue of maintaining

multiple networks. OneSocial was able to fetch feeds from both Facebook and Twitter and,

more importantly, combines and threads these two feeds together, which enables users to

maintain context in all conversations and eventually give a better social networking

experience. Any updates from OneSocial were also able to successfully update in both

Facebook and Twitter.

The published REST APIs were tested for various user accounts and were seen to

return the expected combined threaded views of the streams. One Social was tested in

various browsers such as Internet Explorer, Safari, Firefox and Chrome to find that all its

CSS and Javascript were working as expected. Both the website and the REST APIs were

tested when Twitter was slow and completely down, and the requests timed-out as expected

and made sure that Twitter did not taken OneSocial down along with it.

A group of 5 students from SJSU was chosen to test One Social. Based on their

usage patterns, it was found that they were able to manage and stay up-to-date with their

friends by using One Social.

44

APPENDIX

Login Page of OneSocial

Create a New User

45

Login with the User id and Password

Link OneSocial Account with Facebook Account

46

Login to Facebook

Link OneSocial Account with twitter Account

47

Login to Twitter account

Feeds from Facebook and Twitter threaded together

48

Publishing REST API

Curl – Get Updates from both Facebook and Twitter

Curl – Set status to both Facebook and Twitter

49

Curl – Set status to both Facebook and Twitter (to the above status)

50

51

References

[1] "Model-View-Controller". In Wikipedia. Retrieved November 29, 2010 from

http://en.wikipedia.org/wiki/Model-View-Controller

[2] Facebook Developers. 2010. 29 November 2010. <http://developers.facebook.com/>

[3] Harris, Matt. "Twitter API Wikis/FrontPage". Ed. Harris, Matt. 24 Aug. 2010.

<http://apiwiki.twitter.com/w/page/22554648/FrontPage>

[4] Graph API. 2010. <http://developers.facebook.com/docs/api>

[5] Twitter API Documentation. 2010. <http://dev.twitter.com/doc>

[6] Crum, Chris. "Bing iPhone App Upgraded with Social Search Results. Facebook and

Twitter Friends in Results". June 22, 2010.

<http://www.webpronews.com/topnews/2010/06/22/bing-iphone-app-upgraded-with-

social-search-results>

[7] Threadsy. 2010. <http://www.threadsy.com/>

[8] Facebook. 2010. <http://www.facebook.com/>

[9] Twitter. 2010. <http://www.twitter.com/>

[10] Reuters 2010.

<http://www.reuters.com/article/idUSTRE52A6E420090311?feedType=RSS&feedName

=internetNews>

[11] Marketing Charts 2009. <http://www.marketingcharts.com/direct/social-network-

traffic-surpasses-web-based-emails-in-uk-2333/>

[12] Sync blog 2009. <http://www.sync-blog.com/sync/2010/07/is-email-on-its-way-

out.html>

[13] Wikipedia 2010. <http://en.wikipedia.org/wiki/Social_network_service>

52

[14] Facebook 2010. <http://www.facebook.com/press/info.php?statistics>

[15] Techcrunch 2010. <http://techcrunch.com/2010/06/08/twitter-190-million-users/>

[16] Digital Network 2010.

<http://digitalgoesinternational.wordpress.com/2010/07/07/social-media-in-spain-72-of-

the-youth-use-more-than-one-social-network/>

