My Understanding of DR. Pollett's Search Engine Code

By Priya Gangaraju 02/10/2010

Configuration - Crawling

- Search Depth : 10
- Maximum URLs : 1000000
- Maximum links per page : 50
- Indexed file types: html, htm, jsp, cgi, shtml, php, txt

Configuration – Ranking & Searching

• Page Rank Rounds : 15

• Random surfer Alpha : .85

• Results per page : 15

Database architecture

- Consists of 5 tables
 - adjacency_matrix (ID1, ID2)
 - crawl_item (ID, URL, LINK_WORDS, PAGE_TITLE, DESCRIPTION)
 - id_item (ID, PAGE_RANK , NUM_LINKS, ROUND)
 - robot_check (URL, PATH, HAD_ROBOT_TEXT)
 - to_be_crawled (URL , DEPTH, REFERRING_ID, LINK_WORDS_REFERRER)

Crawling

- 1. Creates all the required tables for the database.
 - ✓ to_be_crawled, robots_check, adjacency_matrix, crawl_item.
- 2. Adds the seed-sites to the to_be_crawled table.
 - ✓ from seedsites.php
- 3. Gets a possible crawl page from to_be_crawled, check for robot.txt file, if its okay process for summary data.
 - Deletes the selected page from to_be_crawled, extracts summary data using XPath, canonicalizes urls.
- 4. Updates crawl_item and adjacency_matrix.

Ranking – Pagerank algorithm

- 1. Converts adjacency matrix into a stochastic matrix S.
- 2. Finds a vector v such that $S^iv = S^{(i+1)}v$.
- 3. Adjustments:
 - Dangling nodes nodes with no outgoing links. Assumes such nodes are connected with every other node on the web by a probability 1/total number of web-sites(S')
 - ii. Strongly connected components Random surfer adjustment.

G= α S'+ (1- α)H/total number of websites , where H is the all 1 matrix.

Ranking

- Creates id_item table with page rank for each page as 1/total number of websites.
- Gets the sum of Page ranks of the dangling nodes.
- Adds (dangling nodes' page rank sum/total number of websites) to the page rank of each page.
- For random surfer correction, gets the sum of the page ranks of each page and update page rank using the formula

 $G=\alpha S' + (1-\alpha)H/total$ number of websites

o Iterates this for 15 times.