
i

An Online Version Of

Hyperlink-Induced Topic Search (HITS) Algorithm

A Writing Project Report

Presented to

The Faculty of the Department of Computer Science

San José State University

In Partial Fulfillment

of the Requirements for the Degree

Master of Science

by

Amith Kollam Chandranna

December 2010

ii

© 2010

Amith Kollam Chandranna

ALL RIGHTS RESERVED

iii

SAN JOSÉ STATE UNIVERSITY

The Undersigned Writing Project Committee Approves the Writing Project Titled

AN ONLINE VERSION OF

HYPERLINK-INDUCED TOPIC SEARCH (HITS) ALGORITHM

by

Amith Kollam Chandranna

APPROVED FOR THE DEPARTMENT OF COMPUTER SCIENCE

Dr. Chris Pollett, Department of Computer Science 12/16/2010

Dr. Mark Stamp, Department of Computer Science 12/16/2010

Dr. Tsau Young Lin, Department of Computer Science 12/16/2010

iv

ABSTRACT

AN ONLINE VERSION OF HYPERLINK-INDUCED TOPIC SEARCH (HITS) ALGORITHM

by Amith Kollam Chandranna

Generally, search engines perform the ranking of web pages in an offline mode, which is

after the web pages have been retrieved and stored in the database. The existing “HITS algorithm”

(Kleinberg, 1996) operates in an offline mode to perform page rank calculation. In this project,

we have implemented an online mode of page ranking for this algorithm. This will improve the

overall performance of the Search Engine.

This report describes the approach used to implement and test this algorithm. Comparison

results performed against other existing search engines are also presented in this report. This is

helpful in describing the efficiency of implemented algorithm.

v

ACKNOWLEDGEMENTS

I would like to thank Dr. Chris Pollett for his excellent guidance throughout this project work and my

committee members, Dr. Mark Stamp and Dr. Tsau Young Lin, for their time and effort. Also, a

special thanks to my family and friends for their support.

vi

Table of Contents

1. Introduction ...7
2. PageRank Algorithm ...4

3. Hyperlink-Induced Topic Search (HITS) algorithm ..5
3.1 Implementation details of the existing HITS algorithm ..5

3.2 Eigenvalues and Eigenvectors ..6
3.3 Deliverable 1 ...6

4. Yioop! Search Engine ..8
4.1 System Architecture ...8

4.2 Deliverable 2 ... 16
5. Online version of HITS Algorithm ... 22

5.1 Design .. 22
5.2 Priority Queues Normalization .. 25

5.3 Convergence ... 26
5.4 Pseudo code for implementing “online” HITS algorithm ... 28

5.5 Implementation... 29
6. Comparison results .. 35

7. Conclusion .. 42
References.. 43

vii

List of Figures

Figure 1: A simulation of original HITS algorithm ..7

Figure 2: Directory structure of Yioop! Search Engine ..8
Figure 3: Yioop! Search Page .. 16

Figure 4: Yioop Admin Crawl Page .. 17
Figure 5: Yioop! Seed Sites ... 17

Figure 6: Yioop! Previous Crawls ... 17
Figure 7: Yioop! Initiate new crawl ... 18

Figure 8: Yioop! Crawl Status ... 18
Figure 9: Yioop! Change Password ... 19

Figure 10: Yioop Manage Users .. 19
Figure 11: Yioop! Manage Roles ... 19

Figure 12: Yioop! Configure page ... 20
Figure 13: Yioop! Locale page .. 20

Figure 14: Yioop! Settings page .. 21
Figure 15: Overview of Queue Server and Fetcher process .. 24

Figure 16: Convergence of OPIC .. 26
Figure 17: Displaying the Nutch help file .. 31

Figure 18: Nutch Crawl Options .. 32
Figure 19: Nutch Home Page .. 33

Figure 20: Results from “Online HITS based Search Engine”.. 33
Figure 21: Results from Yioop! v0.42 ... 34
Figure 22: Results from Nutch v1.0 ... 34

Figure 23: trec_eval Help Output .. 36
Figure 24: Graphical Comparison Chart .. 42

List of Tables

Table 1: Seed sites... 35
Table 2: Relevance Judgements (manually ranked results) .. 38

Table 3: Comparison Chart 1 ... 39
Table 4: Comparison Chart 2 ... 40

1. Introduction

Hyperlink-Induced Topic Search (HITS) algorithm (Kleinberg, 1996) is one of the page

ranking algorithms used by search engines. This was developed by Jon Kleinberg, a Computer

2

Science Professor at Cornell University. This algorithm calculates the ranking of web pages in an

offline mode. In this project, we have implemented an online ranking algorithm which

approximates HITS.

Search engines perform their operations in two phases. In the first phase, this algorithm

performs a crawl to gather all the web pages and stores these crawled web pages in the file

system. The particular format of storing these web pages differs from one search engine to

another. However, these are stored in a compressed format and are indexed for faster retrieval.

The next phase involves parsing the content of the stored web pages. This step is essential in

order to determine the relative ranking for each page. Ranking the web pages is a highly complex

process. Some of the factors that make this complex are the following: billions of web pages,

intricate connections among these web pages, different formats, different languages, etc. Apart

from these, different search technologies have their own pros and cons. This in turn complicates

the functioning of a particular search engine. The HITS algorithm generates ranking for web

pages after they have been crawled and stored in a local database. This is technically described

as generating the ranking in an “offline” mode. In this project, we have implemented the online

rank calculation mode. Page crawl and ranking of pages can be done simultaneously, but of

course we need to start with the page crawl first. This will certainly enhance the efficiency and

reduce the overall execution time required in the search process.

The scope of the project is to implement an online version of the HITS-based web ranking

algorithm. Hence, the existing HITS algorithm has been modified to provide this new

functionality.

 In Section 2, how the Hyperlink-Induced Topic Search (HITS) algorithm works will be

discussed. Section 3 describes an existing search engine, Yioop! (Pollett, 2009). Yioop! is

3

a GPLv3, open-source, PHP search engine. This project uses Yioop! search engine to implement

our version of HITS algorithm. Yioop! is being developed by Dr. Chris Pollett. Section 4

describes the implementation details of modified HITS algorithm inside Yioop! Search engine.

In Section 5, a comparison of results for our newly implemented search algorithm is compared

against existing search engines. Finally, the conclusion provides the strengths and weaknesses of

the implemented search algorithm.

http://gplv3.fsf.org/

4

2. PageRank Algorithm

This section describes the working of PageRank Algorithm. PageRank is the link analysis

algorithm used by Google search engine. The below steps describe the pseudo code of PageRank

algorithm:

Step 1: Download the web (this is the offline part)

Step 2: Assign each downloaded page an initial page rank of 1/(number of pages downloaded).

Step 3: Compute rounds until the sum of the differences squared of ranks between rounds is

small. Do:

Step 3a: Set the page rank of a page u for round (i+1) to be

 where

L is the number of outlinks from node v, Bu is the set of nodes adjacent to u, and

PRi(v) is the page rank of v in the ith round.

Step 4: Use the PRi's of the last round calculated as the final page rank.

PageRank algorithm calculates the ranks of the web pages iteratively until desired level of

convergence is achieved. The computation method used to calculate ranks is called the “Power

method”. PageRank was one of the earliest search engine algorithms introduced on the World

Wide Web. Analyzing the working details of this search algorithm is essential in implementing

our online HITS algorithm

5

3. Hyperlink-Induced Topic Search (HITS) algorithm

Hyperlink-Induced Topic Search (HITS) algorithm is one of the ranking algorithms for web

page used by search engines. It was developed by Jon Kleinberg, a Computer Science Professor

at Cornell University. This algorithm calculates the ranking of web pages in an offline mode.

Teoma (“Teoma Web Search”, n.d.) is one such search engine that uses HITS algorithm to rank

web pages. Teoma is now acquired by Ask.com.

3.1 Implementation details of the existing HITS algorithm

The basic idea behind this algorithm is that all the web pages on the internet are categorized

into two sets called Hubs and Authorities. Hubs define the web pages that have out going links to

other important web pages and Authorities define the web pages that have incoming links from

other important web pages.

Recursively, the algorithm iterates over these two sets to generate a hub and an authority

value for each page. Depending on these values, the importance of web pages for a particular

query are calculated and displayed to the user. The ranking module of HITS calculates the rank

in an offline mode after the web pages have been downloaded and stored in the local database. In

this project, we have implemented the online version of this algorithm.

The pseudo code for HITS algorithm (“Google’s PageRank and Beyond”, 2006) can be

described as:

Initialize y
(0)

 = e. where e is the column vector of all ones.

Below is the iteration that is carried until convergence,

Step 1: x
(k)

 = L
T
y

(k-1)

Step 2: y
(k)

 = Lx
(k)

Step3: k = k + 1

6

Step 4: Normalize x
(k)

 and y
(k)

The equations in step 1 and step 2 can be simplified to

x
(k)

 = L
T
Lx

(k-1)
 Equation 1

y
(k)

 = LL
T
y

(k-1)
 Equation 2

The above two equations define the iterative power method for computing the dominant

eigenvector for the matrices L
T
L and LL

T
. L

T
L is called the authority matrix and LL

T
 is known

as hub matrix. Computing, the authority vector x and the hub vector y can be viewed as finding

the dominant right-hand eigenvectors of L
T
L and LL

T
 respectively.

3.2 Eigenvalues and Eigenvectors

For a given matrix A, the scalars λ and the vectors xn×1 ≠ 0 satisfying Ax = λx are the

respective eigenvalues and eigenvectors for A. The eigenvalues of An×n are the roots of the

characteristic polynomial p(λ) = det(A – λI), where det(*) denotes the determinant and I is the

identity matrix. The degree of p(λ) is n and A has n eigenvalues, but some may be complex

numbers. The calculation of eigenvalues and eigenvectors is an essential part of algorithms like

PageRank and HITS.

3.3 Deliverable 1

The first phase of this project involved implementing the existing HITS algorithm in PHP. A

static block of 10 x 10 nodes were considered for implementing this algorithm. Even though this

implementation was far from representing the actual “world wide web”, it gave a framework for

developing the HITS algorithm. The idea was to then extend this to create the final

7

implementation of HITS algorithm. This final version will be implemented using Yioop! Search

Engine (to be discussed in the next section)

Figure 1: A simulation of original HITS algorithm
Source: HITS (n.d.)

http://localhost/hits.html

8

4. Yioop! Search Engine

Yioop! search engine (Pollett, 2009) is a GPLv3, open-source, PHP search engine. This is

developed by Dr. Chris Pollett. Since this search engine is based on open source licensing it was

favorable to implement our version of modified HITS algorithm

4.1 System Architecture

The Yioop! Search Engine is based on the Model-View-Controller (MVC) pattern. It uses a

variation of the Online Page Importance Calculation (OPIC) Algorithm (“Adaptive On-Line

Page Importance Computation”, 2003) to crawl and rank pages. It is written in PHP and the

system requirements for its execution are mentioned below:

1. A web server

2. PHP 5.3 or better

3. Curl libraries for downloading web pages.

To be a little more specific Yioop! has been tested with Apache 2.2; however, it should work

with other web servers. For PHP, you need a build of PHP that incorporates multi-byte string

(mb_ prefixed) functions, Curl, Sqlite, the GD graphics library and the command-line interface.

Below is the directory structure of Yioop! Source code:

Figure 2: Directory structure of Yioop! Search Engine
Source: “SeekQuarry” (2009)
http://www.seekquarry.com/

http://gplv3.fsf.org/

9

The scripts “queue_server.php” and “fetcher.php” (located under “bin” directory) are

executed from the command-line. Yioop! offers the flexibility to run multiple fetcher process.

They can also be configured to run from different machines. This allows the crawling process to

fetch more web pages in a short period of time.

In order to successfully implement the changes to the ranking algorithm in Yioop! v0.42, it is

necessary to under its structure and internal workings. The below details describe the directory

structure and the source code associated with Yioop! v0.42. The Yioop search engine consists of

three main scripts (“Yioop! Documentation”, n.d.):

bin/fetcher.php

Used to download batches of urls provided the queue_server.

bin/queue_server.php

This maintains a queue of urls that are going to be scheduled to be seen. It also keeps

track of what has been seen and robots.txt info. Its last responsibility is to create the

index_archive that is used by the search front end.

index.php

This web page acts as the search engine web page. It is also used to handle message

passing between the fetchers (multiple machines can act as fetchers) and the queue_server.

The file index.php is essentially used when you browse to an installation of a Yioop!

website. The description of how to use a Yioop! web site is given in the sections starting

from the Yioop! “User Interface section”. The files fetcher.php and queue_server.php are

only connected with web “crawling”. If one already has a stored crawl of the web, then you

no longer need to run or use these programs. For instance, you might obtain a crawl of the

web on your home machine and upload the crawl to your ISP hosting your website with an

10

instance of Yioop! running on it. This website could serve search results without making use

of either fetcher.php or queue_server.php. To perform a web crawl you need to use both of

these programs however as well as the Yioop! web site. This is explained in detail in the

section Managing Crawls.

The Yioop! folder itself consists of several files and sub-folders. The file index.php as

mentioned above is the main entry point into the Yioop! web application. yioopbar.xml is the

xml file specifying how to access Yioop as an Open Search Plugin. favicon.ico is used to

display the little icon in the url bar of a browser when someone browses to the Yioop! site. A

URL to another file bot.php is given by the Yioop! robot as it crawls websites so that website

owners can find out information about who is crawling their sites. Here is a rough guide to

what the Yioop! folder's sub-folder contain:

bin

This folder is intended to hold command line scripts which are used in conjunction with

Yioop!

configs

This folder contains configuration files. You will probably not need to edit any of these

files directly as you can set the most common configuration settings from with the admin

panel of Yioop! The file config.php controls a number of parameters about how data is stored,

how and how often the queue_server and fetchers communicate, and which file types are

supported by Yioop! createdb.php can be used to create a bare instance of the Yioop!

database with a root admin user having no password. This script is not strictly necessary as

the database should be creatable via the admin panel. The file default_crawl.ini is copied to

WORK_DIRECTORY after you set this folder in the admin/configure panel. There it is

11

renamed as crawl.ini and serves as the initial set of sites to crawl until you decide to change

these.

controllers

The “controllers” folder contains all the controller classes used by the web component of

the Yioop! search engine. Most requests coming into Yioop! go through the top level

index.php file. The query string then says who is responsible for handling the request. In this

query string there is a part which reads c= ... This says which controller should be used. The

controller uses the rest of the query string such as the arg= variable to determine which data

must be retrieved from which models, and finally which view with what elements on it

should be displayed back to the user.

css

This folder contains the style sheets used to control how web page tags should look for

the Yioop! site when rendered in a browser

data

This folder contains a default sqlite database for a new Yioop! installation. Whenever the

WORK_DIRECTORY is changed it is this database which is initially copied into the

WORK_DIRECTORY to serve as the database of allowed users for the Yioop! system.

lib

This folder is short for library. It contains all the common classes for things like indexing,

storing data to files, parsing urls, etc. lib contains two main subfolders: processors and

index_bundle_iterators. The processors folder contains processors to extract page summaries

for a variety of different mimetypes. The index_bundle_iterator folder contains a variety of

12

iterators useful for iterating over lists of documents which might be returned during a query

to the search engine.

locale

This folder contains the default locale data which comes with the Yioop! system. A

locale encapsulates data associated with a language and region. A locale is specified by

an IETF language tag. So for instance, within the locale folder there is a folder en-US for the

locale consisting of English in the United States. Within a given locale tag folder there is a

file configure.ini which contains translations of string ids to string in the language of the

locale. This approach is the same idea as used in Gettext .po files. Yioop's approach does not

require a compilation step or a restart of the web server for translations to appear. On the

other hand, it is slower than the Gettext approach, but this could be easily mitigated using a

memory cache such as memcached or apc. Besides the file configure.ini, there is a

statistics.txt file which has info about what percentage of the id's have been translated.

Finally, although not used in the default Yioop! system. It is possible for a given locale folder

to have a sub-folder pages with translation of static pages used by a Yioop! installation.

models

This folder contains the subclasses of Model used by Yioop! Models are used to

encapsulate access to secondary storage. i.e.,, accesses to databases or the file system. They

are responsible for marshalling/de-marshalling objects that might be stored in more than one

table or across several files. The models folder has within it a data sources folder. A data

source is an abstraction layer for the particular file system and database system that is being

used by a Yioop! installation. At present, data sources have been defined for sqlite, sqlite3,

and mysql databases.

13

resources

This is used to store binary resources such as graphics, video, or audio. For now, just

stores the Yioop! logo.

scripts

This folder contains the Javascript files used by Yioop!

tests

This folder contains UnitTest's for various lib components. Yioop! comes with its own

minimal UnitTest class which is defined in the lib/unit_test.php.

views

This folder contains View subclasses as well as folders for elements, helpers, and layouts.

A View is responsible for taking data given to it by a controller and formatting it in a suitable

way. Most Views output a web page; however, some of the views responsible for

communication between the fetchers and the queue_server output serialized objects. The

elements folder contains Element classes which are typically used to output portions of web

pages. For example, the html that allows one to choose an Activity in the Admin portion of

the website is rendered by an ActivityElement. The “helpers” folder contains Helper

subclasses. A Helper is used to automate the task of outputting certain kinds of web tags. For

instance, the OptionsHelper when given an array can be used to output select tags and option

tags using data from the array. The layout folder contains Layout subclasses. A Layout

encapsulates the header and footer information for the kind of a document a View lives on.

For example, web pages on the Yioop! site all use the WebLayout class as their Layout. The

WebLayout class has a render method for outputting the doctype, open html tag, head of the

14

document including links for style sheets, etc. This method then calls the render methods of

the current View, and finally outputs scripts and the necessary closing document tags.

In addition, to the Yioop! application folder, Yioop! makes use of a WORK

DIRECTORY. The location of this directory is set during the configuration of a Yioop!

installation. Yioop! stores crawls, and other data local to a particular Yioop! installation in

files and folders in this directory. In the event that you upgrade your Yioop! installation you

should only need to replace the Yioop! application folder and in the configuration process of

Yioop! tell it where your WORK DIRECTORY is. Of course, it is always recommended to

back up one's data before performing an upgrade. Within the WORK DIRECTORY, Yioop!

stores three main files: profile.php, crawl.ini, and bot.txt. Here is a rough guide to what the

WORK DIRECTORY's sub-folder contain:

cache

The directory is used to store folders of the form ArchiveUNIX_TIMESTAMP,

IndexDataUNIX_TIMESTAMP, and QueueBundleUNIX_TIMESTAMP.

ArchiveUNIX_TIMESTAMP folders hold complete caches of web pages that have been

crawled. These folders will appear on machines which are running fetcher.php.

IndexDataUNIX_TIMESTAMP folders hold a word document index as well as summaries of

pages crawled. A folder of this type is needed by the web app portion of Yioop! to serve

search results. These folders can be moved from machine to whichever machine you want to

server results from. QueueBundleUNIX_TIMESTAMP folders are used to maintain the

priority queue during the crawling process. The queue_server.php program is responsible for

creating both IndexDataUNIX_TIMESTAMP and QueueBundleUNIX_TIMESTAMP

folders.

15

data

If a sqlite or sqlite3 (rather than say MySQL) database is being used then a

seek_quarry.db file is stored in the data folder. In Yioop!, the database is used to manage

users, roles, locales, and crawls. Data for crawls themselves are NOT stored in the database.

log

When the fetcher and queue_server are run as daemon processes log messages are written

to log files in this folder. Log rotation is also done. These log files can be opened in a text

editor or console app.

schedules

This folder has three kinds of subfolders: IndexDataUNIX_TIMESTAMP,

RobotDataUNIX_TIMESTAMP, and ScheduleDataUNIX_TIMESTAMP. When a fetcher

communicates with the web app to say what it has just crawled, the web app writes data into

these folders to be processed later by the queue_server. The UNIX_TIMESTAMP is used to

keep track of which crawl the data is destined for. IndexData folders contain mini-inverted

indexes (word document records) which are to be added to the global inverted index for that

crawl. RobotData folders contain information that came from robots.txt files. Finally,

ScheduleData folders have data about found urls that could eventually be scheduled to crawl.

Within each of these three kinds of folders there are typical many sub-folders, one for each

day data arrived, and within these subfolders there are files containing the respective kinds of

data.

It is necessary to understand the documentation related to Yioop! 0.42. This is because in

order to implement our version of HITS algorithm, the internal workings of Yioop! should be

clear. This includes the directory structure, the implementation of the priority queues, the

16

structure of the inverted index, graphical user interface created by the “views”, the workings of

the search interface, etc.

4.2 Deliverable 2

This deliverable involved setting up the environment to execute Yioop! v0.42. The following

are the system requirements necessary to setup Yioop:

1. XAMPP (Windows version 1.7.3)

2. Windows 7 (x64)

XAMPP (“apache friends – xampp”, n.d.) includes Apache web server, PHP, Curl modules

and other modules that are essential for the execution of Yioop!. XAMPP comes bundled with all

these components in one package, so this simplifies the process of installation and configuration

of all the components.

The below image shows the search page of the Yioop! search engine:

Figure 3: Yioop! Search Page

Once we login into the Yioop! installation, we can view the admin crawl page. This page will

be similar to the one displayed below:

17

 Figure 4: Yioop Admin Crawl Page

The seed sites used to initiate the crawl are configured by clicking on the “Options” (as observed

in Figure 4). This web page is as shown below:

 Figure 5: Yioop! Seed Sites

The previous crawls performed in Yioop! are shown in the admin page. They are listed as shown

below:

 Figure 6: Yioop! Previous Crawls

18

We can initiate a new crawl by typing the name for the crawl in the admin crawl page, as shown

below:

 Figure 7: Yioop! Initiate new crawl

Once a crawl has been initiated, we can see the progress of the crawl on the same admin page.

This is as shown below:

 Figure 8: Yioop! Crawl Status

The admin page allows setting new password for the current account. This page is as shown

below:

19

Figure 9: Yioop! Change Password

Also, new users and roles can be added by visiting the pages displayed below:

 Figure 10: Yioop Manage Users

 Figure 11: Yioop! Manage Roles

20

The “Configure” page describes the main properties of the search engine. The database

configurations, queue server settings and the robot details are set on this page. This page is as

shown below:

 Figure 12: Yioop! Configure page

The locale settings describe the location and language settings. These are essential for the

normal functioning of a search engine. This page is displayed as shown below:

 Figure 13: Yioop! Locale page

21

The Yioop! Settings page describes the configurations to be used during the search process.

These include the number of results to be displayed per page, language to be used and the search

index to be used. The web page for this displayed as shown below:

Figure 14: Yioop! Settings page

Tests were carried out to make sure that the installation of Yioop! is functioning fine by

doing crawls, verifying that the index and queue archive bundles are stored in appropriate

directories and finally performing searches for various query terms. All these tests confirmed that

the installation of Yioop! v0.42 is working successfully. Now, the next phase was to extend the

“Deliverable 1” implementation into the framework of Yioop! mentioned above. This will be

discussed in more detail in section 4.

22

5. Online version of HITS Algorithm

The implementation produced as part of “Deliverable 1” helped in understanding the

working of HITS algorithm. This implementation used a graph of 10 x10 nodes to simulate a

static network. This helped to create a basic framework that can be used to implement the final

modified HITS algorithm.

5.1 Design

The structure of the existing Yioop! v0.42 search engine was thoroughly analyzed. This

understanding was crucial for the final implementation of our algorithm. The findings related to

these observations are:

The current version of Yioop! uses “Online Page Importance Calculation” (OPIC) algorithm

for crawling the pages. It uses a single “priority” queue to maintain the list of urls to be crawled

next. Once, a particular page has been crawled, it is marked as “seen” and removed from the

queue.

The basic idea in an OPIC algorithm is to start the crawl with initial “cash” distributed to all

the seed sites. In each crawl session, the site with the highest cash is crawled. Once a site is

crawled, all its cash is equally distributed to its children (i.e., outgoing links). This process

continues until the crawling process is terminated. The sites are then sorted in the descending

order of the cash accumulated by them. This gives the ranking for each site. The search module

then presents the “search results” to the user’s queries based on these rankings.

The crawled sites are stored in the “index” bundle on the file system. This is later used to

retrieve results during the search process. The “priority” queue is stored in-memory and hence

there is no disk access required to gather the site’s “cash” during the crawl. The “admin” web

page controls the various configurations related to each crawl.

23

Once a crawled is completed successfully, query terms can be searched on the “search” web

page. The search results, together with rankings and other metrics are then displayed to the user.

The above listed observations helped in deciding which components/scripts of the Yioop! v0.42

had to be modified in order to implement the online version of HITS algorithm. These

observations further helped to create the design specifications and they can be listed as follows:

The Yioop! v0.42 uses OPIC algorithm to crawl web pages. This has to be replaced with an

online version of HITS algorithm. The OPIC algorithm in Yioop! uses one “priority” queue to

hold the urls that are to be crawled next. But HITS algorithm produces two rankings for each

web page i.e., an authority and a hub rank. Hence, we have to implement two queues for

gathering both authority and hub ranks for each web page. Even though we have to implement

two priority queues, the under-lying functions used to create these queues remain the same.

These queues can be conveniently called the “authority” and “hub” queues.

In the initial phase, we store the seed sites into both these queues. Each of them is assigned

an initial weight of one. Then, the site (taken from the “hub” queue) with highest cash is crawled.

As all the sites have an initial weight of one, the first site in the queue can be considered as the

one having the highest cash.

Once a particular site (from “hub” queue) has been crawled, its weight will be divided

equally among its outgoing links. This cash distribution process will be handled by the

“fetcher.php” script. Now, the weight of the site (whose cash we just distributed to its children),

will be reset to zero. Please note, that the cash will be distributed to the outgoing links which

reside in the “authority” queue. This process is depicted more clearly in the below diagram:

24

Figure 15: Overview of Queue Server and Fetcher process

The above diagram depicts “one” iteration of the crawling process. This process is repeated

continuously until a sufficient number of web pages are crawled or until terminated by the user.

This sequence is initiated by the “Produce Fetch Batch” in the Queue server. This “batch” file

contains the list of urls to be downloaded by the Fetcher process. These urls are chosen from the

“hub” queue.

The priority queues i.e., hub and authority queues, are maintained in the Queue Server

process. Once the data sent the Fetcher(s) is received by the Queue Server, it is processed and the

main index and the priority queues are updated accordingly. Queue Server and the Fetcher can be

configured to run on a single host or can be executed on distributed systems. Also, multiple

Fetchers can be configured to run simultaneously. This speeds up the crawling process and

25

increases the overall efficiency of the system. The advantage of this design is that the script

running the Fetcher process needs no modification, as the priority queues are maintained in the

Queue Server.

5.2 Priority Queues Normalization

Normalization is a process which scales up or down the weights of the urls in the priority

queues. The factor by which this normalization process is applied to each urls is decided based

on the overall queue weight. In the current configuration, if the overall queue weight goes below

“MIN_QUEUE_WEIGHT” of 1/100000, then the normalization process is applied to that

particular queue.

The process of normalization followed in Yioop! can be described as follows:

Normalization process (for a particular queue) is initiated if the overall queue weight goes

below “MIN_QUEUE_WEIGHT” of 1/100000.

If the total weight of the queue is greater than zero, the new weight for a given url is

calculated as:

Given: current_url_weight, total_weight and new_total

Where new_total = “NUM_URLS_QUEUE_RAM” (This constant is set in the configuration

file and describes the maximum number of urls that will be held in ram [as opposed to in files] in

the priority queue. Currently, its value is set to “300000”)

New weight of the given url = (new_total * current_url_weight) / total_weight

If the total weight of the queue is less than or equal to 0, the new weight for a given url is

calculated as:

New weight of the given url = (new_total / count), where “count” indicates the total

number of urls existing in the queue.

26

The normalization process is essential for the priority queues. This is because during the

crawl process as new urls are added (and existing weight of the urls are updated) constantly. This

in turn causes the total weight of the queue to exceed/decrease with no limit on upper/lower

bounds. This has two disadvantages: First, as there is no upper/lower bound on the queue weight,

there is a possibility of data overflow. Second, the rate of convergence of the overall algorithm is

unpredictable and would take longer to converge. Hence, the normalization process helps to

overcome both these issues.

5.3 Convergence

In general, the page crawling strategies can be categorized into following three cases

(“Adaptive On-Line Page Importance Computation”, 2003):

1. Random: We choose the next page to crawl randomly with equal probability.

2. Greedy: We read the page with the highest cash.

3. Cycle: We choose some fixed order and use it to cycle around the set of pages.

Below diagram shows the rate of convergence for the “crawl strategies” discussed above:

Figure 16: Convergence of OPIC
Source: Adaptive On-Line Page Importance Computation. (2003)

http://www2003.org/cdrom/papers/refereed/p007/p7-abiteboul-img107.gif

27

The current implementation of Yioop! Search engine (v0.42) uses “greedy” method of

selecting the next web pages for crawling (based on cash). Hence, the rate of convergence is

fastest (according to the results in Figure 4) compared to other crawling strategies.

The original implementation of HITS algorithm (Kleinberg, 1996) involves two main steps

(“Google’s PageRank and Beyond”, 2006): “First, a neighborhood graph N related to the query

terms is built. Second, the authority and hub scores for each page in N are computed. So,

essentially the HITS algorithm iteratively calculates the hub and authority scores using the

Iterative Power Method. It is to be noted that HITS algorithm with normalization always

converges” (“Google’s PageRank and Beyond”, 2006).

Now, our implementation of online HITS algorithm mimics the behavior of OPIC algorithm

in terms of “crawling strategy”. This is because we maintain two priority queues in the Queue

Server i.e., the hub and authority queues. For crawling purposes, we always select the URL with

the highest cash from the hub queue. As this is a “greedy” method of crawling web pages, the

rate of convergence is proved to be the fastest (based on the results in figure 4). The cash

distribution and normalization processes are applied to both the queues in our implementation.

The below points will describe these in more detail (Please refer figure 3):

1. The “Produce Fetch Batch” process selects the urls with the highest cash (from the hub queue)

into a “fetch batch” file. This is requested by one of the fetcher processes through a http

request. Fetcher(s) retrieve the web page content based on this “fetch batch” file.

2. After this, the fetcher(s) processes/parses the web page contents to create a “mini-inverted”

index based on the downloaded web page contents. This is transferred to the Queue Server.

3. The arrival of the “mini-inverted” index (sent by a fetcher) initiates the hub and authority

round (in that order) in the Queue Server.

28

4. In the “Hub” round, the weights of the pages that were provided to the fetcher (as part of the

fetch batch file) are distributed equally to their “outlinks” (in the authority queue) and

weights of the original pages are reset to 0 (in the hub queue).

5. In the “Authority” round, the weights of the pages (highest weights in the authority queue) is

distributed to their “inlinks” in the hub queue.

6. The successful completion of both hub and authority rounds signal the end of one iteration in

the crawling process.

Hence, it can be proved that our implementation of HITS algorithm will always converge (i.e.,

after a fixed number of iterations)

5.4 Pseudo code for implementing “online” HITS algorithm

We can implement the “online” HITS algorithm using an open source engine framework. In

our project, we have used Yioop! 0.42 to implement the algorithm. The below steps are

mentioned with respect to the server process which will coordinate the crawling activities

between the fetchers. In case of Yioop!, the script “queue_server.php” acts as the server process.

Also, no modifications are necessary to the existing fetcher script present as part of Yioop! 0.42.

Step 1: Implement two priority queues sorted in decreasing of their weight values.

Step 2: Initialize, the priority queues with the seed sites (with each one of them assigned a weight

of 1).

Step 3: Pick the top N web urls from the hub priority queue. Then download these “N” web

pages. The same web page might get downloaded more than once (during different iterations).

Urls once added to the queues are never removed, but their weights get updated accordingly (as

mentioned in Steps 4 and 5).

29

Step 4: The weights of the downloaded web pages (retrieved from the hub queue) are equally

distributed to their outgoing links in the authority queue. The weights of the downloaded web

pages are then set to 0 in the hub queue. The urls (present in the set of downloaded pages) which

are not present in both the priority queues are marked as new. These new ulss are then added to

both the queues. The weights of all these newly added urls are set to 0 in both the priority queues.

Step 5: The urls with maximum weight from the authority queue are chosen. This weight is

equally distributed to its incoming links in the hub queue. The weights of all the chosen urls from

the authority queue are then set 0.

Step 6: The hub and the authority priority queues are then normalized.

Step 7: Repeat steps 3 to 6 until terminated by the user.

Step 8: The values present in the authority and hub queues after step 7 represent the authority

and hub ranks respectively.

5.5 Implementation

For testing purposes, we have crawled approximately around 30000 pages. Below are the

screen shots of the test results shown for our implementation of HITS algorithm, Yioop! v0.42

and Nutch v1.0.

We have used the seed sites in all of the cases mentioned below. The below screenshots are

just to provide a high-level view of the testing scenarios carried in our project. Later in this

report, the results from these will be analyzed in more detail. This comparison will give a good

understanding about the efficiency of our current implementation of HITS.

30

All these search engines were implemented on Windows 7 Operating System. The specific

details related to Nutch search engine implementation are provided below (For details related to

Yioop! implementation, please refer to Section 3).

The below code snippets describe some of the modifications carried out.

 In queue_server.php, we need to create a new priority queue to hold the “Authority” web pages.

This is performed by the following piece of code:

$this->web_queueA = new WebQueueBundle(

CRAWL_DIR.'/cache/'.self::queue_base_name.'A'.

 $this->crawl_time, URL_FILTER_SIZE,

 NUM_URLS_QUEUE_RAM, $min_or_max);

where “web_queueA” indicates that it is the “Authority” queue. This is implemented in form of a

queue bundle, which is the data structure provided by the “WebQueueBundle.php”. The other

parameters to this function call include the directory location of the web queue bundle, the time

of the crawl, the URL filter size, the number of maximum urls supported in the priority queue

and the kind of crawling strategy used.

The below code sets appropriate permissions on the queue created above:

$this->db->setWorldPermissionsRecursive(

 CRAWL_DIR.'/cache/'.self::queue_base_name.'A'.$this->crawl_time);

After the priority queue is created successfully, we have the new “Authority” priority queue

ready for use. The operations that can be performed on this priority queue include: adding new

page urls, adjusting the weight of the existing urls, deleting the urls, moving the urls up/down in

the priority queue (based on their ranks), etc.

The config.php controls the various settings of the search engine. In this configuration file,

we can set various parameters like NUM_FETCHERS, NUM_URLS_QUEUE_RAM,

NORMALIZE_FREQUENCY, PAGE_TIMEOUT, MAX_LINKS_PER_PAGE,

31

MAXIMUM_CRAWL_DELAY, etc. The values of these settings control the overall behavior of

search engine.

We have modified “search_view.php” to display appropriate “Authority” and “Hub” ranks

for the displayed results. Also, the results are sorted based on the average of both these ranks.

System requirements of Nutch v1.0

1. Nutch v1.0 installation package

2. Cygwin

3. Apache Tomcat v6.0

Steps for installing Nutch:

1. Unzip the Nutch package to Cygwin home folder.

2. Check if the installation works fine by typing the below command in the Cygwin command-

prompt:

./bin/nutch

Please verify that the below output is displayed.

 Figure 17: Displaying the Nutch help file

3. Set the “CLASSPATH” and “JAVA_HOME” variables appropriately to reflect the path to

Lucene core and Java JDK installations.

32

4. Verify that the above system variables are set correctly by typing this command at the

Cygwin command-prompt:

./bin/nutch crawl

The below output will be displayed if these variables are set correctly:

 Figure 18: Nutch Crawl Options

5. To configure things for intranet crawling you must, create a directory with a flat file of seed

urls. These flat file would contain the seed sites that need to be crawled.

6. Now, you need to edit the conf/crawl-urlfilter.txt. In this file replace “MY.DOMAIN.NAME”

with the name of the domain you wish to crawl.

7. Also, we need to edit conf/nutch-site.xml. Here, we need to set the appropriate values for

properties like “http.agent.name”, “http.agent.description”, “http.agents.robots”, etc.

8. Once, the configuration files are edited, we can initiate the crawl process. We can start the

crawl by typing this command at the Cygwin command-prompt:

bin/nutch crawl urls -dir crawl -depth 3 -topN 50

where dir - specifies the download location. The crawled web page contents are stored to this

location.

depth - indicates the link depth from the root page that should be crawled.

topN - determines the maximum number of pages that will be retrieved at each level up to the

depth.

9. After the “crawl” is done, we can perform search by putting the nutch war file into your

servlet container. The web application finds its indexes in the “crawl” directory, relative to

where you start Tomcat, so use a command like:

33

~/local/tomcat/bin/catalina.sh start

10. Now, the search page can be reached by typing the below url in a browser:

http://localhost:8080/

Below web page should be displayed:

Figure 19: Nutch Home Page

The below screen shots show the search results displayed for a user query “sjsu math”. The

same query was executed across all three search engines.

Figure 20: Results from “Online HITS based Search Engine”

34

Figure 21: Results from Yioop! v0.42

 Figure 22: Results from Nutch v1.0

35

6. Comparison results

The seed sites that were used in the crawl are mentioned below:

1 http://www.sjsu.edu/

2 http://www.physics.sjsu.edu/

3 http://www.cs.sjsu.edu/

4 http://www.sjsu.edu/math/

5 http://www.sjsu.edu/science/

6 http://www.sjsu.edu/academic_programs/

7 http://www.sjsu.edu/colleges_departments/

8 http://www.sjsu.edu/siteindex/

9 http://www.sjsu.edu/resources/links/CampusDirectory/

10 http://www.sjsu.edu/healthscience/

11 http://my.sjsu.edu

12 http://library.sjsu.edu/

13 http://www.cs.sjsu.edu/faculty/pollett/
Table 1: Seed sites

We have used “trec_eval” v8.1 (“Text REtrieval Conference”, n.d.) utility to compare the

search results obtained from our HITS implementation against Yioop! v0.42 and Nutch.

The installation process for generating this binary file is:

1. Download the trec_eval v8.1 source code package from this url:

http://trec.nist.gov/trec_eval/index.html

2. Unzip and untar the package. This creates the “trec_eval.8.1” source directory.

3. Open a Cygwin terminal. Make sure the Cygwin installation contains “gcc” and “make”

utilities. These are required for compiling the “trec_eval” source code.

4. Change directory (i.e., cd) to the root of this source code.

5. Now type the below command at the command-prompt:

Make

6. Once, compilation is successful, the “trec_eval.exe” should be created in the current

directory.

36

7. Verify that the compilation is successful by typing the below command at the command-

prompt:

./trec_eval.exe

The below output should be displayed:

Figure 23: trec_eval Help Output

The format of executing this utility from command-line is:

Usage: trec_eval <trec_rel_file> <trec_top_file>

where “trec_rel_file” contains the relevance judgements, and

“trec_top_file” contains the results that needs to evaluated

So, we have to manually create a list of expected results (for some queries). The results have

to be listed in decreasing order of their ranks. This will be the “relevance judgements file”. The

results returned from each of the search engines (i.e., our implementation of HITS, Yioop v0.42

and Nutch) will be treated as the “trec_top_file”. Please refer to the help file for further details

about the specific format of these input files.

Below is the list of expected results for each query:

Query Documents / URLs (in decreasing order) Rank

sjsu math http://www.sjsu.edu/math/ 1

http://www.sjsu.edu/math/programs/ 2

http://www.sjsu.edu/math/courses/ 3

http://www.sjsu.edu/math/programs/graduate/ 4

http://www.sjsu.edu/math/programs/undergraduate/ 5

http://sites.google.com/site/mathadvisingsjsu/ 6

http://www.sjsu.edu/math/docs/advisor_list_09-10.pdf 7

37

http://www.math.sjsu.edu/~mathclub/ 8

http://www.math.sjsu.edu/camcos/ 9

www.math.sjsu.edu/~calculus/ 10

 sjsu
science www.science.sjsu.edu/ 1

www.sjsu.edu/healthscience/ 2

www.cs.sjsu.edu/ 3

www.sjsu.edu/polisci/ 4

slisweb.sjsu.edu/ 5

www.science.sjsu.edu/cosac/ 6

www.biology.sjsu.edu/specialprogs/cls/index_cls.aspx 7

www.sjsu.edu/casa/ 8

www.sjsu.edu/socialsciences/ 9

www.sjsu.edu/depts/socs/ 10

 pollett http://www.cs.sjsu.edu/faculty/pollett/ 1

http://www.cs.sjsu.edu/faculty/pollett/grad_co/ 2

http://www.sjsu.edu/people/chris.pollett/ 3

http://www.cs.sjsu.edu/faculty/pollett/masters/ 4

http://www.cs.sjsu.edu/faculty/pollett/174.1.10f/ 5

http://www.cs.sjsu.edu/faculty/pollett/185c.3.10f/ 6

http://www.cs.sjsu.edu/faculty/pollett/oldclasses.shtml 7

http://www.cs.sjsu.edu/faculty/pollett/masters/?templates.shtml#top 8

http://www.sjsu.edu/cfd/accessibility/FIR/ 9

http://www.seekquarry.com/ 10

 sjsu http://www.sjsu.edu/ 1

http://www.sjsu.edu/academic_programs/ 2

http://www.sjsu.edu/colleges_departments/ 3

http://www.sjsu.edu/alumni_and_community/ 4

http://www.sjsu.edu/students/ 5

http://www.sjsu.edu/resources/links/KingLibrary-AcademicGateway/ 6

http://www.sjsu.edu/resources/links/CampusDirectory/ 7

http://www.sjsu.edu/advising/ 8

http://www.sjsu.edu/schedules/ 9

http://www.sjsu.edu/faso/ 10

 sjsu
computer
science http://www.cs.sjsu.edu/ 1

38

www.sjsu.edu/advising/links/cs/ 2

http://www.sjsu.edu/mscs/ 3

http://www.sjsu.edu/mscs/program-info/ 4

www.sjsu.edu/ugs/assessment/programs/science/compsci/ 5

www.sjsu.edu/mscs/how-to-apply/ 6

http://cs.sjsu.edu/Programs/minor/minor.html 7

www.sjsu.edu/mscs/research/projects/ 8

www.sjsu.edu/mscs/research/guidelines/ 9

http://cs.sjsu.edu/jobs.html 10

Table 2: Relevance Judgements (manually ranked results)

We use the “Relevance Judgements” from table 2 to create the “trec_rel_file”

Below is the comparison chart (For the search query “sjsu math”):

Our implementation of HITS Yioop! v0.42
Measure

name Query id Value
Measure

name
Query

id Value

num_ret 1 24 num_ret 1 26

num_rel 1 10 num_rel 1 10

num_rel_ret 1 6 num_rel_ret 1 3

map 1 0.1286 map 1 0.0435

R-prec 1 0.2 R-prec 1 0.1

bpref 1 0.6 bpref 1 0.3

recip_rank 1 0.1429 recip_rank 1 0.1667

ircl_prn.0.00 1 0.2727 ircl_prn.0.00 1 0.1667

ircl_prn.0.10 1 0.2727 ircl_prn.0.10 1 0.1667

ircl_prn.0.20 1 0.2727 ircl_prn.0.20 1 0.1429

ircl_prn.0.30 1 0.2727 ircl_prn.0.30 1 0.1429

ircl_prn.0.40 1 0.2727 ircl_prn.0.40 1 0

ircl_prn.0.50 1 0.2727 ircl_prn.0.50 1 0

ircl_prn.0.60 1 0.2727 ircl_prn.0.60 1 0

ircl_prn.0.70 1 0 ircl_prn.0.70 1 0

ircl_prn.0.80 1 0 ircl_prn.0.80 1 0

ircl_prn.0.90 1 0 ircl_prn.0.90 1 0

ircl_prn.1.00 1 0 ircl_prn.1.00 1 0

P5 1 0 P5 1 0

P10 1 0.2 P10 1 0.1

P15 1 0.1333 P15 1 0.0667

P20 1 0.25 P20 1 0.1

P30 1 0.2 P30 1 0.1

39

 Table 3: Comparison Chart 1

Observing the details in Table 3, the number of “relevant returned queries” (num_rel_ret) for

our implementation of HITS is twice as much as Yioop! v0.42. The search results displayed in

our HITS is based on the average of authority and hub ranks for a given page. Based on this

observation, it can be inferred the quality of the relevant result in our implementation is better

than Yioop! v0.42.

Generally, in an information/text retrieval process, “Recall” and “Precision” are the widely

used metrics to evaluate the effectiveness of the results. They can be considered as a way of

measuring the accuracy of the displayed results.

“When using precision and recall, the set of possible labels for a given instance is divided

into two subsets, one of which is considered relevant for the purposes of the metric. Recall is

then computed as the fraction of correct instances among all instances that actually belong to the

relevant subset, while precision is the fraction of correct instances among those that the

algorithm believes to belong to the relevant subset. Precision can be seen as a measure of

exactness or fidelity, whereas recall is a measure of completeness.” (“Precision and recall –

Wikipedia”, n.d.)

So, the comparing the values at various levels of recall and precision will help us to

accurately measure the quality of different search results. Recall and Precision can be

mathematically stated as follows:

Recall =

P100 1 0.06 P100 1 0.03

P200 1 0.03 P200 1 0.015

P500 1 0.012 P500 1 0.006

P1000 1 0.006 P1000 1 0.003

40

Precision =

The interpolated Recall and Precision averages at various levels (0.00, 0.10, 0.20, etc) are

better in our implementation of HITS in comparison to Yioop! v0.42. The value of “Mean

Average Precision” (map) is also considerably good in our implementation. It is also a similar

case with the values displayed for precisions at various values.

 Table 4: Comparison Chart 2

Our implementation of HITS Nutch v1.0

Measure
name

Query
id Value

Measure
name

Query
id Value

num_ret 1 24 num_ret 1 11

num_rel 1 10 num_rel 1 10

num_rel_ret 1 6 num_rel_ret 1 2

map 1 0.1286 map 1 0.04

R-prec 1 0.2 R-prec 1 0.2

bpref 1 0.6 bpref 1 0.2

recip_rank 1 0.1429 recip_rank 1 0.2

ircl_prn.0.00 1 0.2727 ircl_prn.0.00 1 0.2

ircl_prn.0.10 1 0.2727 ircl_prn.0.10 1 0.2

ircl_prn.0.20 1 0.2727 ircl_prn.0.20 1 0.2

ircl_prn.0.30 1 0.2727 ircl_prn.0.30 1 0

ircl_prn.0.40 1 0.2727 ircl_prn.0.40 1 0

ircl_prn.0.50 1 0.2727 ircl_prn.0.50 1 0

ircl_prn.0.60 1 0.2727 ircl_prn.0.60 1 0

ircl_prn.0.70 1 0 ircl_prn.0.70 1 0

ircl_prn.0.80 1 0 ircl_prn.0.80 1 0

ircl_prn.0.90 1 0 ircl_prn.0.90 1 0

ircl_prn.1.00 1 0 ircl_prn.1.00 1 0

P5 1 0 P5 1 0.2

P10 1 0.2 P10 1 0.2

P15 1 0.1333 P15 1 0.1333

P20 1 0.25 P20 1 0.1

P30 1 0.2 P30 1 0.0667

P100 1 0.06 P100 1 0.02

P200 1 0.03 P200 1 0.01

P500 1 0.012 P500 1 0.004

P1000 1 0.006 P1000 1 0.002

41

The comparison results of Nutch v1.0 and our implementation of HITS are shown in Table 4.

These results are similar to the comparison of Yioop! v0.42 and our HITS. The interpolated

Recall and Precision averages at various levels (0.00, 0.10, 0.20, etc) are better in our

implementation of HITS in comparison to Yioop! v0.42. The value of “Mean Average Precision”

(map) is also considerably good in our implementation. It is also a similar case with the values

displayed for precisions at various values. Comparison was also conducted for various query

terms. The results of those were similar to the observations noted above.

Graphical Comparison of Results

Graphical results are easier to understand than tabulated results. So, we also the present the

comparisons graphically if the form of x-y plotted charts. Also, the metrics compared (displayed

on x-axis) are: MAP (Mean Average Precision), IRP_0.10(Interpolated Recall and Precision

Average at 0.10) and P5(Precision after 5 documents are retrieved).

From the observations in the chart it is clear that our implementation of online HITS has

fared better than Yioop! 0.42 and Nutch 1.0. The only exception is that for the query term “sjsu

computer science” and “sjsu”. So overall it can be concluded that our online HITS algorithm has

performed better than the other two search engines.

The query terms used in the below comparison are:

Query 1 "sjsu math"

Query 2 "sjsu science"

Query 3 "pollett"

Query 4 "sjsu"

Query 5 "sjsu computer science"

42

Figure 24: Graphical Comparison Chart

7. Conclusion

In this project, we have implemented an online ranking version of the HITS algorithm.

Ranking algorithms are considered to be the core of any search engine. Several benefits can be

43

obtained by implementing this modified algorithm. Primary benefits include efficient use of

resources and also improves the overall performance of the search engine.

This implementation provides the user with two rankings for each page i.e., hub and

authority ranks. This will be helpful to decide the “authorities” or “hubs” for a given topic more

accurately.

Most search engines today just sort the results presented to the user based on a single ranking. It

will be convenient if they can extend this functionality to sort the results based on hub and

authority ranks as well.

Comparisons were carried out to evaluate the performance of our implementation of HITS

against Yioop! v0.42 and Nutch v1.0. The tests were carried out for various query terms. From

these results, it was observed that our implementation of HITS performed fairly better in terms of

delivering relevant results. The “trec_eval” utility published by NIST department was used to

evaluate the results set.

Yioop! v0.42 provided a convenient framework to implement these modifications to HITS

algorithm. The creators of Yioop! intend to release more memory efficient versions of Yioop!

search engine in the future. We plan to port this implementation to future versions of Yioop! as

well. This will help to make the implementation of HITS to be more memory efficient.

References

N. Langville, Amy., & D. Meyer, Carl. (2006). Google’s PageRank and Beyond. Princeton

University Press.

44

Abiteboul, Serge., Preda, Mihai., & Cobena, Grégory. (2003). Adaptive On-Line Page Importance
Computation. Retrieved Nov 29, 2010 from 2003.org web site:
http://www2003.org/cdrom/papers/refereed/p007/p7-abiteboul.html

Search Engine Architecture. (n.d.). Retrieved April 25, 2010 from IBM web site:

http://www.ibm.com/developerworks/web/library/wa-lucene2/figure1.gif

Pseudo Code of PageRank Algorithm. (n.d.). Retrieved April 25, 2010 from Combine System web

page:
http://combine.it.lth.se/CrawlSim/report/node20.html

Nomura, Saeko., Toru Ishida, Satoshi Oyama., & Hayamizu, Tetsuo. (2004). Analysis and

Improvement of HITS Algorithm for Detecting Web Communities. [Electronic version].
 ACM Systems and Computers in Japan, Vol 35, Issue 13, 32 – 42.

Borodin, Allan., O. Roberts, Gareth., S. Rosenthal, Jeffrey., & Tsaparas, Panayiotis. (2005). Link

analysis ranking: algorithms, theory, and experiments. [Electronic version]. ACM Transactions on
Internet Technology (TOIT), Vol 5, Issue 1, 231 – 297.

Lempel, R., & Moran., S. (2001). SALSA: The Stochastic Approach for Link-Structure Analysis. [Electronic

version]. ACM Transactions on Information Systems, Vol. 19, 131–160.

The Power Method. (n.d). Retrieved May 4, 2010 from University of Nottingham’s web page:
 http://www.maths.nottingham.ac.uk/personal/sw/HG2NLA/pow.pdf

Nutch Tutorial. (n.d). Retrieved May 07, 2010 from Apache’s web site:

 http://lucene.apache.org/nutch/tutorial.html

Text REtrieval Conference. (n.d). Retrieved Nov 30, 2010 from TREC home page:
http://trec.nist.gov/

Precision and recall – Wikipedia. (n.d). Retrieved Dec 1, 2010 from Wikipedia web page:
 http://en.wikipedia.org/wiki/Precision_and_recall

Yioop! Documentation. (n.d.) Retrieved Dec 2, 2010 from SeekQuarry web page:
 http://seekquarry.com/?c=main&p=documentation

