
Jignesh Borisa

Extending OWL with Finite

Automata Constraints

Jignesh Borisa

December 15,2010

Advisor

Dr. Chris Pollett

Committee Members

Dr. Jon Pearce

Dr. Robert Chun

Agenda
• What the project is about?

• Introduction

• Motivation

• Design and Specification

• Tools Used

• Implementation

• Test Case Outputs

• Demo

• Conclusion

What the project is about?

Developed an extension to OWL that allows one to
support collections and constraints where support collections and constraints where

membership in the collections can be computed
by finite automata

What is an ontology?
� Formal representation of the knowledge by a set of concepts

within a domain and relationships between those concepts.

� Used to reason about the properties of that domain and describe
the domain.

� Ontology consists ofOntology consists of
� Classes: sets, collections, concepts

� Relations between classes(consists of, must be preceded by, etc)

� Functions (relation with 1 result)

� Individuals (instances or objects)

� Axiomata (knowledge on concepts/relations that can be checked on its
logics)

� Attributes : properties, parameters or characteristics that objects can have

XML and RDF

� Extensible Markup Language(XML)
� Defines rules to mark-up a document in a way that allows the

author to express semantic meaning in the mark-up
� Data format used primarily for sharing data

� Resource Description Framework(RDF)� Resource Description Framework(RDF)
� Framework for describing resources on the web
� Designed to be read and understood by computer applications
� RDF descriptions are not designed to be displayed on the web
� Datamodel for objects ("resources") and relations between them
� RDF is a collection of triples , each consisting of a subject, a

predicate and an object.
� An open-world framework that allows anyone to make statements

about any resources

Web Ontology Language(OWL)
� Markup language for sharing and publishing data using

ontologies on the Internet

� It belongs to a family of knowledge representation
languages for writing ontologies

� Provides more vocabulary for describing properties and � Provides more vocabulary for describing properties and
classes than XML and RDF like cardinality (i.e. exactly
one), relations between classes (i.e. disjointness), etc.

� Used for representing the meaning of the terms in
vocabularies and their interrelationships

Answer Set Programming
� Logic programming paradigms are also used for

knowledge representation.

� We considered answer set programming, a particular
form of logic programming.

� It is a declarative programming approach to knowledge � It is a declarative programming approach to knowledge
representation.

� It is oriented towards difficult search problems.

� It is based on the stable model semantics of logic
programming.

What is Logic Program?
� It is the use of mathematic logic for computer program.

� The logic programming is the use of logic as both a
declarative and procedural representation language.

� It is based upon the fact that a backwards theorem-prover
applied to declarative sentences in the form of implications:applied to declarative sentences in the form of implications:

If B1 and … and Bn then H

� It also treats the implications as goal-reduction procedures:

to show/solve H, show/solve B1 and … and Bn.

Example of Logic Program
� As the implication:

If you press the alarm signal button, then you alert the
driver of the train of a possible emergency

� As the procedure:

To alert the driver of the train of a possible emergency, press To alert the driver of the train of a possible emergency, press
the alarm signal button.

Stable Model Semantics

� This model was proposed by Gelfond and Lifschitz in 1988.

� It defines a declarative semantics for logic program with negation as
failure.

� Let P be a logic program and Q be a subset of variables of P.

� Let PQ be the program. � Let PQ be the program.

� If the program contains clause C of P, which contains the negated
variable Not A in its body such that A Q, then C is not counted.

� If a body of clause contains a negated Not A such that A Q, then Not
A is not counted from the clause body.

� If Q is a least Herbrand model of PQ, then Q is a stable model of P.

Computing Stable Model
Consider the following logic program:

x2:- ¬x1

x1:- ¬x2

Truth Table for Computed Stable Model

X1 X2 Stable Model exist?

False False No

False True Yes

True False Yes

True True No

Computing Stable Model(Cont…)

� Consider the following logic program:

x1:- x4,¬x2

x2:- x4,¬x3

x3:- ¬x2

Reduced model is derived from this logic program. It is as � Reduced model is derived from this logic program. It is as
follow:

x1:- x4

x2:- x4

x3:-

� Let us look at truth table of this program for computing
Stable model

x1 x2 x3 x4 Stable Model exist?

False False False False No

False False False True No

False False True False Yes

False False True True No

False True False False No

False True False True Yes

False True True False No

False True True True No

Truth Table

False True True True No

True False False False No

True False False True No

True False True False No

True False True True Yes

True True False False No

True True False True No

True True True False No

True True True True No

OWL Capabilities
� Three sublanguages : OWL Lite, OWL DL and OWL Full.

� While OWL Lite supports cardinality constraints, it only permits
cardinality values of 0 or 1.

� OWL DL includes all OWL language constructs, but they can be
used only under certain restrictions.used only under certain restrictions.

� For example, while a class may be a subclass of many classes, a
class cannot be an instance of another class.

� In OWL Full, a class can be treated simultaneously as a collection
of individuals and as an individual.

� OWL Full allows an ontology to augment the meaning of the pre-
defined (RDF or OWL) vocabulary.

Denotation in Description Logic
� Consider following denotation in Description Logic:

(union Male Female)

∧ (subClass ≤2hasChild)

⇒ (class Person)

An Example OWL Document
The denotation in DL is equivalent to following OWL code :
<owl:Class rdf:about="#Person">

<owl:disjointUnionOf rdf:parseType="Collection">

<owl:Class rdf:ID="Male"/>

<owl:Class rdf:ID="Female"/>

</owl:disjointUnionOf></owl:disjointUnionOf>

<rdfs:subClassOf>

<owl:Restriction>

<owl:onProperty rdf:resource="#hasChild"/>

<owl:mincardinality
rdf:datatype="&xsd;string">1</owl:mincardinality>

</owl:Restriction>

</rdfs:subClassOf>

</owl:Class>

One way to Extend OWL
Consider the following denotation in Description Logic :

(subClass (hasDNASequence.{ A*TA*G}))

⇒(Class Person)

� Here A*TA*G is some regular expression such that only humans have DNA sequences of
this type.

� This is something you could do in OWL. What we can’t do is come up with a
parameterized family of subclasses of this…parameterized family of subclasses of this…

� i.e., we might want to define:

(subClass (hasDNASequence.{ A*TA*G}))

⇒(Class Person{A*TA*G})

And have (Class Person{AATAAG}) be class which is an instance of this family. For
example, this might represent Person’s with Dwarfism.

One way to extend OWL Document

<owl:Class rdf:about="#Person">

<rdfs:subClassOf>

<owl:Restriction>

<owl:onProperty rdf:resource="#hasDNASequence"/>

<owl:hasValue rdf:datatype="xsd:string">

A*TA*GA*TA*G

</owl:hasValue>

</owl:Restriction>

</rdfs:subClassOf>

</owl:Class>

Let Person be an OWL class and hasDNASequence be its data property. The value

of hasTelphone is A*TA*G which is regular expression.

Person Example in Our Extended Syntax

<owl:CollectionClass rdf:about="#Person">

<rdfs:subClassOf>

<owl:Restriction>

<owl:onProperty rdf:resource="#hasDNASequence"/>

<owl:hasValue rdf:datatype="xsd:string">

A*TA*GA*TA*G

</owl:hasValue>

</owl:Restriction>

</rdfs:subClassOf>

</owl:Class>

Motivation: Incapability of OWL

� The previous experiment with OWL does not work because
� Regular expression provides concise and flexible means of matching

strings of text.

� OWL can only support inflexible or fixed value for data property.

� OWL cannot allow set of values for property.� OWL cannot allow set of values for property.

� We decided to extend OWL to support collections.
� Collections are a natural part of the world that we need to model

such as protein sequences, SSN, email ID, etc.

Motivation: Extension to Answer Set

Programming

� A recent extension to answer set programming is to support
constraints where membership in the sets can be computed
by finite automata.

� In this extension, new types of constraints are introduced
that allow for a more compact representation of problem in
answer set programming.

� We attempted to extend OWL with feature from this new
approach to answer set programming.

Design
� Created the following language constructs to support

collections and finite automata constraints

1. CollectionClass

2. memberClassOf

3. collectionClassOf3. collectionClassOf

4. instanceOf

CollectionClass

CollectionClass Specification
� Defined by URI

datatypeURI : = URI

dataPropertyURI := URI

CollectionClassURI : = URI

� Syntax for CollectionClass� Syntax for CollectionClass
entity : = datatype | CollectionClass | dataProperty

datatype := 'Datatype' '(' datatypeURI ')‘

CollectionClass : = ‘ CollectionClass’ ‘(‘ CollectionClassURI ‘)’

dataProperty : = ‘DataProperty’ ‘(‘ dataPropertyURI ‘)’

memberClassOf axiom

memberClassOf Specification

� Syntax for memberClassOf axiom

owlClass : = description

CollectionClass : = description

memberClassOf : = ‘MemberClassOf’ ‘(‘{ annotation }

owlClass CollectionClass ‘)’owlClass CollectionClass ‘)’

collectionClassOf axiom

collectionClassOf Specification
� Syntax for collectionClassOf axiom

memberClass : = description

CollectionClass : = description

collectionClassOf : = ‘CollectionClassof’ ‘(‘ { annotation }

memberClass CollectionClass ‘)’memberClass CollectionClass ‘)’

instanceOf axiom

instanceOf Specification
� Syntax for instanceOf axiom

instance : = individual

owlClass : = description

instanceOf : = ‘InstanceOf’ ‘(‘ { annotation} instance

owlClass ‘)’

Tools Used

� OWL 2.0

� Pellet

� Java-based open source OWL reasoner

� Provides various features like data type reasoning, ontology analysis,
ontology debugging etc.ontology debugging etc.

� Used Pellet to reason about OWL document

� DOM API

� Component API of the Java API for XML processing

� Allows programs to dynamically access and update the content of
documents

� Used DOM API to parse an extended OWL document

Initial Research

1. Compute Stable Model Semantics

Rule :

x1:- x4.

x2:- x4,x5.

x3:- x1,x3,-x2.x3:- x1,x3,-x2.

Initial Research (Cont…)

2.Created and reasoned about OWL document

Initial Research (Cont…)

3.Implemented Finite Automata Closure Algorithm

Venn Diagram for Extended OWL

Person{AATAG}

bob

The Collection Class Person { A*TA*G}

alice

frank

Person{AATAAAG}

trudy

tom

mark

Implementation
� To support collections

– We added CollectionClass entity to OWL to represent collections.

(subClass (hasTelephone.{ [0-9]{3}-[0-9]{3}-[0-9]{4}}))
⇒ (CollectionClass TelephonePattern)

<owl:CollectionClass rdf:about="#TelephonePattern">

< rdfs:subClassOf>

<owl:Restriction>

<owl:onProperty rdf:resource="#hasTelephone"/>

<owl:hasValue rdf:datatype="xsd:string">

[0-9]{3}-[0-9]{3}-[0-9]{4}

</owl:hasValue>

</owl:Restriction>

</rdfs:subClassOf>

</owl:CollectionClass>

Implementation(Cont..)

� Now that we extended OWL, we need to add support for
reasoning about these kind of extended documents. This is
where incorporated idea from Remmel and Marek paper for
answer set programming

� We extended subclass definition. We added positive variables
and constraints.

Implementation (Cont…)
� The semantics for extension to subclass is as follows:

e subclass : -e1 c1,e2 c2,…, en cn,c1 λ1, c2 λ2 …,cn λn

Here, e1, e2 ,…,en are instances of any OWL class in ontology

c1, c2 ,…,cn are OWL classes in ontology

λ1, λ2 ,… λn are CollectionClasses in ontologyλ1, λ2 ,… λn are CollectionClasses in ontology

e1 c1,e2 c2,…, are positive variables

c1 λ1, c2 λ2 …, cn λn are constraints

Implementation of Semantics
� We guessed true or false value for every constraints from

0 to 2max times where max is number of constraints.

� We checked membership of OWL class in
CollectionClasss . If the property values of all the
instances of OWL class match the regular expression of instances of OWL class match the regular expression of
property of CollectionClass then we can derive true as a
value for that constraint.

� If the derived values of all the constraints are same as
guessed values for those constraints then we can say that
stable model exist.

Implementation (Cont…)
� Consider following denotation of extended class in

Description Logic (DL) :

(member maddox Male)

∧ (member braddpitt Adult)

∧ (member angelinajolie PersonWithAtLeastTwoChildren)

∧

∧

∧ (member angelinajolie PersonWithAtLeastTwoChildren)

∧ (memberClass Daughter FatherDNASequence)

∧ (memberClass Son MotherDNASequence)

⇒ (class Son)

Implementation (Cont…)
The denotation in DL is equivalent to following description of class in OWL

<owl:Class rdf:about=“#Person”>

<owl:instanceOf rdf:ID=“maddox">

<owl:Class rdf:ID=“Male"/>

</owl:instanceOf>

<owl:instanceOf rdf:ID=“bradpitt">

<owl:Class rdf:ID=“Adult”/>

</owl:instanceOf></owl:instanceOf>

<owl:instanceOf rdf:ID=“angelinajolie">

<owl:Class rdf:ID=“PersonWithAtLeastTwoChildren"/>

</owl:instanceOf>

<owl:memberClassOf rdf:ID="Daughter">

<owl:CollectionClassOf rdf:about="#FatherDNASequence"/>

</owl:memberClassOf>

<owl:memberClassOf rdf:ID="Son">

<owl:CollectionClassOf rdf:about="#MotherDNASequence"/>

</owl:memberClassOf>

</owl:Class>

Implementation(Cont…)

� Reason about extended OWL document
� Extended Pellet to parse an extended OWL document.
� Added DOMParser class to Pellet which can parse extended OWL

document.
� DOMParser can compute stable model by guessing and deriving � DOMParser can compute stable model by guessing and deriving

values for constraints.
� Guessed values for constraints from 0 to 2max times
� Checked membership of OWL class in CollectionClasss for given

constraints and computed stable model
� If stable model exists then it can remove all the extended tags from

the OWL document and write a new reduced OWL document
� Pellet can reason about this reduced OWL document.

Test Case Output
� Explanation Inference

Test Case Output (Cont…)
� Query Subsumption Inference

Test Case Output (Cont…)
� Logical Inference

DEMO…

Conclusion

� Experimented and observed that OWL did not support infinite sets of
collections.

� Created new entity called CollectionClass to support collections.

� Created new axioms called memberClassOf, instanceOf and
collectionClassOf for adding constraints and positive variables to collectionClassOf for adding constraints and positive variables to
OWL.

� Extended subclass definition that can support constraints where
membership in CollectionClass could be computed by finite
automata.

� Developed three inferences to reason about extended OWL
document.

References
1. Victor Marek and Jeffery B. Remmel, Automata and Answer Set Programming,2009.

2. L.Niemela, P.Simons and T. Syrjanen, Smodels: A System for Answer Set Programming,2000.

3. D.Cenzer, J.Remmel and V.Marek, Logic programming with infinite sets,2005.

4. A.Rector, R.Stevent and G.Moulton, Putting OWL in order: Pattern for sequences in
OWL,2003.

5. Y.Ding, D.Embley and S.Liddle, OWL-AA: Enriching OWL with instance recognition
semantics for automated semantic annotation,2005.semantics for automated semantic annotation,2005.

6. M. Gelfond and V. Lifschitz, The Stable Model Semantics for logic programming. In Proceedings
of the Fifth Logic Programming Symposium, pages 1070-1080. The MIT Press, 1988.

7. W.Chen and D. Warren, Computation of Stable Models and its integration with logical Query
Procession.

8. B. Motik, P. Patel-Schneider and I. Harrocks (2007). OWL 1.1 Web Ontology Language
Structural Specification and Functional-Style Syntax [Online].Available:
http://www.webont.org/owl/1.1/owl_specification.html

Thank you

Question

