
1

Extending OWL with Finite Automata Constraints

A Writing Project

Presented to

The Faculty of the department of Computer Science

San Jose State University

In Partial Fulfillment

of the Requirements for the Degree

Master of Science

by

Jignesh Borisa

November 2009

2

© 2009

Jignesh Borisa

ALL RIGHTS RESERVED

3

ABSTRACT

Extending OWL with Finite Automata Constraints

by Jignesh Borisa

 Over the past few years, there has been vast progress in the theory of logic

programming. In particular, a new area called answer set programming has arisen, which is a

fusion of logic programming with Stable Model Semantics (SLP). Answer Set Programming is

used to handle search problems. The Web Ontology Language (OWL) is designed to be used by

applications. It is used to define to the content of information to humans. Although OWL

provides bases for various semantic web applications, it lacks sufficient declarative semantics for

instance recognition to support automated semantic annotation. This omission prevents OWL

from being a satisfactory ontology language for automated semantic annotation. This problem

can be solved by adding declarative instance recognition semantics to OWL. The first goal of my

project is to develop an extension of OWL which can handle answer set problems with finite

automata constraints. The second goal is to develop an inference engine for the resulting

language. I have computed stable model semantics by using an efficient algorithm. I have created

a test OWL document for various parts of a computer mouse. I used Java based Pellet’s OWL

reasoner to reason about the OWL document. It generates OWL ontology for OWL document. I

have implemented a finite automata closure algorithm. It counts stable model for the rules which

satisfy all of its constraints.

4

Table of Contents

1. Introduction..6
2. Deliverable 1: Compute Stable Model Semantics..9
3. Deliverable 2: Install and Experiment with smodels...14
4. Deliverable 3: Create a test OWL document and try to find out inference

engine... 16
5. Deliverable 4: Implement finite automata closure algorithm………………………..19
6. Summary..22
7. Future Work...23
References...24

5

List of Figures

Figure 1: Compute Stable Model Semantics Example 1..11
Figure 2: Compute Stable Model Semantics Example 2 ...12
Figure 3: Output of smodels..15

6

1. Introduction

 As preparation for the writing project titled “Extending OWL with finite automata

constraints”, I have written a report which provides brief details of my work that I have done in

my CS297 project. The purpose is to prepare documentation for the work that I have done in my

CS297 project.

 Answer Set Programming (ASP) is one kind of declarative programming. It is based on

the stable model semantics of logic programming. In ASP, there is not any need to use function

symbols. By avoiding the use of function symbols, we can eliminate the problem of high

complexity of the program models. Adding functional symbols in answer set programming

creates high complexity problems for models of programs. For example, finding the stable model

of the horn program with no function symbols would be done in linear time, and finding the

stable model of horn program with functional symbols would take recursively enumerable set.

Stable model semantics was proposed by Gelfond and Lifschitz in the late 80s. It defines a

declarative semantics for logic programs with negation as failure. Let P be a logic program. Let

Q be a subset of variables of P. Let PQ be the program. If the program contains clause C of P,

which contains negated variable Not A in its body such that A Q then C is not counted But if a

body of clause contains a negated Not A such that A Q, then Not A is not counted from the

clause body. If Q is a least Herbrand model of PQ ,then Q is a stable model of P.

 In this project, I have computed stable model semantics for logic program. For that I

have found Horn Sets from the guessed values for the variable of the rules of the program. By

comparing values of Horn rules with guessed values, we can check the existence of stable model.

I have used an efficient algorithm to compute stable model semantics. I have guessed for

variables from 0 to maximum values of all the variables in the program.

7

For example, if we have following rules of program.

P:

S: P, Q.

R: P, Not Q.

Here, let us guess the maximum value of the all variables in program. It means that all variables

have true value. So, the Horn set contains P and S. Q and R are not in the Horn set because we

have guessed Q as true and clause R contains Not Q in its body.

 As a part of my project, I have learnt Web Ontology Language (OWL). OWL is used to

define content of information to human instead of directly presenting information to humans. It

is supported by RDF, XML and RDF Schema. The web ontology language describes

the hierarchical organization of ideas in a domain, in a way that can be parsed and understood

by software. OWL can be used explicitly to represent the meaning of various terms in

vocabularies. OWL provides three sublanguages: OWL Lite, OWL DL and OWL Full. OWL

ontology contains a set of axioms. These axioms place constraints on sets of individuals and the

types of relationships permitted between them. These axioms provide semantics by allowing

additional information based on the data explicitly provided. I have created a test OWL

document for the parts of Computer Mouse.

 I have used Pellet’s OWL reasoner to reason about OWL document. It generates OWL

ontology for OWL document. It is Java based library and builds OWL ontology. OWL ontology

consists of a set of axioms which place constraints on sets of individuals and the types of

relationships permitted between them.

http://en.wikipedia.org/wiki/Axioms�
http://en.wikipedia.org/wiki/Axioms�

8

2. Deliverable 1: Compute Stable Model Semantics

Motivation

 The main objective of this deliverable is to write a Java program to compute stable model

semantics. Stable model semantics was introduced by Gelfond and Lifschitz. The concept of

9

a stable model is used to provide a declarative semantics for logic programs with negation. It is

one of the standard approaches to the meaning of negation in logic programming. It is the basis

of answer set programming. Consider the following program:

 a:

 c: a, b

 d: a, not b.

Given this program, the atom ‘a’ will true because the program has all ‘a’ as a true. The given

atom ‘b’ will false, because it does not occur in the head of any rules of the program. The atom

‘c’ will false because the rule with ‘c’ contains ‘a’ and ‘b’ and we know that ‘b’ is false. The

atom‘d’ will true because d contains ‘a’ and not ‘b’. ‘b’ is false which makes ‘d’ as true. The

given program can be represented by the following truth assignment:

 a b c d

 T F F T

Goal

 The goal of computing stable model semantics is to write a Java program for computing

stable model for given rules. For computing stable model semantics, it needs to parse given rules

in properties file and to find horn sets from the rules of program. From horn sets of rules, we can

compute stable model semantics.

Implementation and Results

 I have developed a Java program to compute stable model semantics. First, I have

created a properties file that contains all rules of the program. Each rule contains head, variable

list and negative variable list.

For example, x1: x2, x3,-x4, x5.

http://en.wikipedia.org/wiki/Logic_programming�
http://en.wikipedia.org/wiki/Answer_set_programming�

10

 Here, we have x1 as head of the rule, x2 is variable and x4 and x5 are negative variables.

1. Parse the rules of logic program

I have implemented following various functions for parsing the rules.

• parseRule() is used to parse the rules of the property file. It returns rule.

• parseHead() is used to parse the heads of all rules in the property file. It returns head of

the rules.

• parseVarlist() is used to parse the variable lists of rules. It returns a variable list of the

rules.

• parseNegVarlist() is used to parse the negative variable list. It returns the negative

variable list of the rules.

2. Guessing for Variables

 I have guessed true or false value for all variables. I guessed from 0 to Max_Value for

all variables of the rule where Max_Value is maximum value of all variables. For example, if

you guess 0 for all variables for the rules than all variables would have false value and if you

guess Max_Value for all variables than all variables would have true value.

3. Find Horn Sets

 From the guessed values of variables, I have predicted horn sets. I have implemented

function getHornSet() .It predicts horn sets from the guessed values of variables.

For example, we have following two rules:

X1:-X2 and X2:-X1

If I guess X2 as false then X1 is horn sets for the rules. We can predict values for variables from

Horn Sets.

11

4. Check Stable Model

 From the Horn Sets, we can check if the stable model is exists or not. I have

implemented function checkStableModel () which checks existence of a stable model for the

rules. It predicts values of variables from Horn Sets. If a Horn set contains variable, then we can

predict its value as true or false for other remained variables which are not in Horn sets. If

variables have the same values as guessed values of variables then a Stable Model is exist for

that guessed values of variables. Otherwise Stable Model does not exist.

Example 1

Rules

x1: x4.
x2: x4,x5.
x3: x1,x3,-x2.

Figure 1: Compute Stable Model Semantics Example 1

Example 2

Rules

x1: x4,-x2.
x2: x4,-x3.
x3: -x2.

12

Figure 2: Compute Stable Model Semantics Example 2

Remarks

 I concluded that the Java program that I have implemented to compute stable model

semantics is working properly. I have tested the Java program as per various rules of the logic

programs. I have guessed for variables of the rules from 0 to Max_Value where Max_Value is

13

the maximum of the variables of the rules. If guessed values of variables of the rules are same as

Horn sets then a stable model exists otherwise a stable model does not exist.

14

3. Deliverable 2: Install and Experiment with smodels

Motivation

 The main objective of this deliverable is to install and experiments with smodels.

Smodels is an implementation of the stable model semantics for logic programs, which is

implemented by Patrik Simons. Smodels can be used either as a C++ library or as a stand-alone

program together with a suitable front-end. It can be called from user programs. Smodels extends

the normal logic programs. It adds new special following rule types like constant rules, choice

rules and weight rules. Smodels works with variable-free programs that are quite cumbersome to

generate by hand. Lparse is a front-end. It adds variables to the accepted language and generates

a variable-free simple logic program. It can be given to smodels. By translating other semantics

into normal logic programs, lparse implements several them.

Goal

 The goal of this deliverable is to install and experiment with smodels. Smodels is a

collection of c++ programs. It computes stable model semantics for logic programs. It checks

existence of the stable model for particular rules of the program.

Implementations and Results

 Smodels contains C++ program files. It is used to compute stable model semantics. I

have installed smodels-2.33 with lparse-1.1.1. I have made changes as per logic program and set

the values of objects in the programs as per logic programs. I have measured outputs of smodels

as per various logic programs. It gives the existence of stable model for logic program as an

output. It is an efficient program to compute stable model semantics.

http://www.tcs.hut.fi/Software/smodels/src/smodels-2.33.tar.gz�
mailto:patrik.simons@neotide.fi�
http://www.tcs.hut.fi/Software/smodels/src/lparse-1.1.1.tar.gz�

15

Figure 3 Output of smodels

Remarks

 I conclud that smodels is an efficient program to compute stable model semantics. It gives

output for logic program as per guessed values of variables of the rules.

16

4. Deliverable 3: Create a test OWL document and try to find a logic

programming inference engine

Motivation

 The main objective of this deliverable is to create an OWL document and try to find out a

logic programming inference engine. The web ontology language (OWL) is designed to be

used by applications that need to access the content of information instead of simply

representing to humans. OWL provides interoperability of web content. It is supported by

XML, RDF and RDF Schema (RDF-S). OWL is a family of knowledge

representation languages for writing ontologies. OWL is endorsed by the World Wide Web

Consortium. I used Pellet’s OWL reasoned which is Java based open source OWL DL

reasoned and used for reasoning about an OWL document.

Goal

 The goal of this deliverable is to learn the Web Ontology Language (OWL) and then create

a test OWL document of Computer Mouse. After creating OWL document, I have to use Pellet’s

OWL reasoner to reason about OWL document and generate OWL ontology.

Implementation and Results

 I have learned OWL and used it to create an OWL document on computer mouse. OWL

includes languages based on HTML, XML and various frame-based KR languages and

knowledge acquisition approaches. OWL provides various capabilities for creating classes, sub

classes, properties, defining instance and its operations. I have defined classes and subclasses for

those classes for computer mouse in an OWL document. Also I have defined various properties

and instances for computer mouse.OWL ontology described the data as a set of individuals and a

set of property assertions which are related to each other. OWL ontology consists of a set of

http://en.wikipedia.org/wiki/Knowledge_representation�
http://en.wikipedia.org/wiki/Knowledge_representation�
http://en.wikipedia.org/wiki/HTML�

17

axioms. These axioms place constraints on sets of individuals. These axioms provide semantics

on the data which are explicitly provided. I have used OWL Lite. Here are following OWL Lite

RDF schema features:

• Class: Class defines a group of individuals which are share same properties.

• rdfs:subClassOf: You can create a subclass of any class by using this feature. One class

has one or more subclasses.

• rdf:Property: Property is used to define relations between classes.

• rdfs:subPropertyOf: Property is a sub property of one or more properties.

• rdfs:range: Range of properties limits individuals by initializing its value.

After creating test OWL document of Computer Mouse, I used Pellet’s OWL reasoner to reason

OWL document. It builds OWL ontology of OWL document. I used OWL reasoner’s

explanation example. It explains about the concept that I wrote in my OWL document.

Output

Why is led+scroll concept unsatisfiable?
Explanation:
 led+scroll equivalentTo scroll
 and uses some led
 and part_of some optical
 scroll subClassOf ps2_mouse
 ps2_mouse equivalentTo mouse
 and uses only not part_of some optical
 and uses only not optical

Why is optical+led subclass of mouse+led?
Explanation:
 has_part range optical
 mouse+led equivalentTo mouse
 and has_part some optical
 optical+led equivalentTo mouse
 and has_part min 5

18

Remarks

 Pellet’s OWL reasoner has provided an online demo to reason about OWL document. It

provides various kinds of OWL documents reasoning examples. I recommend its use for

reasoning OWL document as Pellet’s reasoner is open source.

19

5. Deliverable-4: Implement finite automata closure algorithm

Motivation

 The main objective of this deliverable is to make some changes in stable model program

that I implemented in deliverable and implement finite automata closure algorithm. For

implementing this algorithm, I need to make constraints for every rule. Constraints are

effectively global requirements for every rule. I have added various models in property files.

Constraints are part of rule which contains list of variables and models.

Goal

 The goal is to implement finite automata closure algorithm and test output for various

rules with various constraints.

Implementation

 I have made some changes in my stable model program of deliverable-1. As Professor

Pollet has suggested me to remove negative variable and add constraints in the rules, I have

removed negative variable from the rules and added new constraints in the rules in the property

file of my project. It contains regular expression in the form of 0 and 1. If any rule satisfies all of

its constraints, it will use for finding stable model. If rule does not stratify all of its constraints, it

will not use for finding stable model.

For example, property file look like following

R0=0*1?
R1=1*01
rule[0]=x1:|43R0;
rule[1]=x2:x3|213R0,34R1;

Here, R0 and R1 are models and it contains regular expression 0*1? and 1*01 respectively.
rule[0] and rule[1] are rules and it contains variable list and constraints. These Constraints have
two parts: One is a list of variable and second is a model.

20

I need to check if the model contains a variable or not. From last example you can say that we

need to check if R0 contains 43 or not. If it contains 43 then rule[0] is used to count stable

model, which then we need to follow the same procedure that I have implemented in deliverable-

1 which counts stable model for the rules which satisfy all of its constraints.

Result

1.

R0=0*1?
R1=1*01
rule[0]=x1:|43R0;
rule[1]=x2:x3|213R0,34R1;

Output

x1:|43R0;
x2:x3|213R0,34R1;
For i=0
Stable Model does not exist
For i=1
Stable Model does not exist
For i=2
Stable Model does not exist
For i=3
Stable Model does not exist
For i=4
Stable Model exist

2.

R0=0*
R1=1*
rule[0]=x2:|43R0;
rule[1]=x2:x3|14R0;

Output

x2:|43R0;
x2:x3|14R0;
For i=0
Stable Model does not exist

21

For i=1
Stable Model does not exist
For i=2
Stable Model does not exist
For i=3
Stable Model does not exist
For i=4
Stable Model does not exist
For i=5
Stable Model does not exist
For i=6
Stable Model does not exist
For i=7
Stable Model does not exist
For i=8
Stable Model exist

Remark

If there are not any rules that satisfy all of their constraint then you will get an output like stable

model exist for i=0. For i=0, all variable are guessed as false. It means that it shows false stable

model. If there are not any rules in the model then all variable of rules are guessed false and it

will count as false and output will be false stable model. So, I have checked cases which are not

giving false stable model.

22

6. Summary

 Answer Set programming is declarative programming. It is based on Stable Model.

Stable Model is used for defining a declarative semantics for the rules of logic programs with

negation as failure. I have computed Stable Model Semantics by using assume and reduce

algorithm for computing stable model. I have tested my program for computing stable model

semantics with various logic programs. I have learnt OWL which is designed to be used by an

application for procession content of information. I have created a test OWL document. I used

Pellet’s OWL reasoned which is open source java based OWL-DL reasoner. It is basically

building OWL ontology of OWL document. There are various examples available in Pellet’s

library which helped me very much to reason about OWL document.

23

7. Future Work

 For my CS 298, I will extend the deliverables that I have worked on my CS 297 course.

I will create and extend OWL inferences to support collections. I will extend OWL with finite

automata constraints. The deliverables that I have worked in this semester have helped me to

implement finite automata closure algorithm.

24

References

[2009] Automata and Answer Set Programming. Victor Marek, Jeffery B. Remmel.

[2000] Smodels: A System for Answer Set Programming. Llkka Niemela, Patrick Simons,

Tommie Syrjanen.

[2005] Logic programming with infinite sets. Douglas Cenzer, Jeffery B. Remmel, Victor

Marek.

[2003] Putting OWL in order: Pattern for sequences in OWL. Nice Drummond, Alan Rector,

Robert Stevent, Georgina Moulton.

[2005] OWL-AA: Enriching OWL with instance recognition semantics for automated semantic

annotation. Yihong Ding, David Embley, Stephen Liddle.

