Accelerometer based motion gestures for Mobile Devices

A Writing Project
Presented to
The Faculty of Computer Science

San Jose State University

In Partial Fulfillment
Of the Requirements for Degree

Master of Science

By
Neel Parikh

Dec 2008

© 2008

Neel Parikh

ALL RIGHTS RESERVED

APPROVED FOR THE DEPARTMENT OF COMPUTER SCIENCE

Dr. Chris Pollett

Dr. Robert Chun

Dr. Mark Stamp

Abstract

Many smart phones today use tiny sensors called accelerometers to provide enhanced
user interface controls. Accelerometers measure the linear acceleration in the X, vy, z
directions based on the movement of the phone. These sensors basically reduce the need
of dedicated navigation and function keys on the mobile device. Accelerometer based
mobile devices use this principle for creating applications like games, controlling the

orientation of the display screen, etc.

The goal of this project is to extend the WebKit browser interface of Google’s mobile
development platform called ‘Android’ by creating accelerometer based motion features
like shake feature, orientation of images, zoom in/out, scrolling, etc. For instance, the
user can shake the phone in order to erase an entered text. Also, by rotating the phone
clockwise or anti-clockwise, the orientation of the underlying images will change
accordingly. While browsing a web page, the user could tilt the phone in left, right, top,
bottom directions which will cause the web page to scroll accordingly. Also, by tilting the

phone towards or away form the user, one can zoom in and zoom out on a web page.

Table of Contents

Lo ADSEIACE .. 4
2. Table of CONENtS.o e e e e 5
3.Index of FigUIes.o e 7
4 INtroductiOn.o 9
4.1 OVervIiew Of PrOJeCT. .. .ouviei et 9
4.2 Organization Of TEPOTL. ...\ttt ettt et et e e e et e ee e e e nanne 10

PHASE 1 OF THE PROJECT

S.Whatis Android.o 13
5.1 Android architeCtUre.o.uinei e 14
5.2 Android development tOOIS.ouiiiiii i e 16
6. Hello World in Android........ ..., 24
7.Sensor SIMUIAtOr. 27
7.1 Connecting Sensor Simulator to Android Emulator...................oooii. 28
7.2 Automated Input Functionality..............oooiiii i 30
8. Simulation of Automated Input Functionalityl 33
Simulated SCENATIO.t 33
Description 0f the €Vent.ot e 35
Description of code and files.............ooiiiiiiiii e 36
PHASE 2 OF THE PROJECT

9. Design Methodology...........ooniiiiiiii e, 38
0.1 Design pattern floW.oouieii i 41
9.1.1 Description of the flow diagram of Test.javaclassccoviiiiiiiiiiiian... 42
9.1.2 Description of the flow diagram of AccelerometerReader.javaclass 44
10. Shake feature.o 45

Feature INtroduCtion.o 45

Description 0f the €Vent.ot e 46

Description of code and files............coooiiiiiiiii 47
I1. Rotation feature.o i s 49
Feature introdUCtion.oui i 49
Description 0f the @VENt.ouiiei i 50

Description of code and files.............ooiiiiiiiii i 51
12, Z00Mm featUIe.o 53
Feature iINtrodUCtiON.oiii e 53
Description 0f the @VENt.ouiii i 54
Description of code and files............coooiiiiiii i 56
13.Scroll feature. 58
Feature IntroduCtion.o 58
Description 0f the €Vent. ..ot e 59
Description of code and files............coooiiiiiiii 61
14. Testing media playback capabilities of Android... 63
Description 0f the @VENt.o.uiieii i 63
Description of code and files............oooiiiiiii i 63
15. Challenges involved in the project.................ooiiiii i, 65
L6, ConCIUSION.ooeti e 66
L7 REFCIEIMCES. ... 67

Index of figures

What is Android

Fig 5.1: Android ArchiteCture.covinniiii e e, 14
Fig 5.2: Android emulator running in Eclipse.............ooooiiiiiiiiiiiiiiiii 16
Fig 5.3: DDMS running in ECHIPSE.....cc.viiniiiii e e 17
Fig 5.4: ‘Logcat’ running in EClipse.........c.oiiiiiiiiiiii e, 18
Fig 5.5 DDMS listing the currently running proCesses.vvueeereeireennneenneennnannnns 19
Fig 5.6: File explorer view running in DDMS.............iiiiie, 20
Fig 5.7: ‘adb devices’ command..............cooiiiiiiiiiiiii i 21
Fig 5.8: ‘adb install’ command.................ooiiiiii i 23

Hello World in Android

Fig 6.1: Hello World application on home screen of emulator................................. 24
Fig 6.2 Hello World running on the emulator..................oooiiiiiiiiiiiiiiiene . 24
Sensor Simulator

Fig 7.1: Openlntents Sensor SIMulatorooeviiiiiiiiiiiiiiii e, 27
Fig 7.2: Accelerometer values generated by moving the Simulator phone..................28
Fig 7.3 Emulator values in sync with the Sensor Simulatorc.cooiin, 30
Fig 7.4: Gravity settings of Sensor Simulator...............oooiiiiiiiiiiiiiii i, 30
Fig 7.5: Additional functionality of playing the values from a file........................... 31
Simulation of Automated Input Functionality

Fig 8.1: The alert message and accelerometer values when phone starts falling........... 33
Fig 8.2: The alert message when the phone strikes the ground.......................... 34
Fig 8.3: Values being written to the log file when the code is executing. 36
Design Methodology

Fig 9.1 Activity lifecycle.o 38
9.2 Design flow diagram of Test.java classc.c.oviiiiiiiiiiiiii i, 41
9.3 Design flow diagram of AccelerometerReader.java classcooovieiiiiinnin. 43
Shake feature

Fig 10.1: The UI screen with Text Box and connection button.....................c.oeeeeneee 45
Fig 10.2: The cleared Text Box due to shake motion of Sensor Simulator.................. 45
Fig 10.3: Shaking of Sensor Simulator phone..................coooiiiiiiiiiii i, 46
Fig 10.4: The values being written to log file...............cooiiiiii i 48
Rotation feature

Fig 11.1: The initial original position of image.............c..coviiiiiiiiiiiiiiiiiiien, 49
Fig 11.2: The image rotated by 90 degrees clockwise............ccovviiiiiiiiiiiiiiiinin.. 49
Fig 11.3: The image rotated by 90 degrees anti-clockwise.................cocoviiiiin 50
Fig 11.4: The [x,y,z] values being written to log file..................cooiiiiii i, 52

Zoom feature

Fig 12.1: The initial web page when it is loaded in WebView....................ooini. 53
Fig 12.2: The web page zoomed IN..........ooiiiiiiiiiiii i 54
Fig 12.3: The web page zoomed Out.........c.oiiiiiiiii i, 55

Scroll feature

Fig 13.1: The web page being scrolled down...............oooiiiiiiiiiiiiiiiii e, 58
Fig 13.2: The web page being scrolled towards the right.....................oo, 59
Fig 13.3: The web page being scrolled towards top left side...................oooiiiii. 60
Fig 13.4: The web page being scrolled towards bottom right side........................... 61

Testing media playback capabilities of Android
Fig 14.1: The controls on the music application...............ccevviiiiiiiiiiiiiiieieenenns. 63

4. Introduction

The demand for consumer electronic equipments is growing rapidly. One such
device is a mobile phone or more appropriately a ‘smart phone’ as we call it today. Many
smart phone companies today make extensive use of sensors called accelerometers for
developing mobile based applications. The prime purpose of an accelerometer is for
measuring the acceleration and the force of gravity it experiences. Accelerometer based
devices have been there for quite some time, but have recently gained popularity with the
advent of ‘iPhone’ from Apple Inc.

The major smart phone makers like Nokia, Blackberry, Sony Ericsson, Palm etc
today support accelerometer in their mobile devices. The latest player in this market is
Google, Inc with their open source mobile development platform called ‘Android’. The
capabilities of accelerometers are being exploited to develop full-fledged mobile
application like games, to provide enhanced user interface controls and ease of navigation
etc. Another good example is the “Wii gaming console’, which uses these sensors for
achieving a realistic gaming experience.

4.1 Overview of Project

This project focuses on extending the WebKit browser interface of Google’s
mobile development platform called ‘Android’ by creating accelerometer based motion
features like shake feature, orientation of images, zoom in/out, scrolling, etc.

The applications for this platform have been developed using the ‘Android
Software Development Kit’ version m5-rc14 released by Google, Inc. The testing and has
been carried out on the Android emulator supported by the SDK which is integrated with

the Eclipse Integrated Development Environment. The applications have been written

using the Java programming language and run on Dalvik Virtual Machine (DVM). It is a
custom virtual machine designed by Google for embedded platforms like ‘Android’. The
project uses an Open Source Sensor Simulator in order to simulate real time
accelerometer data as input to the Android Emulator. The project also uses various other
Android related tools, the details of which are explained in the development tools section.

The challenge and excitement of working with Android platform can be attributed
to the fact that it involved a learning curve; starting with a ‘Hello world’ and going on to

develop full fledged accelerometer based motion features.

4.2 Organization of Report

This report gives a detailed description about the research work, testing and
application development carried out on the Android Platform. Each deliverables involves
experimenting with the Android SDK and developing accelerometer based applications
mentioned in the project overview section 4.1. The entire project has been divided into two
phases namely ‘PHASE 1’ and ‘PHASE 2’. This report is organized in the form of well
defined sections. Each section consists of an introduction with a clear objective, description
of the simulation or event and the description of the code files.

Given below is the organization of various sections:

Section (5) talks about the Android platform in terms of system architecture and
development tools for Android platform.

Section (6) describes the basic ‘Hello World’ application for Android which helped in
understanding the creation, compilation, debugging etc of an application.

Section (7) describes the functioning of Sensor simulator and the automated input

functionality which is required to send continuous input data from simulator to emulator.

10

Section (8) is related to a simulation even for testing the automated input functionality in a
scenario of ‘throwing the phone’ and recording changing accelerometer values.
Section (9) explains the design methodology used for creating the accelerometer based
features with the help of flow diagrams and description for the same.
Section (10) involves the implementation of the shake feature where an entered text can be
erased by detecting shake motion of the phone.
Section (11) talks about implementation of the rotation feature where images can be rotated
clockwise and anti-clockwise by changing the orientation of the phone.
Section (12) describes the Zoom feature extended with the WebKit browser interface,
where a web page can be zoomed in and out based on tilting the phone.
Section (13) talks about implementation of the WebKit based Scrolling feature where a
web page can be scrolled in up, down, left and right directions by tilting the phone
accordingly.
Section (14) is an independent application to test the media capabilities of the Android
platform.
Section (15) is dedicated to the challenges involved in the project.

Finally, the report concludes by summing up the accomplishments of the project

and briefly talking about the future of Android followed by the references.

11

PHASE 1:

12

5. What is Android

Android is an Open Source mobile development platform developed by Google,
Inc. It is a complete stack consisting of an Operating system, middleware and Applications.
Android has been built on the Linux Kernel version 2.6. It uses a customized virtual
machine which has been optimized to have minimum memory footprint and efficiently
use hardware resources in a constrained mobile environment. The customized virtual
machine in Android is called ‘Dalvik Virtual machine’ or DVM. The Software
development Kit (SDK) released from Google provides the developers with the necessary
tools for creating applications for this platform. The applications are created in java
programming language. Section 5.1 describes in detail the underlying architecture of
Android platform.

Some of the key features of this platform include Application framework,
customized virtual machine, integrated browser, support for 2D and 3D graphic libraries,
media support for various audio and video formats, Bluetooth, 3G, WiFi, hardware
sensors like accelerometer, compass, etc. In addition to these, the platform also includes
support for a development environment consisting of a device emulator, debugging tools,

and plug-in to the Eclipse framework.

13

5.1 Android Architecture

Given below is the architectural diagram of Android and the key components within the
Android system.

APPLICATIONS

BROWSER

APPLICATION FRAMEWORK

Activity Manager || Notification Manager Resource Manager

LIBRARIES ANDROID RUNTIME
[ssL | [WEBKIT | [OPENGL [ES | CORE LIBRARIES
DALVIK VIRTUAL
System Libraries MACHINE

LINUX KERNEL

Memory Management, Process Management, Security, Drivers

Fig 5.1: Android Architecture.

OS Layer: As seen in the above figure, Android used the Linux Kernel at the OS layer.
The kernel is also responsible for memory management, process management, security
and drivers. This layer provides the abstraction between the underlying hardware and the
software system.

Middleware: Above the Linux kernel are set of C/C++ system libraries. Some of the

important libraries include ‘libc’ which is the standard C system library. This has been

14

customized for supporting embedded Linux environment. There are media libraries
which support popular audio, video and image formats. A ‘SQLite’ database engine for
the applications, ‘SGL’ which is the 2D graphic engine, ‘Webkit’ which is the open
source engine that powers the browser, etc.

Dalvik Virtual machine (DVM): Also, the middleware consists of the Android runtime
which includes the customized Dalvik virtual machine (DVM). It executes files in ‘dex’
format which is dalvik executable format. DVM converts the classes compiled by java
virtual machine into dex format with the help of a tool call ‘dx’. The Linux Kernel
handles threading, process management, memory management and other related issues
for the Dalvik Virtual Machine. In addition to the DVM, the runtime also includes the
Core Java Libraries which provides all the java functionality.

Application Framework: The application framework consists of:

Content Providers — It enables one application to share its data with another application.
For example the details of an individual stored in the phone book application could be
used by the email application.

Activity Manager - It is responsible for handling the life cycle of you Activity.
Notification Manager - It is responsible for displaying important alert messages.

Resource Manager - It is responsible making the resources like gif, png images or layout
files used for the UI display available to your application.

Applications: The Android system includes some built-in core applications like the
email client, browser, maps, calendar etc. These applications have been written using the
Java programming language. Any user developed applications exist at this level and

make use of the underlying functionalities of the core java libraries.

15

5.2 Android Development tools

This section gives a brief description of the tools used during the testing and development

of various features for the project.

5.2.1 ADT Eclipse plugin — The Android Development Tools (ADT) is a plugin for
working with the Eclipse framework. This plugin provides support for DDMS (Dalvik
Debug and Monitoring Service) from within Eclipse. Overall, it makes the application
easier and faster in terms of creation, debugging and running.

5.2.2 Android Emulator — The software development kit have a device emulator. It is a
virtual emulator that runs on your computer and simulates the software and hardware
functioning of the Android platform. A developer can easily develop and test applications
without the need of an actual device. The emulator also has a console which allows you to
log kernel output. One can also simulate incoming phone calls and messages (SMS) for

testing purposes. Given below is a screenshot of the device emulator running in eclipse

framework.
ek o
© @l D 3:12AM
11| 258 =l L'l 15he) 6 [z [8] et o
QL ANS|LE Ra | EE Y I 0O P
| Esib Epi il it el (il el 1| s
=z e vl s e i e e
s @ — el

Fig 5.2: Android emulator running in Eclipse

16

5.2.3 DDMS monitoring service — It stands for Dalvik Debug and Monitoring service.

It is a debugging tool and enables a developer to perform various tasks such as screen
capture of the emulator, list running threads, heap information, viewing debugging
messages in logcat, list the running process, simulate incoming call and SMS, etc. Given

below is a screenshot of the DDMS running in eclipse framework.

File Edt Actions Device Help
| Mame Info i:l'hreads | yM Heap- | Emulator Control
® EJ emulstor-tep-5557 Orline mS-reld App description: -
=2 g emulator-tep-5559 nling mS-rcld ::l::sr:llﬂ[)nl:
7 517 £ 8600 '
? 562 A 8601
7 578 % g602
7 582 Y 8603
#&8= VvIDIIWE B R
Log |
Tirne pid tag Message i
11-15 21098, 1 637 dalviky,.. GC!(706ms since lask GC)
11-15 21:09:... 1 637 dalviky... GCold usage 48.5%; now 1.751MB used [3.504ME soft max (3.690MB real max)
11-15 21:09:,., 1 637 dalvikv... GCfreed 62 objects | 822248 bytes in 35ms
11-15 21:09:.., I 637 GOING.. going out make
11-15 21:09:... 1 637 ONE rotating clockwise by 80,0 degrees
11-15 21:09:... 1 637 DEGREES current walue 0.0 degrees
11-1521128. 1 508 Ackivit.., Starting activicy: Intent § action=android.inkent. action,MAIN categaories={android.intent.category, HOME} laun. ..
11-1521:1 1 508 Achivit,. moveTaskToFront: 2
11-1521:1 1 637 dalviky... GC! (180 sec since last GC)
11-15 21:1 1 637 dalviky... GCold usage 47.7%; now 1.672MB used | 3.345ME soft max (3.690MB real max)
11-1521120 . 1 637 dalvikv,.. GC freed 80 objects | 803368 bytes in 20ms
11-15 21208, 1 508 jdwp Ignaring second debugger -- accepting and dropping
11-15 21200, 1 542 jdwp Ignaring second debugger -- accepting and dropping
11-15 21:20:,., 1 556 jdwp Ignering second debugger -- accepting and dropping
11-152F205 .. 1 562 jdwp Ignoring second debugger -- accepting and dropping =
11-15 211208, 1 637 jdwp TIgnioring second debugger -- accepting and dropping v'
Filker: ..

Fig 5.3: DDMS running in Eclipse

Some of the major features of DDMS are explained below which are very useful while
developing and testing and Android application.

(i) Logcat: DDMS gives access to ‘Logcat’, a feature used for writing log messages. It
helps in collecting and viewing system debug messages. One can also filter specific log
messages view them using the ‘logcat’ command from the shell prompt. This feature is

very helpful for checking the control flow of the code and debugging. One can insert log

17

messages in the code and monitor the logcat during the execution of the application to

check for flow of control of the code. The following command is used for writing log

messages to the logcat.

android.util.Log.i("DEGREES:",”current value +String.valueOf(degrees)+” degrees”);

Issuing the above command would create a ‘tag’ named Degrees in the log file with the

associated ‘message’ containing the value of degrees. Given below is a screenshot of

Logcat running in Eclipse framework.

& Java - bitmaplest. java - Eclipse S

File Edit Source Refactor Mavigate Search Project Run Window Help
T C 8 Q- Q- BB @Y G JE B & Java | »
e o« % 15 Java Browsing
console (TN, VDIWE |[# 8= B~ =5
Log |
Tine pid tag Hessage i‘:
I1-=15 21508 A5 40 T 508 ActivityHanager Starting activity, Intent { actio
11-15 21:09:47 477 T 508 ActivityHanager noveTaskToFront | 3
11-15 21:09:47.947 i 562 dalwvikvm-heap GCI (55 =zec since last GC)
11-15 21:09:47.977 I 562 dalvikvm—heap GC old usage 44 .5%; now 1. 607HE u
T1-15 21509 45 997 1 562 dalvikvm-heap GC freed 1040 objects ~ £74272 by
11-15 21:09:52 207 T £37 INSIDE HAKE inside make A
11-15 21:09:52.637 i £37 GOING OUT HAKE going out make 3
11-15 21:09:52 647 I 637 ONE rotating clockwise by 40.0 degree
1115721 20952 Fay T 637 DEGEEES current walue 40 0 degrees
11-1521:09:53.337 il £37 INSIDE HAKE inside make
11-15 °21:09:53.347 T 637 dalvikvm-heap GCl (21 sec since last GCJ
11=15 731 09537 7 I 637 dalvikvm—heap GC old usage 51 5% now 1 80GHME u
e P i i 2 T 637 dalvikvm—heap GC freed 87 objects ~ 767484 byte
11-15 21:09:53.627 T £37 GOING OUT HAKE going out make
11-15 21:09:53 627 T 637 (ONE rotating clockwize by 50.0 degree
i 7 DEGREES current walus 50:0 degrn
11-15 21:09:54.138 I 6537 INSIDE HAKE inside make
11-15.21:09;54,.147 T 637 dalvikvm-heap GC! (800ms since last GC)
11=15"21:09.:54: 157 T 637 dalvikvmn-heap GC old usage 50.2%; now 1 824HE u
11-15 21:09:54 168 I 637 dalvikvm—heap GC freed 62 objects / B02256 byte
11-15 21:09:54 387 I £37 GOING OUT HAKE going out make |
11—15 _21_:_0_9:_5_4_._3_9_? T 63? ONE rotating clockwise by 60.0 degrg_el__'__l
] 1 | 2]
Filker: | !
1

Fig 5.4: ‘Logcat’ running in Eclipse.

18

There are four different kinds of messages that are displayed by the logcat (highlighted
by a red box in the above figure). They are ‘Verbose’, ‘Debug’, ‘Information’, ‘Warning’
and ‘Error’. Each of these messages is color coded for easily distinguishing one for
another. The user inserted messages are displayed as ‘Information’ messages.

(ii) Processes: DDMS has options for viewing all the currently running processes in a
graphical view. It is the equivalent of running the linux command ‘ps - x’. Given below is

the screenshot of all the running processes as seen from DDMS.

Successfully exe

USER FID FPID VSIZE RSS WCHAN PC HAHE

root 1 a 248 160 cl084edc 0000ae2c S ~init (u:7. =:1408)

root 2 u] 1] 1] cO049168 00000000 S kthreadd (u:0. =:0)

root 3 2 o o c003ad20 00000000 S ksoftirgd<s0 (u:0, =:0)
root 4 2 a a cl00460ac 00000000 S5 ewvent=~<0 (u:0. =:85)

root = 2 o o c00460ac 00000000 S khelper (u:0, =:14)

root a2 2]] c00460ac 00000000 S suspend-0 (w0, =:03

root a3 2 o o c00460ac 0000O0CO00 S kblockd-0 {u: 0, =:0)

root 36 2 o o c00460ac 00000000 S cguesue-s0 (u:0, =:03)

root c3:] 2]] c0153ab8 00000000 S kseriod {(u:0, =:03

root 76 2 o o c005=b48 00000000 S pdflush (uw:0, =:03%

root 77 2 o o c005=b48 00000000 S pdflush {(w:0, =:19)

root 7a 2 a a cO0e24f8 00000000 5 kswapdl {(u:0, =:07)

root 79 2 o o c00460ac 00000000 S ai10-s0 (u:0, =:0)

root 201 2 a a cO151168 00000000 5 mtdblockd {(w:0, =:0)

root 220 2 a a cl0460ac 00000000 S kmmed (u:0. =:0)

root 233 2 o o c00460ac 00000000 S rpoiods0 (u:0, =:03)

root 492 1 EE1le 224 fffffff{f 0000=l=d4 5 ~=bin-adbd (un:56. =:457)
root 493 1 2824 300 fifffftff afelc?9c S s=y=tem-bin-usbd {(u:0. =
root 494 1 644 228 =0179838 afelca9c S ssy=tem-bin-debuggerd (u
root 495 1 12564 a08 ffffffff afelc?% = S ~=v=tem~-bin-rild (u:26. =z
root 496 1 EEE3E 13932 =0179838 afelca9c S zvgote (u:l171. =:761)

root 497 1 20248 2164 fifffiff afelclfc S ~=systen-bin-runtime {u:d
blustooth 498 1 1224 776 cl084eds afteldl?c S ~=yv=ten~bin-dbus—dasmon
root 508 1 117096 19944 ffffffff afelclic S =y=tem =srver (u:8153, =
root 541 496 EEE4A0 7892 co0ld9%sac afelcbhbic S zvgote (u:51, =:158)
app_0Q0 542 541 73556 1463p ffffffff afeldZ04 S com.google. process. conter
phone 558 541 72908 15352 ffffffff afeldZ04 S com.google. android. phone
app b a2 541 79528 14340 ffffffff afeldZ204 S com.google. android. home 1
root 612 492 732 iog c00386cc afelceac S ~ssystem-bin-ssh (u:0, =:4
root 613 612 768 36 clleacdc afelbfbo S logocat (w80, =:162)

app 15 637 541 70204 12216 ffffffff afeld204 S com.nesl rotation (u:3le
root 695 492 732 aog c00386cc afelceac S ssy=tem-bin-ssh (u:0, =:1
root 696 695 764 352 clleacdc afelbfbo S logocat (w37, =:82)

root 697 492 732 iog c00386cc afelceac S ~ssystem-bin-ssh (u: 0, =:3
root 598 697 840 324 00000000 afelbfbe R ps (u:0, =:13)

|

< >

Fig 5.5 DDMS listing the currently running processes
(iii) File Explorer: The DDMS also has File Explorer view, which lets you see the

currently installed application i.e. the .apk files installed on the emulator. It is the

19

equivalent of traversing the Linux file system and installing, deleting or listing

application packages. Given below is the screenshot of the file explorer view.

Marne Size Date Tirne Permissions Info
= B data 2005-02-12 01:11 druwsrws--x
8 anr 2003-05-05 19:44 drincranscrie
= @8 app 2008-02-12 01:11 drescrase--x
€l Accel_rotate, apk 71890 Z008-10-27 ZZ:00 -rww-rw-ri-
€l ApiDemos.apk 4337675 2005-02-12 01:11 -rw-r--r--
€1 Hello,apk 10603 2008-11-15 2027 -rww-rw-riv-
€l Openlntents. apk 299441 2005-03-13 0702 -ra-rw-rs-
1 Samplefcc. apk 57540 2005-09-01 02:57 -rw-rw-rw-
1 ¥miForm, apk 16229 Z2008-05-20 0023 -rww-rw-riv-
<l d4.apk 51194 2003-10-06 23:35 -r-ri-rs-
€l intent_example.apk 19957 20053-05-11 20015 -re-rw-bw-
€1 music.apk 2505005 Z008-10-28 0207 -rww-re-riv-
€l rotate.apk F3e46 2005-11-15 2105 -rw-rw-rw-
€1 rotatez, apk 33639 2008-10-23 0640 -rw-rw-rs-
€1 webl.apk Q5110 Z008-10-28 0237 -rww-rw-riv-
1 web_scroll. apk 49524 20058-11-07 09:03 -rw-rw-rn-
1 web_zoom. apk 49539 2005-11-07 02:00 -rw-rw-rw-
€l zooming.apk 71140 Z008-11-04 1525 -rww-rw-riv-
checkin.db 434176 2008-11-15 21126 -pw-r--F-—-
B3 dalvik-cache Z003-05-05 026 drasrasras
B3 data 2005-05-05 04:26 drasras--x
B8 download 2003-05-05 0426 drcranscriae
B drm Z003-05-05 026 drasrasras
B9 logs 2008-05-05 0426 dresrssra
B9 lost+found Z2008-11-15 20:26 drw-re-ria-
B misc 20053-02-12 01:06 dracraras
B8 svstem 2008-05-05 026 dricriscria
timezone 3 20058-11-15 227 -rw-rw-rw-
B9 tombstones 20053-09-15 03:26 drws------
BE system 2008-02-12 0110 drecr-xr-x
B3 trp 2003-11-15 21:27 drwsrasrst

Fig 5.6: File explorer view running in DDMS

5.3.4 ADB - It stands for Android Debug Bridge. Incase when we are not using Eclipse
framework, then ADB helps us to issue command from a DOS console (in windows). It
provides all the GUI features of DDMS in a command line format. For instance, in android
you can have various emulators running, each with their own applications. Some of the

useful adb commands are explained below:

20

1. In order launch an emulator from the command line, traverse to the ‘tools’ directory of

Android SDK and issue the following command:

C:\android-sdk_m5-rc14 windows\tools>emulator.exe

Each time this command is executed, a new emulator instance is created. One can use the
adb commands in-order to query each of the emulator instances.
2. One of the basic commands which help you monitor the currently running emulator

instances is listed below:

C:\android-sdk_m5-rc14 windows\tools>adb devices

Given below is the screenshot of issuing the above command from a command prompt in
windows:
C:\WINDOWS\system32\cmd.exe -[Ofx

icrosoft Windows AP [Uersion 5.1.26881
(C) Copyright 1985-2801 Microsoft Corp.

:“\Documents and Settings:\Neellcd “

:ved android-sdk_mS-reld_windows
vandroid-sdk_mS-rcl4_windows>cd tools
svandroid-sdk_mS-rcl4_windowsstools>adb devices

List of devices attached
enulator-tcp-5555 device @

emulator—tcp-5557 device @
enulator-tcp-5559 device @

ssandroid-sdk_mb—reld_windowsstools>

Fig 5.7: ‘adb devices’ command.

21

As seen from the above figure adb lists of all the emulator instances which are currently
running at the time of execution of this command. It also displays following information
about each of the emulator instances namely:

ID — It is a unique identifier assigned to each of the emulator instances running. The
identifiers are assigned starting from 1,2,3,..... so on.

Serial number — It a unique string identifier associated with each of the emulator
instances. It also has a unique port associated with each emulator incase we need to talk to
a specific emulator.

State — This string identifies the state of the emulator. Here ‘device’ means that the
emulator instance is linked to the adb server. The other states possible are ‘offline’ and
‘bootloader’.

3. In-order to install an application to a specific emulator from command prompt we need

to traverse to the ‘tools’ directory and issue the following command

C:\android-sdk m5-rc14 windows\tools>adb —-d 3 install C:\ android-sdk m5-
rcl4_windows\tools\music.apk

The above command will install the application ‘music.apk’ on the emulator instance
which has the identifier ‘3’ associated with it. One can also use the string identifier instead
if the numerical identifier as seen in the ‘adb devices’ command window. Given below is a
screenshot of executing this command and the emulator screen with the ‘music.apk’ file

installed.

22

\WINDOWS\system32\cmd.exe

icrosoft Windows RP [UVersion 5.1.268@1
(C» Copyright 1985-20@1 Microsoft Corp.

\Documents and SettingssMeel>cd

ed android-sdk_mb-reld_windous
Ssanderoid-sdk_mS-reld_windouws>cd tools
sanderoid-sdk_mS-reld_windouwsstools>adbh devices

ist of devices attached
emulator—tcp-5555 device @ 5[

enulator—-tcp-5557 device @ e
emulator—tcp-5559 device @

ssandroid-sdk_mS5-reld_windowsstools>adbh —d 3 install c:sandroid-sdk_mS-rcld_win
owsstoolssmusic.apk
1242 KB/s (@ bytes in 25856805 .001s)

ssandroid-sdk_mS-reld_windowsstools

Fig 5.8: ‘adb install’ command.

This entire section gave an idea about the Android Platform and its architecture. It
also described the development tools required for testing and debugging applications. The
entire application development and testing of Accelerometer based motion features have
been performed with the Android Development Tool (ADT) plug in for the Eclipse

Integrated Development Environment.

23

6. Hello world in Android.

The Android platform was launched by Google in November 2007. We started
with the project in January 2008 and hence the challenge and excitement rested in
overcoming the initial learning curve which is associated with any new platform. Hence, it
was evident to start with setting up the framework required for application development
on the Android platform and begin with a ‘Hello World” application.

This test application laid the basic ground work required to understand the process
involved in creating, compiling, running and debugging an application on the Android
platform.

The output of here would be an independent application which the user would see
on the home screen of the emulator (Fig 6.1). Once the user clicks on this application, it

would display a welcome message to the user (Fig 6.2).

Fig 6.2 Hello World running on the emulator

24

Given below is a brief description of the User Interface needed to create this application
and the Android API’s used.

Constructing the UI: The user interface for the Hello World program consists of a simple
‘TextView’ needed to display a message to the user. Given below is the code snippet for

this for creating a ‘“TextView’ and setting a user defined text to it.

TextView t = new TextView(this);
tv.setText("Hello people, welcome to the world of Android");

setContentView(tv);

The above snippet shows a ‘TextView’ object being instantiated. The ‘setText’ method is
used to associate a string to the ‘TextView’. Finally the text is displayed in the main view

of the application using ‘setContentView’ method.

In this particular case, the user interface has been directly created in the source code.
Android also provides an alternate approach to create user interfaces for an application by
creating XML based layout files. Here, one can create all the UI elements like text boxes,
buttons, etc in a separate XML layout file. Each of these UI elements would be assigned a
unique id which can be referenced from the main source file. In Android, this XML layout
file is called ‘main.xml’ by default. The XML layout file approach is very useful while
developing large applications which involve a lot of UI elements. Having separate Ul files
helps in reducing the code clutter as the UI element creation is handled in the ‘main.xml’
file. Also, it makes it easy for a developer to make changes and enhancements to Ul

elements in a separate file.

25

The above section explained the process for developing ‘Hello World’ application
on the Android platform. It also mentioned about the basic user interface creation in an
application by either embedding the Ul code within the main source code or having
separate XML based layout files which could be referenced in the main source code.

After testing the ‘Hello World’ application, the next step was to get familiar with
few more test applications involving event handling. These applications would help in
understanding the event handling mechanism and interaction of UI elements. It would also
provide an insight into sending and receiving of data between different UI screens within a
main application. All these sample test applications created for understanding the even

handling mechanism have not been included in this report.

26

7. Sensor Simulator

The hardware API’s and packages in Android enable access to underlying platform
sensors. The different types of sensors supported by the platform are accelerometers,
Compass and Orientation. In order to work with these sensors API’s in Android and to
simulate, detect and test the movement of accelerometer on the Android platform, some
form of motion simulator is required.

We have used an open source simulator called ‘Sensor Simulator’ (version 0.1.4)
which has been shown in (Fig 7.1). This simulator has been developed by an open source
project called OpenlIntents [4]. This simulator provides a means to simulate movements for
the underlying sensors supported by the Android platform, based on the movement of the

mouse pointer on the simulator.

I Consorsmuiator S L ' g

Openintents Sensor Simulator

Yaw T L}
| Pitch) -
| Roll) '
-180 -90 0 a0 180
Settings [
Supported sensors £
(®) yaw & pitch,) roll & pitch) move [¥] accelerometer]
Socket la010 ‘ Set | [Ecampass
Fossible IP addresses: a4 ¥] orientation
10116062 :
Listening on part B010... - [l thermometer

Enabled sensors

L3 KB

accelerometer; 0.00, -0.87, -0.50
compass: 13.40,-27.66,-38.45 B
orientation: -20.00, G0.00, 0.00 §§ [¥] compass

[v| accelerometer

[v] orientation

4
1]

Fig 7.1: Openlntents Sensor Simulator

27

This simulator will be used for simulating movement of the Android Emulator for
testing accelerometer based features like shaking the phone. Also, the features such as
orientation zoom in/out, and scrolling which have been developed by extending the
WebKit browser interface of Android will use this simulator to send real-time input data
while the application is running.

Hence, the simulator was very essential to the features being developed as it
provided means to simulate real time movements of the emulator which could be used as

input to the application running on the phone.

7.1 Connecting Sensor Simulator to Android Emulator.
In order to use this simulator, the next step in the project was to integrate the Openlntents
Sensor Simulator with Android Emulator. After integration, the accelerometer values on

the simulator would be reflected on the emulator screen as shown in (Fig 7.3).

i® yaw & pitch ' roll & pitch) move

Socket |a|:|1 i Set

Fozzible IP addresses:

192 168.1.101
Listening on port 3010,
Firstincoming connection:

LL SERSORS DISARLED
accelerameter; 0.00,-0.74, -0.67
compass: 13.40,-19.07, -43.36
orientation: -20.00, 43.00, 0.00

[el[« L J»

-

Fig 7.2: Accelerometer values generated by moving the Simulator phone

28

The above figure shows the Openlntents Sensor Simulator. This is a standalone jar

application. It lets you simulate sensor data with the mouse in real time. Given below are

the steps required to connect the simulator to the Android emulator, which could then be

used to simulate real-time accelerometer inputs to the all features developed in this

project.

Connection: Procedure for connecting the Sensor Simulator to the Android emulator is
as follows -

1.

2.

Download the openintents-binary-0.1.4.zip package.

Unzip it and then start the simulator by traversing tools > SensorSimulator.jar
(Java standalone application as shown in Fig 7.1).

Install the Openlntents.apk (application package) on the Android emulator from
the command prompt using the adb install command as explained in section 5.4.4.
Launch the Openlntents on the emulator and select the SensorSimulator from the
options.

This pops up a Ul where you can enter the IP address and socket number. This IP
and socket number is shown in the Sensor Simulator (Fig 7.1).

Then go to the testing tab and select ‘Connect’ button on the emulator. During the
first connection setup, all sensors are automatically disabled. This is due to the
fact that we want the application to enable the sensors before reading the values.
Now you can see the sensor data (Fig 7.2) on the emulator screen with a small

delay. The simulator data and the emulator data are in sync with each other.

29

Sensor simulator data: update rate {1/5)

accelerometer

0.00, -0.74, -0.67

compass

13.40, -19.07, -43.36
porientation

-20.00, 48.00, .00

Fig 7.3 Emulator values in sync with the Sensor Simulator (Fig 7.1)
If you move the SensorSimulator phone with the mouse, the accelerometer values [X,y,z]
will change in the Sensor Simulator and correspondingly change on the Android

emulator. These values can then be used in any application on the emulator.

7.2 Addition of automated input functionality

The movement of simulator phone by mouse corresponds to subjecting the [x,y,z]
values as show in (fig 7.4) to change. Hence, if one would manually change any of these
fields, it would cause change in the motion of the simulator phone which would be

detected by the accelerometer, causing [x,y,z] values to change.

Grawity
M] q
'S] d
7 -1 a

Fig 7.4: Gravity settings of Sensor Simulator

Changing the values of the text boxes of [x,y,z] caused the change in the motion
of the simulator phone, which led to change in the sensor values of Accelerometer. The
new generated value would get reflected on the emulator screen as explained in the
connection procedure of section 7.2. However, this is a manual process and requires the

user to change the values every time to generate a small change in the sensor values.

30

Hence, there was a need to come up with some automation which would continuously
pass a set of values to the emulator in the background at a fixed interval, and the actual
application running on the emulator would capture these incoming values and use it in the
application.

So, to achieve this automation, we added the functionality of playing a set of input
values to the [x,y,z] text boxes of the gravity fields in the standalone jar application. On
selecting an input file and clicking the ‘Play’ button, a java thread would be invoked
which would play in the background and read a value after a fixed interval and send it to
the emulator. These values would be used by the application running on the emulator.
This is the main mechanism involved in transmitting the values to the emulator and was a
major step in-order to proceed and go on to create accelerometer based features which
could be tested by a continuous set of input values. In other words, we had a means of
simulating movements on the phone without the need for an actual physical device. The
figure below shows the modifications made to the simulator Jar file. The additional

‘Select input file’, ‘Play’, ‘Stop’ buttons can be seen below.

Grawity
X g
v: 0
z 1
Select input file
Play
Stop

Fig 7.5: Additional functionality of playing the values from a file.

31

The challenge here was to dig through the source code of the Openlntents project
and add this functionality to the existing code. In doing so, I had to ensure that the overall
working of the simulator is not affected and the new functionality behaves as expected.

Given below is a small code snippet for this additional input file choosing functionality.

else if (action.equals("Select input file")) {
fc = new JFileChooser();
/ * *
* Pops up an "Open File" file chooser dialog
*/

int returnVal = fc.showOpenDialog(SensorSimulator.this);
if (returnVal == JFileChooser. APPROVE_OPTION) {

file_ name = fc.getSelectedFile().getPath();
choose _file.setToolTipText(file name);

After this automated functionality was achieved, the next step was to test this automation
by using it in an application which has been described in the next section with the help of a
test scenario of ‘throwing a phone’.

This entire section described the use of Openlntents Sensor Simulator and its
connection to the Android Emulator. It also explains about the automated input
functionality required to send continuous real time input data, which would be used by

accelerometer based features running on the emulator.

32

8. Simulation to test the automated input functionality.

This section describes the application used to simulate the scenario required for
testing the automated input functionality of the simulator, as explained in the previous
section. The idea was to test the automation functionality by means of recording the

changing accelerometer values by simulating an event of ‘throwing a phone’.

Simulated Scenario: Suppose a phone is lying on the table. If the phone starts falling
down, then immediately an alert message should be generated informing the user that the
phone is free falling and the changing accelerometer values should be recorded and
displayed in the background (Fig 8.1). And finally when the phone strikes the ground

another alert message pops up (Fig 8.2) and the accelerometer values come to rest.

recorded.

33

Display Accel meter values

— 7 P ,J

L .

: USER CAUTIONII
Aaah that hurts for reallllll

Fig 8.2: The alert message when the phone strikes the ground.

Given below is the description of the event and the code files used in this simulation.

Description of the event: Initially we will assume that the phone is at rest on a surface.
Hence the initial values of [x,y,z] will be [0,0,-1]. Here the ‘x” and ‘y’ axis is 0, while the
‘z’ axis is -1 due to force of gravity. Then we will simulate an event that the phone is
thrown and is falling down. As soon as the phone starts falling down, then immediately
the accelerometer would start recording change in the x,y,z values. During the fall the
[x,y,z] values will change rapidly to cause a change in the accelerometer values. An alert
message would be generated informing the user that the phone is free falling and the
changing accelerometer values would be recorded and displayed in the background (Fig
8.1). When the phone strikes the ground, the [X,y,z] values will come to rest and so will
the accelerometer values. And finally when the phone strikes the ground another alert
message pops up (Fig 8.2) and the accelerometer values slowly come to rest. The values
generated during the entire simulation are also written to a log file to help in testing and

debugging the code.

34

Description of code and files: The entire coding of this simulation event has been split
up into four files.

Test.java: This file is the main class which is initially executed and which connects to
Sensor Simulator. The functionality for capturing and displaying the [X,y,z] values is

coded in this file. Given below is the snapshot of displaying a value on screen.

/**
* Display values of [X,y,z] on the screen
*/

if(j==1){

TextView templ = (TextView)findViewByld(R.id.one);
templ.setText("[x,y,z] = ["-l— String.ValueOf(String.format("%_zf',dl)) o
+String.valueOf(String.format("%.2f",d2))","

+String.valueOf(String.format("%.2f",d3))+"]");
h

AccelerometerReader.java: This class is called from Test.java and it basically enables
the sensors on the phone. It also tests for a particular sensor (Accelerometer in our case)
and enables it. The accelerometer values corresponding to [x,y,z] are generated in this
class and the result is passed to the Test.java class where they are displayed. Given below

is the snapshot of the reading the values from accelerometer

int sensorValues =
Sensor.getNumSensorValues(Sensors. SENSOR ACCELEROMETER);

float[] out = new float[sensorValues];
Sensors.readSensor(Sensors. SENSOR ACCELEROMETER, out);
android.util.Log.i("FIVE","in read Accelerometer");

return out;

35

main.xml: This is the XML file which has the UI button "throw the phone", used to start
the entire simulation.

main2.xml: It containts the Ul text views to show the rapid changing values of
accelerometer corresponding to [x,y,z] on screen.

For debugging purposes each value is written to a log file. Given below is a snapshot of the

values being written to the log file.

N05-13 04:55. .. I &76 Answver 7. 34825R587982178
05-13 04:55. .. I &76 Ansver —3.872981309890747
N5—-13 04:55. .. I 676 Ansver =5, 29179954528808e
N5-13 04:55. .. I &76 IF 2nd walue

05-13 04:55. .. I &76 FIVE in readicceleroneter
05-13 04:55. .. I &76 FIVE in readicceleroneter
05-13 04:55. .. I 676 Ansver 6.919868469238281
N05-13 04:55. .. I 676 Answver . 200979232788086
N05-13 04:55. .. I &76 Answer L. 2595891952514 kR5
05-13 04:55. .. I &76 FIVE in readicceleroneter
05-13 04:55. .. I &76 FIVE in readicceleromneter
N5—-13 04:55. .. I 676 Ansver B.919868469238281
N05-13 04:55. .. I &76 Answver . 200979232788086
N05-13 04:55. .. I &76 Answver 5. 2595891952514kR5
05-13 04:55. .. I &76 FIVE in readicceleroneter
05-13 04:55. .. I &76 FIVE in readicceleromneter
05-13 04:55. .. I &76 Answer n.o

N05-13 04:55. .. I &76 Answer -8 . hR025447545459
05-13 04:55. .. I &76 An=wer =5.0

Fig 8.3: Values being written to the log file when the code is executing.
After successfully testing this simulation we had a means of sending a continuous set of
accelerometer based movements as input to the emulator. This laid the foundation to test
the accelerometer based features like shake, zoom in/out, scrolling, image orientation, etc
This work was completed as part of Phase 1 of the project. It was followed by
Phase 2 of the project which involved extending the Webkit browser interface by
developing accelerometer based features. The testing and development done is ‘Phase 1’
was instrumental in setting up a strong foundation and knowledge for development on

Android Platform.

36

PHASE 2:

37

9. Design Methodology:

Activity Lifecycle: Every accelerometer based feature is implemented as an Activity.

Given below is basic flow diagram for the lifecycle of an Activity in Android.

[Actaty starts }

e Tl

onCreate()

)

onBestart()

user navigates onStart()
back to your
activity

onBesume()

[Process killed] [A ctivity running]

) L

onFreeze()

1

A

Activity
cotnes to
foreground

Aty
comes to
foreground

otipause()

1

)

= onStop()

L
onDestroy()

e
[Actraty shutdown}

Fig 9.1 Activity lifecycle

The Phase 2 of the project involved developing a specific design strategy and flow

in order to develop the accelerometer based features. In Android, ‘Activity’ class is

38

responsible for creating full screen window for the application in which the developer can

set the user interface elements. A brief description of the flow of Activity is given below:

1. onCreate() : Every Android application has an ‘onCreate’ method. This method is called
initially when the activity is first created. This is where all the initialization, association of
XML layout files to UI elements, setting the content of the view takes place. It is
followed by onStart() or onRestart().

2. onRestart() : Called after the activity has stopped. It calls onStart().

3. onStart() : It is called once the activity becomes visible. This method calls onResume().
4. onResume() : This is called when the activity starts interacting with the application. It is
followed by call to onFreeze() or onPause().

5. onFreeze () : It saves the current state before calling onPause().

6. onPause () : This method is called when a previous activity is going to be restarted. In
this state all he unsaved changes are saved. Once this state completes, then only the next
activity can resume. It calls onResume() or onStop().

7. onStop () : When the current activity becomes invisible and is covered up by another
activity, the onStop method is called. This is followed by onRestart() or onDestroy().

8. onDestroy () : It is called before the activity is destroyed

39

AndroidManifest file:

Every Android application will have an AndroidManifest.xml file. This is a required file in
every application. Given below is the Androidmanifest file for the ‘Hello World’ program

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
package="com.neel">
<application android:icon="@drawable/icon">
<activity android:name=".Hello"
android:label="@string/app name">
<intent-filter>
<action android:name="android.intent.action.MAIN" />
<category
android:name="android.intent.category.LAUNCHER" />
</intent-filter>
</activity>
</application>
</manifest>

As seen in the above Listing:

1. <manifest> tag: Every application will have a <manifest> tag which is the namespace
declaration. This is the root node.

2. <application> tag: This tag includes all the components contained in the package. The
activities and intent filters are defined in the application tags.

3. <Activity> tag: The user can interact with the application through activity. Every
screen that is implemented is an activity and is defined here with additional <activity>
tags. It defined the name of the activity which is ‘.Hello’ in this case. One or more intent
filters are declared within this tag.

4. <intent-filter> tag: An intent is the operation which is going to be performed.

It includes <action> tag which describes the name of the intent action. In this case it is
android.intent.action. MAIN.

It also contains <category> tag which describes the name of the category which is going

to be handled. Here it is ‘android.intent.category. LAUNCHER’

40

9.1 Design pattern flow:

The design strategy and programming aspect involved for developing the
accelerometer based features to extend the Webkit browser interface is described below.
Every design feature namely: shake, image rotation, zomm in/out, scroll etc has two main
files. One of these is a main ‘Test.java’ file from which the activity is launched and the
other is an ‘AccelerometerReader.java’ file which handles the sensors on the Android
platform.

Given below is the design pattern flow of the code functionality for these features.

The flow diagram will be followed by the description of this design pattern.

Activity starts onCreate() {
. » - Initialization

In Test.java - A Thread instantiated
- set the content view
- Thread Started
}

\4
run() {

- Connection to sensor simulator

- Instantiate Accelerometer Reader object

- capture values read by Accelerometer Reader
- call the handler

}

Back in Test.java

- Message handled by the handler

- feature functionality executed,

- Current view invalidated

- New view created and drawn

- new view set to the content view in onCreate()

Fig 9.2 Flow diagram of main ‘Test.java’ class

41

9.1.1 Description of the flow diagram of Test.java class

Initially when the activity is launched, the onCreate method is called. All the
initialization takes place. This includes referencing the UI elements from the XML layout
files and referencing images from the resources folder. A new thread is instantiated which
will handle the entire functionality of the feature. The content view of the Activity is set
to the initial position. This could be the initial screen in case of zooming feature. For
example the web page would be loaded and displayed here. In case of image rotation
feature, the image would get displayed here. Finally, the thread is started.

Once the thread is started, it calls the ‘run’ method. Within the run method, the
connection of Sensor Simulator to Android Emulator takes place in the background. An
object of Accelerometer Reader class is instantiated. The functional details of the sensors
are handled in this class and will be described in the following section. The sensor values
i.e. accelerometer values in our case will be returned back to this thread by the
Accelerometer Reader class. These values would be the continuous automated input
values which would be playing in the background as explained in the section of
automated input functionality. These values are captured in an on going loop. Each time a
[x,y,z] value is received, a handler is invoked.

Handlers:

The mechanism of handlers is indispensable, since in Android only the main class
i.e. the main UI thread which starts the activity has the control over the main content
view of the phone. Handlers allow us to take control of the main content view from a non
Ul thread with the special functionality of handling calls between a Ul and a non Ul

thread.

42

The call given to the handler is handled back in the main UI thread. Here the
functionality pertaining to the respective feature is executed and the current content view
is invalidated. The new view is draw based on the functionality of the feature and it is
passed back to the content view in onCreate method. Thus, the new position on the screen
is repainted.

The entire procedure repeats in a loop till the Sensor Simulator sends values to the
Android Emulator. This explains the basic design flow for the features like shake, image
orientation, zoom in/out, scroll etc.

Given below is design pattern flow of the code functionality of sensors used in

developing the features.

Activity starts

In AccerometerReader.java

A 4

AccelerometerReader {

- Initialization of sensors

- get all supported sensors

- Check for accelerometer

- enable the accelerometer

- read the current accelerometer value [x,y,z]
- return [X,y,z]to the main run() of Test.java

}

Back in Test.java
- the [x,yz] are read continuously
- Proceed with the handler call

Fig 9.3 Flow diagram of ‘AccelerometerReader.java’ class

43

9.1.2 Description of the flow diagram of AccelerometerReader.java class

The ‘run’ method of Test.java class instantiates an ‘AccelerometerReader’ object.
This calls the constructor of Accelerometer reader class. Here, the sensor related
variables are initialized. This is followed by a call to get all the supported sensors on the
Android platform. Specifically, a check is made for accelerometer. Once the
accelerometer is detected from all the supported sensors, it is enabled. The accelerometer
would then start recording the [x,y,z] values sent by the sensor simulator. These values
are read by the Accelerometer reader class and are finally bundled together and returned
to the calling method in the main Test.java class.

These values once returned to the main class are followed by the call to the
handler and the flow proceeds as explained in the previous section.

This was the main design strategy used to develop accelerometer based motion
features by extending the Webkit browser interface of Android platform. Once this
design strategy was formulated, then the process of creating the features was started. The
following sections will describe each of the accelerometer based features developed in

the course of this project.

44

10. Shake feature.

After developing the design flow strategy, the next step was to get started with for
developing accelerometer based features. The first feature was ‘shake’ detection.

The objective here was to implement the Shake feature based on movement of
accelerometer. The advantage of this feature is that it eliminates the need for dedicated
function keys like ‘clear’ and ‘back’ on the phone in this context. The test scenario here
consists of the user entering some text as input (Fig 10.1) and on shaking the Sensor

Simulator the Text Box entry would be cleared. (Fig 10.2).

@ (O 2:50 AM

Shake feature

Enter some text

hiiam a student at san jose

state university

Fig 10.1: The Ul screen with Text Box and connection button.

Shake feature

Fig 10.2: The cleared Text Box due to shake motion of Sensor Simulator

45

Description of the event: The basic principle of shake feature is that if a user wants to
delete something that he previously entered then he can do so by shaking the phone. The
implementation of this feature consisted of a Textbox where user can enter any data. The
user makes a connection to the Sensor Simulator jar application. This is achieved by
clicking the ‘OK’ button on the UI screen. When the user shakes the graphical image of
the phone in the sensor simulator, (Fig 10.3) the data in the Textbox is cleared. When the
phone is shaken the accelerometer values generated are tested against a threshold value.
If this generated value is greater than the threshold then it is detected as a 'shake' motion.

The values generated are written to a log file to help in debugging the code.

(" yaw & pitch roll & pitch ® move

ocket 8010 Set

Firgt incoming connection;
LL SEME0ORE DISABLED!

Incoming connection apened.

Inzoming connection closed.

[»

p I« m]

Iaccelernmeter:-D.SB,1.12,-E.D9 A
Fig 10.3: Shaking of Sensor Simulator phone

46

Description of code and files: The entire coding of this deliverable had been split up
into three files.

Test.java: This is the main class from which the activity is launched. It connects to the
Sensor Simulator jar application with the help of ‘OK’ UI button. The functionality for
detecting the shake motion and capturing the [x,y,z] values during shaking of the phone is
coded in this file. Every time the simulator sends a value to the emulator, the value is
written to the log file. When the value exceeds the threshold, the shake motion is detected
and it gets written to the log file in the form of an information message. Given below is

the code snippet for writing to the log file.

android.util.Log.i("SHAKE",’shake detected”);

AccelerometerReader.java: This class gives access to the sensors supported by the
Android platform. It detects the available sensors and enabled the accelerometer. This
class is called from the main ‘Test.java’ class from a thread. The accelerometer values
corresponding to [X,y,z] are generated in this class, bundled and the result is passed to the
Test.java class where they are used to detect the shake motion. The values generated by
shaking the phone have been written to the Log file as show in Fig 10.3.

main.xml: It is the UI file which shows the Text box and Sensor Simulator connection
button. The code snippet for the two Ul elements namely: text box and button is show

below.

<EditText android:id="(@+id/edittxt"
android:layout width="fill parent"
android:layout height="wrap content"

47

android:paddingLeft="5px"
android:paddingRight="5px"
android:singleLine="false" />

<Button android:id="@+id/button"
android:layout width="wrap content"
android:layout height="wrap content"
android:text="OK" />

As seen in he above listing, each element has an ‘id’ associated with it. This id is used to
reference the element in the main Ul file. Also we can set various display options and
other parameters like the width, height, and font color etc. All these Ul elements are
placed in a Linear layout, which servers as a parent element.

Given below is a snapshot of the log file where the message of ‘Shake detected’ can be

Feceived: SensorSimnulator

in =etEnablefcceleronseter

end =etEnablelficceleronseter

seen.

Hardware Fead line. ..

Hardware

Hardware Connected

THEEE connected to sinulator
THEEE =ztart initialization
FOUR in constructor
Hardware getSupportedSensors()
Hardware Feceiwved: 3

Hardware Feceived: accelerometer
Hardware Feceived: compass
Hardware Feceiwved: orientation
FIVE enable =ensor

SIX

Hardware? enableSensor)
Hardware? Send: acceleromneter
Hardware? Feceived: false

SEVEN

EIGHT end constructor

HINE conpleted initialization
FIVE in readicceleromnster
FIVE in readicceleronster
Answer —2. 2362415790557 86
Answer —1.5053974390029907
Answer —1.8R1805915835251495
IEN i= 11247038

[SHAKE shake detected]

FIVE in readicceleromnster
FIVE in readicceleromnster
Answer —0.2529144585132599
Answer —0.8470873832702037
Answer —0.6042823195457458
LEN 1= 1200177

Fig 10.4: The values being written to log file

48

11. Rotation feature.

The idea for rotation feature was based on the functionality of rotation supported
on the Apple ‘iPhone’. The objective here was to implement the Rotation feature based
on automated accelerometer inputs. The basic principle of rotation feature is that if the
orientation of the phone is changed by a certain degrees, then the orientation of the

application running on the phone must also get oriented and adjust itself accordingly.

anN>30ID

Fig 11.1: The initial original position of image

0
)
V]
X
o
V]

Fig 11.2: The image rotated by 90 degrees clockwise

It was initially decided to have the rotation functionality work with keypad
events. Here, every time the user clicked the ‘UP’ navigation key, the image would get
rotated clockwise by 90 degrees. Similarly, on clicking the ‘DOWN’ navigation key, the
image would rotate by 90 degrees in the anti-clockwise direction. Once this functionality

was achieved, then it was migrated to work with accelerometer automated inputs.

49

n
O
r
n
c
v]

Fig 11.3: The image rotated by 90 degrees anti-clockwise

Description of the event: This deliverable has been simulated to work with images.
Suppose the user is viewing images on his phone. If he rotates the device by certain
degrees, then the images must also get rotated by that degrees and adjust the display
accordingly. This feature has to respond to both clockwise and anti-clockwise rotations.
For demonstration purpose, this deliverable will rotate the images by 90 degrees
in both clockwise and anti-clockwise directions. The implementation of this feature
consisted of a loading an image as soon as the application is launched (Fig 11.1). A
separate thread is instantiated which makes a connection to the Sensor Simulator jar
application in the background. After an initial interval of few seconds, the Sensor
simulator starts sending accelerometer inputs to the emulator. On each input the image
must get rotated by 90 degrees in clockwise direction (Fig 11.2) and anti-clockwise (Fig
11.3) directions. There is a delay of few seconds as the simulator is assigns an IP address
and a socket connection is made to the emulator. Each accelerometer input value and

rotation is written to a log file to help in debugging the code.

50

Description of code and files: The entire coding of this deliverable had been split up
into two files.

Test.java: This is the main class which connects to the Sensor Simulator jar application.
When the application is launched, a Bitmap object is created which is used to create and
load the image from a source. The connection is made to the Simulator in the background
and a new thread is instantiated. This new thread is responsible for reading the
accelerometer values from the AccelerometerReader.java file and passing it to the
Test.java file. As soon as a new accelerometer value is fetched, a call is given to the
‘make’ function of the ‘Makelmage’ class. Makelmage is a subclass of Test class and is
responsible for calculating the new position of image on the display screen.

A mechanism of Handler is used let the main UI thread talk to other activity
classes. The handler sends a message to the ‘handlemessage()’ method which in turn calls
the invalidate() method. This invalidate() method causes the current view on the display
screen to be invalidated and gives a call to the onDraw() function. This onDraw is finally
responsible to display the new rotated image on the screen.

Given below is the snippet of the onDraw() function which display the newly calculated

position of the image on the display screen.

protected void onDraw(Canvas canvas) {
super.onDraw(canvas);

android.util.Log.i("INSIDE ON DRAW", "inside on draw");

bmd.setBounds((getWidth()/2)-scaling_factor, (getHeight()/2)-scaling factor,
(getWidth()/2)+scaling_factor, (getHeight()/2)+scaling_factor);

int w = getWidth();
android.util.Log.i("WIDTH "+w," currently");
int h = getHeight();

51

android.util.Log.i("HEIGHT "+h," currently");

bmd.draw(canvas);

}

This ‘onDraw’ function is called when the handler invokes the invalidate method. The
invalidate method further calls the onDraw and this new position of the image is
calculated and set to the content view.

AccelerometerReader.java: This class is responsible for handling the sensor
functionality. The values of the [x,y,z] are read and passed on to the Test.java class where
they are used for rotating the image by giving a call to the make() function. The [x,y,z]
values during each rotation are written to the Log file for debugging purposes.

Given below is a snapshot of the log file where the message of ‘Shake detected’ can be
seen.

ava - liest.java - Eclipse SDR

File Edit Source Refactor Mavigate Search Project Run Window Help

Al - 0-Q EEE @Y @A Xs (o
Log |
Tine pid tag Hezsage
11-16 21:13:42.720 I 862 Hardware Received: SensorSimulator
11-16 21:13:42.720 I 462 Hardware Connected
11-16 21:13:42.729 I 862 Hardware getSupportedSensors()
11-16 21:13:42.750 I 862 Hardware Received: 3
11-16 21:13:42 750 I 462 Hardware Received: acceleronster
11-16 21:13:42 750 I 862 Hardware Received: compass
11-16 21:13:42.770 I 462 Hardware Received: orientation
11-16 21:13:42.770 I 862 Hardware? enableSenzor()
11-16 21:13:42.779 I 862 Hardware? Send: accelerometer
11-16 21:13:42 800 I 862 Hardware? Received: trus
11-16 21:13:472.840 I 862 X on iteration: 1 0.0
11-16 21:13:4Z2.850 I 862 ¥ on iteration: 1 -0.8660253882408142
11-16 21:13:42 850 I 62 7 on iteration: 1 -0.5
11-16 21: I 862 DEGREES rotate by 90.0 degrn
11-16 21:13:4Z2.861 I 862 MAKE inzide make
11-16 21:13:43.000 I 462 ITERATION NUMEER 1 of for loop
11-16 21:13:43.010 I 862 HANDLER =zending handler message
11-16 21:13:43.080 I 8462 INSIDE ON DREAW inzide on draw
11-16 21:13:43.090 I 862 WIDTH 320 currently
11-16 21:13:43.090 I 462 HEIGHT 431 currently
11-16 21:13:43 149 I E10 ActivityManager Dizplayed activity {com.dS- com.d5. Test}: 3890 ms
11 1¢ B B I 990 T ocn TAWMTT D ERTPRE P SRR [P

Fig 11.2: Tlnlge [x,y,z] values being written to log file.

52

12. Zoom feature.

When a web page is loaded in a browser on a cell phone, it usually occupies the
entire screen area. The underlying fonts are relatively small making it difficult to read
easily. Hence, some form of zoom functionality is required. The goal of this feature was
to extend the Webkit browser interface to support the zoom feature based on tilt detection
of the phone. In the simulated scenario, when the device is tilted in forward direction, it
will cause the web page to zoom in; whereas if the phone is tilted in the backward

direction, the page would zoom out.

ndrovd Emulator

: T|.1_E ‘:n:':,t .-I--..ng!t.-u.ﬁ-l-

Tutorials | References | Examples | Forum

HTML Tuterials
Learn HTKL
Learn ¥HTML
Learn C55

Learn TCRSIP

XML Tutorials At W25chools you will find all thg
Learn XML advanced
Learn DTD
Learn XML DO
Learn X5L

Learn ¥5LT
Learn ¥5L-FO
Learn XPath
Learn XQuery b=
Laearn ¥Link |
Learn XPaointer
Learn Schema
Learn XForms
Learn S0AP

Learn WSDL

Learn RDF

Learn R55

Lesrn WaP

Learn Weh Services

Browser Scripting
Learn JavaScript
Learn HTML DOM

Fig 12.1: The initial web page when it is loaded in WebView.

53

i Android Emulator

web _zoom
Sy *

Tuterials | Referances | Examples | Forum | About

Full Web Buildi

At W3akchools you will find zll the Wab- build
advanced XML, 0L

Select your tutoria

Full Web Build

Cur referances co

JavaSeript, PHP, AY

Try-It-Yourself

At Wiaschools you
With our on-line
experiment with t

Fig 12.2: The web page zoomed in

Description of the event: The figure 11.2 shows the initial position of the web page
when it is loaded. This feature does not use the existing browser which is built in
Android. Instead, we have used the Webkit API’s to instantiate our own WebView. This
WebView can be thought to be a rudimentary mini browser created specially to test the
Webkit API’s and extend them to support zoom feature. Once the simulator connection is

made and accelerometer inputs are detected, the web page starts zooming in. This can be

54

seen in the figure 11.2. This corresponds to the tilt of phone in forward direction. For the
later half of the automated inputs the web page zooms out which corresponds to tilt of

phone in forward direction. This is shown in the figure 11.3.

@ (D 10:15 PM

W3 Schools

Be best-things i (e are free

Tutorisés | References | Examples | Forum | Aboat

HTML Tutarkals

Lesrn HTRSL

Lesrn EHTRAL ' .

Learn c53 Full Web Building T

Lasrn FLEAR

AML Tutoriaks At Waschoals you will ind all the Web- bullding tutor
aowanced XML, SOL Dalnbase

Select your tutorials from i

Lessrn BELT

Lesryr XEL-FO

Lesrn XPath = =

oy 1 irp J}’fl Full Weh Building Ref
n XL F e .

Learn XPoénter Qur refererces oomesr Gl e

Lean Schema MR L llke HTML, MHTKEL, 'C55. XM

Leasrn XForms SQL and muth mess.

Lesrn SOAP

Lz WSEL

Lesrn ROF

Leaern R5E

Lezern Wi AF

Learn Weh Servces Try-It-Yourself on-Li

Erowser Soripting 1 - At Wischoals you wil Eno

Learim pavasoript With car on-lme HTWIL edi

Learn HTRAL DORA L the code on-Ene.

Learn DHTRIL

Learn WESCripl

Lesern WILSTipL

EEVEE: R Fp guick and Easy Learning
Because dime 5 valsshle, we deliver guics and =asy lenrnis

Al Witchools, you chn shudy everyinkig you need bo beam

MENU

Fig 12.3: The web page zoomed out

55

Description of code and files: The entire coding of this deliverable had been split up
into two files.

Web.java: This class starts the main activity. Here, we use the Webkit Api’s to
instantiate our own WebView and load a ‘url’ into the WebView. This is the main class
which connects to the Sensor Simulator jar application. When the application is launched,
a new WebView object is instantiated. A website url is passed to this object and it gets
loaded into the webView. This initial position of the web page is set to the content view
and it displayed on the screen. In the background, a connection is made to the Simulator
and a new thread is instantiated. This new thread is responsible for reading the
accelerometer values from the AccelerometerReader.java file and passing it to the
Web.java file. As soon as a new accelerometer value is read, a call is given to the
getZoomWidth() function which calculates the current zoom width of the entire
WebView. Then a call is made to setZoomWidth() function which sets the new zoom
width for the webView.

This functionality also makes use of handlers to pass the messages between the
main Ul and the non UI thread. The handler invalidates the current view on receiving the
new accelerometer values and the onDraw() method calculates the new position of the
zoomed page. This is set to the main content view and the new zoomed position is
displayed.

AccelerometerReader.java: This class is called from web.java and it basically enables
the sensors on the phone. The values of the [x,y,z] are read and passed on to the Web.java
class. The [X,y,z] values during each zoom are written to the Log file for debugging

purposes.

56

This is the basic functionality of the zoom feature. Also, the WebView which has
been instantiated works successfully like a normal browser. The user can enter a url

address, view different pages, navigate in different directions, etc.

57

13. Scroll feature.

While browsing a web page, a user normally has to use the ‘up’, ‘down’, ‘left’
and ‘right’ navigation keys in order to scroll the page. Also on touch screen phone, one is
required to swipe the finger in the specific direction to scroll. The objective here was to
implement the Scrolling feature based on accelerometer inputs. This feature has been

integrated with the Webkit browser interface supported by the Android platform.

'€ Android Emulator

@ (O 10:23 PM

webscroll
Lern TCRAE

XML Tutorials At W2kchools you will find ail the
Learn XML adwanced
Learn OTD

Learn ¥ML DOM
Learn ¥5L

Learm ¥5LT

Learn X5L-FO
Learn ¥Path

Learn ¥Query
Learn ¥Link

Learn ¥Pointer
Learn Schema
Learn ¥Forms
Learn SOAP

Learn WSIL

Learn RDF

Learn RS5

Learn WaAP

Learn Web Services

Browser Scripting
Learn JavaScript
Learn HTML DOM
Learn DHTML
Learn VBScript
Learn AjAX

Learn E4X

Learn WMLScript

Server Scripti i ;
Learr 5qL pHng Quick and Easy Learning

Learn A5P Because time is valuable, we defiver g
Learn ADO
Learn PHP At W3aSchools, you can study everythi
accessible and handy format.

MET {dotnet)
L'y

"Never increass, bayond what is neces

Fig 13.1: The web page being scrolled down.

58

b

@ (J 10:21 PM

webscroll

Tha Largest Web Devalops

At W3ASchools you will find 2l the Web-building tutarials you nasg
advanced XML, S0L. Database, ?.'Il..'-hir.':eu:ii.]

Select your tutorials from the menu o

Full Web Building References

Cur references cover all Web-building "
standards like HTML, XHTML, €35, XML
JavaScript, PHP, AP, 50L and much rn_

Try-It-Yourself On-Line Example

At W3schools you will find thousands of
‘With our on-line HTML editor you can /@
experiment with the code on-line; |

ecause time is valuable, we deliver quick and easy learming.

t W3schools, you can study everything you need to learn, in an
iccessible and handy format.

NEverincreaEs s ;the mumber of enhtes B

Fig 13.2: The web page being scrolled towards the right.

Description of the event: As soon as a WebView is instantiated, the web page
gets loaded in the WebView which is displayed to the user. Once, the automated
accelerometer inputs are sent to the emulator, the web page starts scrolling initially in the
downward direction, followed by scrolling towards the right. This would correspond to
tilting the phone is downward direction followed by tilting towards right. Also, the

scrolling is carried out for a scenario in which the user could tilt the phone in the

59

downward as well as right direction at a certain angle and upwards to the left direction.
This corresponds to the case of tilting the phone down and towards right edge of screen

and the last case where the device would be tilted towards top left edge of the screen.

[! ndri utr.lr

@ ! (I 10:29 PM

webscroll

A] \'\/

A The best things in fife 4

Tuterials | References | Examples | Forum | .ﬂhl}Li

At W35chools you will find all the V\'E{éﬁ'-_'
aduvanced KML._.'

Select your tul

Full Web B

Cur reference)
standards likg
JavaScripe, PH

Try-It-Yo u

At Wischoo |.I'.
With our ong

Fig 13.3: The web page being scrolled towards top left side.
The above figure shows the web page being tilted towards the top left direction at a
certain angle while the following figure shows the web page being tilted towards bottom

right direction.

60

@ (1) 10:26 PM

webscroll

At W3Schools you will find all the Web-building tuterials you need
advanced XML, 50L Database, Multimedia

Select your tutorials from the menu on

Full Web Building References

Cur references cover all Web-building tef
standards like HTML, XHTML, 55, XML a
JavaScript, PHP, ASP, 50L and much mal

Try-It-Yourself On-Line Example

At W3schools you will find thousands of
‘With our on-line HTML editor you <an e
experiment with the code on-line.

#

il Duick and Easy Learning

i ecause time is valuable, we deliver quick and easy learning.

E t W35chools, you can study everything ywou need to learn, in an
j ccessible and handy format.

Never increase, bevond what is necessary. the number of entities

MENU

Fig 13.4: The web page being scrolled towards bottom right side.

Description of code and files: This feature is very much similar to the zoom feature in
terms of the flow of code and execution of events. The entire coding of this deliverable
had been split up into two files.

Web.java: This is the main class which instantiates a WebView and connects to the

Sensor Simulator jar application. The coding functionality is similar to zoom feature.

61

Based on the tilt of the phone, the new scroll position is calculated by the handler. This
new position is sent to the onDraw function which takes care of drawing the new scrolled
view. Thus, the webView get updated every time the page is scrolled and it is set to the
main content view of the display screen.

AccelerometerReader.java: This class is called from web.java and it basically enables
the sensors on the phone. The underlying functionality of this class is similar to the zoom

feature.

Thus, the four different features namely shake detection, image orientation, zoom
in/out, and scroll have been designed and developed to enhance the Webkit browser
interface. The design methodology and flow pattern served as the foundation for
developing these features in a systematic manner.

All these four features were the software deliverables required for the completion of
this project. Also, an independent application for testing the media capabilities of this
platform was developed. This was an additional application which has been explained in

the following section.

62

14. Testing media playback capabilities of Android.

Since Android was a new platform, we decided to test the media capabilities on
this platform by implementing a Music player. This application was not targeted towards
developing a full - fledged Media player, but aimed at testing the audio playback due to

availability of additional time. This application is note related to accelerometer inputs.

@ () 10:32 PM

Fig 14.1: The controls on the music application.

Description of the event: This feature tests the media capabilities of the Android
platform. On the Ul screen a user has four dedicated buttons namely 'Play’, 'Pause’, 'Stop'
and 'Restart’. On clicking ‘Play’ the .mp3 file stores in the resources directory starts
playing. Each of the independent buttons when clicked should respond accordingly in
reference to the .mp3 file.

Description of code and files: The entire coding of this deliverable had been completed

in a single java file.

63

Mediaplayer.java: This class makes use of the MediaPlayer API’s of Android which
help in playing audio and video files. The four buttons namely 'Play', 'Pause’, 'Stop' and

'Restart' perform the event handling and respond accordingly.

64

15. Challenges involved in the project

This Android platform was launched in November 2007. We began working with
the platform since January 2008. There were many obvious challenges and concerns
associated with the project which are expected while working on any new platform
1. Initially, the main challenge was the learning curve along with the constraints of
limited resources and reference material.

2. Throughout the course of this project I also had to overcome compatibility issues
which aroused with every new release of the platform. The code was not completely
backward compatible with the earlier version and hence required some modifications
over the course of the project. Achieving proper compatibility between the Android
platform, Eclipse framework and java development kit posed challenges during the
development. Finally I stuck to the version m5 rc14 of the SDK.

3. Also, the OpenlIntents sensor simulator required me to manually change the entries to
simulate accelerometer movements. Hence, the solution was to automate the input
functionality thereby allowing a continuous set of inputs which could be used for testing.
4. In order to enhance the sensor simulator with automated inputs, I had to dig through
the source code of the Openlntents project and make sure my modifications do not alter
the actual working functionality of the simulator. This was time consuming process.

5. While designing the features like zoom in/out, image rotation, and scrolling, a
mechanism of handlers was required in order to let a non UI thread talk to the main UI
thread. This was very important mechanism without which helped in resolving a lot of

debugging issues.

65

16. Conclusion

This project has developed and implemented accelerometer based features for the
Android platform like scroll, image orientation, zoom in/out, scroll and has successfully
extended the Webkit browser interface to support these features. These features portray a
new and innovative way to exploit the capabilities of sensors on the Android platform.
The advantage of these motion features is that they have helped in reducing the
dependence on dedicated navigation keys on smart phones. This actually helps as the size
of the display screen does not have to be compensated with adding specific function keys.

The features and experimental coding applications done during the last two
semesters have greatly increased my understanding of the working of Android platform.
There is no limit to the extent of applications which can be developed using Android
platform. This platform might be very successful in future due to the fact that it is Open
source and freely available. The Software development kit exactly simulates the Android
system and hence the developers have a full environment to test and simulate Android
applications.

Future Work:

In addition to accelerometers, the Android platform also supports sensors like
Compass and Orientation. Hence, my future work would involve exploiting the
capabilities of these sensors in my project. Also, I would like to port all these features on
an actual Android device. This platform has already gained popularity with many of cell
phone companies in the market. Given its flexibility and ease of use, there is a strong
possibility that in future we could have a variety of embedded systems and electronic

equipments running Android platform.

66

17. References

[1] [2007] Dennis Majoe, SQUEAK: A Mobile Multi Platform Phone and Networks
Gesture Sensor, Proceedings of the 2007 IEEE 2nd International Conference on
Pervasive Computing and Applications.

[2] [2007] Wook Bahn, A 16-bit Ultra-Thin Tri-axes Capacitive Micro accelerometer for
Mobile Application, International Conference on Control, Automation and Systems.

[3] [2005] Eun-Seok Choi, Beatbox Music Phone: Gesture-based Interactive Mobile
Phone using a Tri-axis Accelerometer, Industrial Technology, IEEE International
Conference.

[4] [2005] Tan Okley. Tilt to Scroll: Evaluating a Motion Based Vibrotactile Mobile
Interface, Proceedings of the First Joint Eurohaptics Conference and Symposium on
Haptic Interfaces for Virtual Environment and Teleoperator Systems.

[5] [2003] L.J.Jang, Signal Processing of the Accelerometer for Gesture Awareness on
Handheld Devices, Proceedings of the 2003 IEEE Intenational Workshop on Robot

and Human Interactive Communication.

[6] Google’s Android project.http://code.google.com/android/index.html

[7] Open Intents project. http://code.google.com/p/openintents/

[8] Android developer forums. http://www.anddev.org/

[9] Android Discussion Groups. http://code.google.com/android/groups.html

67

