
 1

CS297 Report

Accelerometer based motion gestures for Mobile Devices

Neel Parikh

neelkparikh@yahoo.com

Advisor: Dr. Chris Pollett

Department of Computer Science

San Jose State University

Spring 2008

 2

Table of Contents

1. Introduction ……………………………………………………………………………. 3

2. Tools used and Basic structure of Android Application ….…………………………… 3

4. Deliverable 1 ……………………………………………………………………………4

5. Deliverable 2…………………………………………………………………………….6

6. Deliverable 3 ……………………………………………………………………………9

6. Deliverable 4 …………………………………………………………………………..11

8. Future Work …………………………………………………………………………...14

9. Conclusion……………………………………………………………………………..14

10. References ……………………………………………………………………………14

 3

1. Introduction

Many smart phones (for example, iPhone from Apple) today use tiny sensors called

accelerometers to provide enhanced user interface controls. Accelerometers measure the

linear acceleration in the x,y,z directions and are often used for such things as controlling

orientation of the display screen. The goal of this project is to extend the WebKit browser

interface of Google’s Android smart phone SDK so that accelerometer input can be used to

function like a motion-sensing mouse. For instance, moving a phone up or down, left or

right will correspond to scrolling in certain contexts. Another example could be to make the

font size larger or smaller in the browser with our extension by moving the device closer or

farther to the user. The Android platform is a software stack for mobile devices including

an operating system, middleware and key applications. The Applications for Android

platform are written using the Java programming language and run on Dalvik Virtual

Machine (DVM), a custom virtual machine designed for use on embedded systems.

This report gives a detailed description about the research work and testing carried

out on the Android Platform in the form of deliverables. Each deliverables involves

experimenting with the Android SDK and developing independent applications which can

be deployed and tested on the Android emulator. Section two talks about the tools used for

the project and also gives a brief description about the basic building blocks of an Android

application. This is followed by a detailed description of deliverables in terms of the

objective, procedure, code snippets and the screenshot which assist in creating a better

understanding of the project.

2. Tools used and basic structure of Android application.

In order to create an android application we need two basic things, namely: an integrated

development environment (IDE) and the Android software development kit. Since the

actual device is not available in market, I am using a standalone JAR application called

SensorSimulator by OpenIntents project for simulating acceleration and sending inputs to

the emulator.

2.1 Eclipse IDE:

In this project I will make use of Eclipse, an IDE written primarily in Java. In eclipse

there is a provision for installing a custom plug-in called Android Development Tools

(ADT) which supports creating, running, and debugging Android applications.

2.2 Android SDK:

It is a software development kit from Google which includes development tools, an

emulator, and the libraries needed for building an Android application.

 4

2.3 Basic structure of an Android Application

An Android application has four basic building blocks. They are:

2.3.1 Activity:

An activity usually represents a single screen in an application. Navigating from one

screen to another is accomplished by starting a new Activity.

2.3.2 Intent and Intent Filters:

In Android ‘Intent’ is used to navigate from one screen to another. It consists of ‘action’

and the ‘data’ on which the action has to be performed. Intent Filter gives the description

about the kind of Intents an Activity can handle. The Intent Filters are described in the

‘AndroidManifest.xml’ file.

2.3.3 Intent Receiver:

It is used when we want the code in our application to execute in reaction to an external

event.

2.3.4 Service:
It is an application component which runs in the background and does not interact with

the user for an indefinite period of time.

2.3.5 Content Provider:

It is used when an application wants to share its data stored in files, a SQLite database,

with some other application.

3. Deliverable 1 – Hello world application.

3.1 Objective: The objective of Deliverable 1 was to test a simple Hello World

program for the Android Platform. The output of this deliverable was an independent

application which can be seen on the emulator screen (Fig 1). Once the user clicks on this

application it will display a message to the user (Fig 2).

 Fig 1. Hello World application on home screen of emulator

 5

Fig 2. Hello World running on the emulator

3.2 Constructing UI: The initial task was to construct the UI needed for displaying

the message to the user. This involved using a simple TextView to display a custom

message. Given below is the code snippet for this step.

TextView tv = new TextView(this);

 /**

 Sets the string value of the TextView

 */

 tv.setText("Hello people, welcome to the world of Android");

 /**

 Set the activity content to an explicit view

 @param tv The desired content to display

 */

 setContentView(tv);

Here the UI was constructed directly in the source code. Another approach would be to

create a XML file based layout. In this one can create all the UI elements like text boxes,

buttons etc. and refer to each of these elements with the help of unique ids assigned to them

in the main source code.

 6

4. Deliverable 2 – Connecting Sensor Simulator to Android
Emulator.

4.1 Objective: The objective of Deliverable 2 was to integrate the Sensor

Simulator (Fig 3) with Android Emulator. After integration the simulator values would be

reflected on the emulator screen (Fig 4).

Fig 3. Sensor values of Accelerometer generated by moving the Simulator phone

The above figure shows the OpenIntents Sensor Simulator. This is a standalone jar

application. It lets you simulate sensor data with the mouse in real time.

4.2 Connection: Connecting the Sensor Simulator to the Android emulator as

follows -

1. First download the openintents zip package to the local machine.

2. Then start the simulator from the tools > SensorSimulator.jar (Java standalone

application as shown in Fig 3).

3. Install the OpenIntents.apk (application package) on the Android emulator from

the command prompt.

4. Launch the OpenIntents on the emulator and select the SensorSimulator from the

options.

5. This pops up a UI where you can enter the IP address and socket number as

shown in the Sensor Simulator (Fig 3.)

 7

6. Then go to the testing tab and select ‘Connect’ button on the emulator. The first

time you connect to the SensorSimulator, all sensors are disabled automatically.

This is, because it is the Android application's responsibility to enable the sensors

before reading values.

7. Now you can see the sensor data (Fig 4.) on the emulator screen with a small

delay. The simulator data and the emulator data are in sync with each other.

Fig 4. Sensor values on Android Emulator match the simulation values of the Sensor

Simulator (Fig 3).

If you move the SensorSimulator phone with the mouse, the numbers will change in the

SensorSimulator and correspondingly change on the Android emulator. These values can

then be used in any application on the emulator.

4.3 Input file functionality: The other way I was able to change the sensor

values of Accelerometer was by making a change in the gravity settings of the Sensor

Simulator as show in the below figure (Fig 5).

Fig 5. Gravity settings of Sensor Simulator

As seen in the above figure, changing the values of the text boxes of x,y,z caused the

change in the motion of the simulator phone, which led to change in the sensor values of

Accelerometer. This was a manual process and hence required me to change the values

every time to generate a small change in the sensor values. Hence, In order to overcome

this manual work I made an addition functionality to the standalone jar application to

automate the input values as shown in the below figure (fig 6).

 8

Fig 6. Additional functionality of playing the values from a file.

As seen in the figure, I added three buttons which helped me to select a specific input file

stored anywhere on the local machine. Given below is the code snippet for this file

choosing functionality.

else if (action.equals("Select input file")) {

 fc = new JFileChooser();
/**

 * Pops up an "Open File" file chooser dialog

 */

 int returnVal = fc.showOpenDialog(SensorSimulator.this);

 if (returnVal == JFileChooser.APPROVE_OPTION) {

 file_name = fc.getSelectedFile().getPath();

 choose_file.setToolTipText(file_name);

 }

This file had a list of values which I could pass to x,y,z Text Boxes in Gravity settings

every two seconds. Once I select the input file and click ‘Play’, this helps me automate

the input values of x,y,z and thereby avoid manual settings. I used a thread for this

purpose in my java code which would do a file read and pass a new value to x,y,z every

two seconds. These values would then be transferred to the emulator as shown in Fig 4.

 9

5. Deliverable 3 – Generating a simple event.

5.1 Objective: The objective here was to generate a simple event using

Accelerometer. The output would be to show an alert message on the screen during the

fall of the phone (Fig 7) and as the values are changing. And finally when the phone

strikes the ground another alert message pops up (Fig 8).

Fig 7. The UI screen with accelerometer values for [x,y,z] and alert message during the

fall of phone.

Fig 8. The UI screen with accelerometer values and alert message when the phone has

reached ground.

 10

5.2 Description of the event: Initially we will assume that the phone is at rest on

a surface. Hence the initial values of [x,y,z] will be [0,0,-1]. Then we will simulate an

event that the phone is thrown and is falling down and gravitational force is acting on it.

During the fall the [x,y,z] values will change rapidly to cause a change in the

accelerometer values. When the phone is falling it will display an alert message. When

the phone strikes the ground, the [x,y,z] values will come to rest and so will the

accelerometer values. Again an alert message will be generated indicating that the phone

has striked the ground. The values generated have also been written to a log file to help in

debugging the code.

5.3 Description of code and files: The entire coding of this deliverable had been

split up into four files.

5.3.1 Test.java: It contains the class which is initially executed and which

connects to Sensor Simulator. The functionality for capturing and displaying the [x,y,z]

values is coded in this file. Given below is the snapshot of displaying a value on screen.

/**

 * Display values of [x,y,z] on the screen

 */

 if(j==1){

 TextView temp1 = (TextView)findViewById(R.id.one);

temp1.setText("[x,y,z] = ["+ String.valueOf(String.format("%.2f",d1)) + ","

+String.valueOf(String.format("%.2f",d2))","

+String.valueOf(String.format("%.2f",d3))+"]");

 }

 5.3.2 AccelerometerReader.java: This class is called from test.java and it

basically enables the sensors on the phone. It also tests for a particular sensor

(Accelerometer in our case) and enables it. The accelerometer values corresponding to

[x,y,z] are generated in this class and the result is passed to the Test.java class where they

are displayed. Given below is the snapshot of the reading the values from accelerometer

int sensorValues =

 Sensor.getNumSensorValues(Sensors.SENSOR_ACCELEROMETER);

 float[] out = new float[sensorValues];

 Sensors.readSensor(Sensors.SENSOR_ACCELEROMETER, out);

 android.util.Log.i("FIVE","in readAccelerometer");

 return out;

 11

5.3.3 main.xml: It is the UI file which shows the button "throw the phone"

5.3.4 main2.xml: It is the UI file which defines the TextViews to show the rapid

changing values of accelerometer corresponding to [x,y,z] on screen. Also the alert

messages are displayed on this screen.

For debugging purposed I wrote each value to a log file. Given below is a snapshot of the

values being written to the log file.

Fig 9. Values being written to the log file when the code is executing.

6. Deliverable 4 – Implementing Shake feature.

6.1 Objective: The objective here was to implement the Shake feature based on

Accelerometer. The user would enter some text as input (Fig 10) and on shaking the

Sensor Simulator the Text Box entry would be cleared. (Fig 11).

Fig 10. The UI screen with Text Box and connection button.

 12

Fig 11. The cleared Text Box due to shake motion of Sensor Simulator

6.2 Description of the event: The basic principle of shake feature is that if a user

wants to delete something that he previously entered then he can do it by shaking the

phone. He does not have to explicitly use a 'back' or a 'clear' key. The implementation of

this feature consisted of a Textbox where user can enter any data. The user makes a

connection to the Sensor Simulator jar application. When the user shakes the graphical

image of the phone in the sensor simulator, (Fig 12) the data in the Textbox is cleared.

When the phone is shaken the accelerometer values generated are tested against a

threshold value. If this generated value is greater than the threshold then it is detected as a

'shake' motion. The values generated are written to a log file to help in debugging the

code.

Fig 12. Shaking of Sensor Simulator phone

 13

6.3 Description of code and files: The entire coding of this deliverable had been

split up into three files.

6.3.1 Test.java: This class connects to the Sensor Simulator jar application. It is

the class which is initially executed and which connects to Sensor Simulator. The

functionality for detecting the shake motion and capturing the [x,y,z] values during

shaking of the phone is coded in this file. These values are also written to the log file.

6.3.2 AccelerometerReader.java: This class is called from test.java and it

basically enables the sensors on the phone. It also tests for a particular sensor

(Accelerometer in our case) and enables it. The accelerometer values corresponding to

[x,y,z] are generated in this class and the result is passed to the Test.java class where they

are displayed. Given below is the snapshot of the reading the values from accelerometer.

6.3.3 main.xml: It is the UI file which shows the Text box and Sensor Simulator

connection button.

The values generated by shaking the phone have been written to the Log file.

Given below is a snapshot of the log file where the message of ‘Shake detected’ can be

seen.

Fig 13. The values being written to log file

 14

8. Future Work

For the next semester I intend to create motion based features like scrolling a web

page with motion detected by accelerometer. Another feature would be to increase or

decrease the fonts or the zooming in and out based on motion of phone. If time permits, I

also intent to experiment with sensors like the ‘Compass’ and ‘Orientation’ which are

supported by the Android platform. It would be very nice to test the applications if an

actual device or prototype is available within the time constraints.

9. Conclusion

The deliverables and experimental coding applications done during this semester

have greatly increased my understanding of the working of Android platform. These

deliverables have laid the fundamental groundwork needed for building concrete

applications for CS298.

10. References

[1] Dennis Majoe, SQUEAK: A Mobile Multi Platform Phone and Networks Gesture

 Sensor, Proceedings of the 2007 IEEE 2nd International Conference on Pervasive

 Computing and Applications.

[2] [2005] Ian Okley. Tilt to Scroll: Evaluating a Motion Based Vibrotactile Mobile

 Interface, Proceedings of the First Joint Eurohaptics Conference and Symposium on

 Haptic Interfaces for Virtual Environment and Teleoperator Systems.

[3] Google’s Android project.http://code.google.com/android/index.html

[4] Open Intents project. http://code.google.com/p/openintents/

[5] Android developer forums. http://www.anddev.org/

