

RECOGNITION AND AGE PREDICTION WITH DIGITAL

IMAGES OF MISSING CHILDREN

 A Writing Project

Presented to

The Faculty of the Department of Computer Science

San Jose State University

In Partial Fulfillment

of the Requirements for the Degree

Master of Science

by

Wallun Chan

December 2005

 2

© 2005

Wallun Chan

ALL RIGHTS RESERVED

 3

APPROVED FOR THE DEPARTMENT OF COMPUTER SCIENCE

Dr. Chris Pollett

Dr. Mark Stamp

Dr. Robert Chun

 4

Abstract

Principal Components Analysis is a dimensionality reduction technique

that determines eigenvectors (principal components) and corresponding

eigenvalues from the covariance matrix of a data set. The eigenvectors that do

not contribute much to scatter are truncated without excessive data loss. The

remaining eigenvectors represent a new coordinate system in lower dimensional

space, allowing a more compact and efficient representation of the original data.

In this project, we age-progress digital face images of children by applying PCA

to training images that maps young to aged faces. Once we compute the

principal components from the training images, we project an input image onto

the principal components to obtain a weight vector. The coefficients of the

weight vector represent proportions of each corresponding principal component

needed to approximately reconstruct the original input image by a weighted

summation. We want the weight vector to be in close proximity to a cluster of

projected training images. As a result, the reconstructed image should capture

the aged features by resembling a weighted average result. In this report, we

explain the mathematical derivation of PCA, and the eigenface approach that

applies PCA to image data. We then cover the design and development of our

age progression program that applies PCA to grayscale images of whole faces.

Next, we discuss the extension of the program to support color images, and a

feature-based approach to age progression. Finally, we show results of tests

performed to evaluate the performance of the age progression program using

various training image sets of young and aged face images.

 5

Table of Contents

 Page
1. Introduction 8
2. Background and Theory 12

2.1. Principal Components Analysis (PCA) 12
2.2. PCA Theory 13
2.3. Solving for Eigenvalues and Eigenvectors 16
2.4. PCA Algorithm and Eigenfaces 18

3. Initial Design and Implementation 21
3.1. Design and Evaluation 21
3.2. Eigenface Program 21

3.2.1. Image Recognition 21
3.2.2. Program Functionality 24
3.2.3. Program Design 26
3.2.4. Reconstruction and Recognition Results 28

3.3. Grayscale Age Progression 30
3.3.1. Image Retrieval and Preprocessing 31
3.3.2. Age Progression Test Results 33

3.4. Feature Matching Program 36
3.4.1. Shape Context and Bipartite Matching 36
3.4.2. Program Design 41
3.4.3. Feature Matching Test Results 43

3.5. Discussion of Initial Results 46
4. Final Design and Implementation 48

4.1. Feature-Based Age Progression 48
4.2. Feature-Base Overview 48

4.2.1. Feature Detection and Extraction 49
4.2.2. Feature Blending and Reconstruction 53

4.3. Program Functionality 55
4.4. Program Design 58

 6

4.5. Feature-Based Test Results 60
4.6. Colorization Application and Results 64

5. Conclusion 67
References 70

Web References 71

 7

List of Figures and Tables

 Page

Figure 1: Principal components of 2-D data points 15
Figure 2: Eigenface program interface 25
Figure 3: Eigenface program class design 27
Figure 4: Training images of two face classes 28
Figure 5: Example eigenfaces (left four) and mean image 28
Figure 6: Input (top) and reconstructed (bottom) images 29
Figure 7: Eigenvector truncation results 30
Figure 8: Image retrieval, preprocessing, and age progression 32
Figure 9: Young and corresponding aged image pair 34
Figure 10: Concatenated training image 34
Figure 11: Concatenated input image 34
Figure 12: Reconstructed input image 34
Figure 13: Concatenated training image 34
Figure 14: Grayscale reconstructions of aged female and male 35
Figure 15: Edge detected image 36
Figure 16: Log-polar bins and flattened histogram 37
Figure 17: Feature Matching Program Interface 40
Figure 18: Feature matching program class design 42
Figure 19: Shape matching results 44
Figure 20: Successful feature matching 45
Figure 21: Unsuccessful feature matching 45
Figure 22: Feature-based age progression process 50
Figure 23: Parameterized face dimensions 51
Figure 24: Feature detected faces 52
Figure 25: RGB image matrix format 52
Figure 26: Reconstruction and blending process 54
Figure 27: Aged and contoured features and blended image 55
Figure 28: Feature-based age progression program interface 56
Figure 29: Feature-based program class design 59
Figure 30: Training images for clustering test 62
Figure 31: Reconstructed results baby, toddler, and adolescent 63
Figure 32: Reconstructed results with extended training image set 64
Figure 33: Example colorization results 65
Figure 34: Colorized face with bright regions 65

Table 1: Eigenface classification rules 23
Table 2: Recognition results for 200 test images 30

 8

Chapter 1

Introduction

In this project, we use the eigenface technique as described in the classic

paper by Turk and Pentland [11] to produce age-progressed face images of

missing children. The eigenface approach is based on using PCA on image

data. Principal Components Analysis (PCA or Karhunen-Loéve transformation)

is a technique that has been used extensively for pattern recognition applications

such as face detection and recognition. PCA determines a linear transformation

of the coordinate system of multi-variate data such that the axes of the new

coordinate system are in the directions of maximum point scatter. The data with

respect to each new axis are then completely de-correlated. PCA has the

advantage of allowing the reduction of high-dimensional data onto lower

dimensional space by combining features in a least squares fashion. In other

words, data points may be represented with fewer variables in this new

coordinate system.

Mathematically, we wish to determine the eigenvectors of the covariance

matrix of a sample data set that represents a new coordinate system in a lower

dimensional space. The covariance matrix consists of covariances between all

possible pairs of scalar elements in a vector, where covariance measures how

closely two variables change in relation to each other. Therefore, the covariance

matrix indicates the amount of correlation of data between axes. PCA minimizes

 9

the amount of correlation between axes, and hence the amount of redundancy.

If we assume a matrix that is real and symmetric, a set of orthonormal

eigenvectors can always be found. The eigenvectors are then sorted by their

respective eigenvalues. The eigenvectors with the largest eigenvectors are

retained, such that the lesser eigenvectors that do not result in much scatter,

may be truncated without sacrificing excessive accuracy of data reconstruction.

Thus high-dimensionality data is reduced significantly in dimensions, allowing

efficient algorithms that use only the required eigenvectors for the largest few

corresponding eigenvalues. PCA has the property such that projecting data onto

the eigenvectors results in a set of weights that represent linear proportions of

the principal components. The weights can also be used to reconstruct a data

point. PCA represents a sample data point with a proper linear combination of

the eigenvectors (principal components) that minimizes the error between the

reconstructed result and all sample data points. The goal of this project is to

collect an adequately large training image set, compute the principal

components, and reconstruct an input image by determining the proper linear

combination of the principal components. In doing so, we attempt to capture the

essence of aging for each reconstructed image by proportionally combining the

variations across the set of training images represented by each principal

component.

This project consists of several smaller projects that focus on research,

demonstration, and evaluation of several key concepts and techniques used for

 10

image reconstruction and age progression. First, we explore the feasibility of

using PCA by implementing a program for image reconstruction and recognition

of grayscale images. Second, we implement an image-retrieval and

preprocessing tool to obtain and prepare a sufficient set of training and input

images, and use the eigenface program to reconstruct aged grayscale images of

missing children. Third, we begin exploring feature-based age progression by

looking at shape contexts to solve the key problem of locating features on a face

image (e.g. eyes, nose, and mouth). Finally, we take use these concepts and

techniques to implement a program that takes color face images as inputs and

locates major features (e.g. eyes, nose, mouth, and face) to be PCA trained.

Prior to this, the images are preprocessed in terms of size, removal of in-plane

rotation, and cropping to eliminate background and maximize face area. For

each selected feature, each (RGB) color channel is extracted to produce three

separate grayscale images that are concatenated to form an overall grayscale

image. This is done for young and aged sets of images, results of which are also

concatenated to form final training images for each feature. These training

images provide a mapping between young and corresponding aged features. An

input face image is preprocessed in a similar manner as mentioned above except

that the selected features are concatenated with themselves. Each selected

feature from the input image is projected onto a corresponding set of principal

components to produce a set of weights, which are then used to reconstruct a

predicted aged feature. The aged features are then blended back onto the aged

faces at their respective locations. PCA is an unsupervised learning technique

 11

that relies entirely on the training data, and therefore does not take advantage of

specific target data. Selecting, removing, and training on specific features allows

more control over how PCA performs image reconstruction. In addition, we rely

on the preprocessing and normalization of training and input data to minimize

any variants that may negatively affect the output results.

 12

Chapter 2

Background and Theory

2.1 Principal Component Analysis (PCA)

In this section, we give a brief description and analysis of PCA. We

provide more mathematical detail for PCA in the coming sections as it applies to

images. Given N points in d-dimensional space, the eigenvectors of the

covariance matrix for the data set form the new axes of the d-dimensional data

points. Multi-variate data can be expressed more efficiently in terms of the top d’

orthogonal eigenvectors. This is done by projecting the data points onto a vector

passing through the mean of the data points in the direction of the eigenvectors

with the largest eigenvalues. The eigenvectors are sorted such that the ones

with the largest eigenvalues dominate in scatter in their respective directions.

Given a d x d covariance matrix, there are d eigenvectors that may be

computed. PCA reduces this dimensionality by using a mapping process

(Hotelling transform) that attempts to project vectors in d-dimensional space to

vectors in d’ dimensional space in a least squares fashion for d’ < d. Specifically,

instead of a d x d transformation matrix, we form a d’ x d’ transformation matrix

from the top d’ eigenvectors that performs the mapping process. However, since

dimensionality reduction is a lossy process, reconstruction of each sample data

point is no longer exact. To minimize the error between each reconstructed data

point in d’ dimensional space and original sample data point, we solve for the top

 13

d’ eigenvectors from the covariance matrix of the sample data set. In

applications with high-dimensional data (e.g. digital image data), the first d’

eigenvectors have significantly greater eigenvalues than the other d - d’

eigenvectors.

PCA determines and uses the eigenvectors to represent patterns across

all sample data points. Each eigenvector represents a principal component such

that any sample data point may be reconstructed with a weighted linear

combination of the principal components. Each principal component contributes

more or less to each original data point. To reconstruct each training data point

from the eigenvectors, the proper proportions or weights must be determined.

This is done by projecting each sample data point onto the subset of principal

components to form a weight vector.

2.2 PCA Theory

The following mathematical derivation of PCA is taken from Pattern

Classification [3]. Given N d-dimensional sample data vectors nxx ,,1 K , we want

to find a d-dimensional vector 0x that best represents nxx ,,1 K in a least squares

sense. Specifically, ∑
=

=
N

i
ixN

m
1

1 minimizes the error function

() ∑
=

−=
N

i
ixxxE

1

2
00 . However, the mean m does not show the variability of the

data set. To do so, we project the data set onto a d’-dimensional representation,

where d’ ≤ d. Starting with a simpler and more intuitive example, we have e as a

 14

unit vector passing through m , and project the data onto a line given by

cemx += . Given nccc ,,1 K= , we redefine the error function to be

() () () ()

()

() 1,2

2

,

1

2

11

2

1

2

11

22

1

2

1

2

=−+−−

=−+−−

−−=−+=→

∑∑∑

∑∑∑

∑∑

===

===

==

ewheremxmxecc

mxmxecec

mxecxecmecExE

N

i
i

N

i
i

T
i

N

i
i

N

i
i

N

i
i

T
i

N

i
i

N

i
ii

N

i
ii

 (1)

Solving for the partial derivative of the error function, we have

0222 =+−=
∂
∂ mexec
c
E T

i
T

i
i

and obtain

()mxec i
T

i −= (2)

Substituting equation (2) into (1), and noting that the covariance matrix is given

by ()()∑
=

−−
−

N

i

T
ii mxmx

N 11
1

, we obtain

() ()[]

()() ∑∑∑

∑∑∑∑∑

===

=====

−+−=−+−−−

=−+−−=−+−=

N

i
i

T
N

i
i

N

i

T
ii

T

N

i
i

N

i
i

T
N

i
i

N

i
i

N

i
i

mxSeemxemxmxe

mxmxemxccecE

1

2

1

2

1

1

2

1

2

1

2

1

2

1

2 2,

where the scatter matrix S is the covariance matrix times N - 1.

By maximizing SeeT the error function ()ecE , is minimized. We use the

Lagrange multiplier method given by () () ()xgxfxL ⋅+= λλ, subject to () 0=xg

and derivative 0=
∂
∂

+
∂
∂

=
∂
∂

x
g

x
f

x
L λ . We have () () ()egefeL λλ +=, where

 15

() Seeef T= , and since 1== eee T , the constraint function becomes

() 01 =−= eeeg T . We compute the partial derivative of ()λ,eL yielding

() () ()() eSeeSe
e
eg

e
ef

e
eL λλλλ

=→=−=
∂

∂
+

∂
∂

=
∂

∂ 022, (3)

Equations (2) and (3) indicate that the eigenvector e with the largest eigenvalue

λ of the scatter matrix points in the direction such that the projection of the data

onto cemx += is maximized. Figure 1 and () () ()∑
=

−−==
N

i
ii mxececExE

1

2,

from equation (1) indicate that the subtraction of m centers the entire point

distribution about m , and ic extends e such that eci approaches mxi − . We

Figure 1: Principal components of 2-D data points

also note that 1e in Figure 1 is clearly the dominant principal component.

Therefore, the projection of data onto 1e is well approximated without excessive

loss of accuracy. We can extend cemx += and equation (1) in one dimension

to obtain a least squares projection in d’ dimensions with the following error

function in which ijc are coefficients that represent linear proportions of je

 16

() ∑ ∑
= =

−+=
N

i
i

D

j
jijD xecmeE

1

2
'

1
' (4)

(principal components) to approximate the original sample data point. In general,

PCA provides a mapping between N data vectors ()NDxx ,,1 K of d dimensions to

()NDxx '1 ',,' K of d’ dimensions where d’ ≤ d. The top d’ eigenvectors of the

covariance matrix represent the orthogonal axes of the new coordinate system.

2.3 Solving for Eigenvalues and Eigenvectors

We first assume a symmetric real matrix S such that TSS = where

()jiij ss = . We use the Jacobi method with the following derivation from Numerical

Recipes in C [8] that applies a sequence of planar rotational transformation pqT to

S until pq
T

pq TSTS ⋅⋅=' is diagonal. Given the planar rotational matrix

−

=

1

1

1

L

L

MM

L

L

ab

ba

q

p

qp

Tpq , subscripts p and q refer to the rows and

columns of scalars φcos=a and φsin=b . All diagonal elements are unity

except for scalars a , and all off-diagonals are zero except for scalars b .

Multiplying out the diagonalization of pq
T

pq TSTS ⋅⋅=' , the following equations are

obtained:

 17

() ()
() ()

()
()

() () ()essbabass

dsbasasbs

csbasbsas

bqrprsbsas
aqrprsbsas

qqpppqpq

pqqqppqq

pqqqpppp

rprqrq

rqrprp

5'

52'

52'

5,'
5,'

22

22

22

−+−=

++=

−+=

≠≠+=

≠≠−=

We see that only rows p and q, and columns p and q are changed for 'S . The

idea is to zero-out the non-diagonal elements of 'S by applying the planar

rotation matrix pqT with θ iteratively. Since the subscript pq is off-diagonal, we

set equation (5e) to zero and define
pq

ppqq

s
ss

ba
ba

22

22 −
=

−
≡θ and

a
bt ≡ . We then

have

012
02

2

2

2222

2222

=−+

=−+

−=

θ

θ

θ

tt
atata
taata

 (6)

Equation (6) may be solved with the quadratic formula for t. With equation (6)

and setting 0' =pqs , we substitute (5e) into (5c), separate pps from qqs , and obtain

()astss pqpppp 7' −=

Further substitutions with (5a – 5e) yield

()
() ()
() ()dssbss

cssbss

bstss

rqrprqrq

rprqrprp

pqqqqq

7'

7'

7'

τ

τ

+−=

+−=

+=

where
2

tan
1

φτ =
+

=
a
b .

Therefore, for each off-diagonal element of 'S , the Jacobi method involves

using equations (7a – 7d) iteratively to compute S → 11 TST T ⋅⋅ →

 18

2112 TTSTT TT ⋅⋅⋅⋅ → ZSZSTTTTSTTTT T
N

TTTT
N ⋅⋅==⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ '321123 KK . Once

'S becomes diagonal, the eigenvalues are located in the diagonals of 'S , and the

eigenvectors are located in the columns of Z . Numerical Recipes in C [8] gives

an algorithm that executes in ()3nO .

2.4 PCA Algorithm and Eigenfaces

We begin with a digital image as an NN × array of 8-bit grayscale pixel

values from 0 to 255. To prepare a set of M images for PCA analysis, we first

stretch out each NN × image array so that it is 12 ×N , and concatenate M

images to form image matrix { }MΓΓΓ=Γ ,,, 21 K of size MN ×2 . We then

calculate mean image ∑
=

Γ=Ψ
M

i
iM 1

1 and obtain mean adjusted image matrix

{ }MA ΦΦΦ= ,,, 21 K with Ψ−Γ=Φ ii . The corresponding eigenvalues MiKλ and

eigenvectors MiuK are determined from the covariance matrix

TT
i

M

i
i AA

M
C =ΦΦ= ∑

=1

1 . Recall from Section 2.1.1 that we wish to find the top d’

(M in this case) eigenvectors of the covariance matrix that best represents the

data set with respect to the new coordinate system by solving equation (3). It

follows that ()() i
T

i

M

i
i

T
ii

TT uu
M

eeSeeeSe Ψ−ΓΨ−Γ=→=→= ∑
=1

1λλλ , such that the

ith largest eigenvalue iλ and corresponding eigenvector iu are subject to

 19

maximizing ()∑
=

Φ=
M

i
i

T
ii u

M 1

21λ , and

 =

==
otherwise

ji
uu jii
T
j 0

1
δ so that eigenvectors

MiuK must be orthonormal.

 We note that since TAA is 22 NN × , computing for all 2N eigenvalues and

corresponding eigenvectors is infeasible for very large images. An optimized

method given by Turk and Pentland [11] in computing the principal components

first solves for the eigenvalues and eigenvectors of AAT . By doing so, the total

number of eigenvectors is reduced from 2N to M. Mathematically, we solve for

the eigenvectors iv of AAT such that ii
T vvAA λ= , and multiply both sides by A

yielding ii
T vAvAAA λ= . It is apparent that ivA are eigenvectors of TAA . To

obtain the principal components iu , we form the proper linear combinations of

the mean adjusted images Φ by

MivAvu
M

j
ijiji ,,1,

1
K==Φ=∑

=

 (8)

Since M << N2 for typical image sizes, only a relatively small number M’ < M of

eigenvectors are needed. Therefore computation time to solve for the

eigenvalues and corresponding eigenvectors is significantly reduced using this

method. Using proper terminology, we refer to the set of eigenvectors computed

from the covariance matrix of a set of images as eigenfaces, as they resemble

ghostly images of faces. Finally, to project an input image onto the set of

eigenvectors to obtain its corresponding weight vector we compute

{ }==Ω '1 ,, M
T ωω K ()Ψ−Γinput

Tu → ()Ψ−Γ= input
T
ii uω (9)

 20

',,1 Mifor K= . To reconstruct an image from TΩ , we have

() () ()→Ψ−Γ=Ω
−−

input
TTTT uuu 11 Ψ+Ω=Γ T

input u (10)

where () () uuu TTT ==
−1 and Iuu T = for orthonormal vectors '1 Mu K . We note that

these equations are irreversible since the principal components iu represent a

lossy reduction in dimensionality such that some amount information is lost, but

minimized with respect to equation (4).

 21

Chapter 3

Initial Design and Implementation

3.1 Design and Evaluation

In this chapter and sections that follow, we describe, demonstrate, and

evaluate key concepts and techniques that are used to support our main focus of

face reconstruction and age progression.

3.2 Eigenface Program

The purpose of the eigenface program is to demonstrate the feasibility of

the eigenface approach for face recognition and reconstruction. The eigenface

method applies PCA to reduce a set of training images by representing them in

terms of a more compact set of orthogonal vectors (principal components). An

input image is then projected onto the set of principal components to obtain a

weight vector that represents the proportions of each eigenface to reconstruct the

input image.

3.2.1 Image Recognition

To extend the application of eigenfaces for face recognition, we use the

face class and face space Euclidean distance metrics defined by

22
kkclass Ω−Ω=ε and

22
faceface Φ−Φ=ε respectively. The Euclidean distance

between two vectors { }Nxxx ,,1 K= and { }Nyyy ,,1 K= is determined by

 22

() ()∑
=

−=
N

i
ii yxyxd

1

2, . A face class is defined as a group of images (varying in

orientation, lighting, and expression, etc.) of the same person (or object). The

weight vector kΩ is the average of the weight vectors of images in face class k.

For the face space metric, we project an input image onto face space consisting

of M’ eigenfaces, obtain its characteristic weight vector with equation (9), and

compute ∑
=

=Ω=Φ
'

1

M

i
ii

T
face uu ω .

 To perform face recognition, we first gather a set of M training images

{ }MΓΓΓ=Γ ,,, 21 K for X face classes, and assign one or more images to each

person such that each image of the person varies in facial expression,

orientation, and lighting, etc. AAL T= is computed where { }MA ΦΦΦ= ,,, 21 K ,

Ψ−Γ=Φ ii , and ∑
=

Γ=Ψ
M

i
iM 1

1 . The eigenvalues MiKλ and corresponding

eigenvectors MivK are computed from L , MivK sorted in the order of descending

eigenvalues, and the top M’ eigenvalues and corresponding eigenvectors are

selected such that M’ ≤ M. Next, the eigenfaces (principal components) are

computed from equation (8). Then for each training image trainingΓ , we compute

the weight vector from equation (9). kΩ is obtained by averaging the weight

vectors of training images in face class k. XK1Ω represents the knowledge base

that the PCA classifier uses to distinguish between the X face classes. Finally,

 23

we specify face class and face space threshold values classθ and faceθ ,

respectively, such that the classification rules in Table 1 apply.

Table 1: Eigenface classification rules
a) Image is a face and is recognized (kclassε < classθ and faceε < faceθ)
b) Image is a face and is not recognized (kclassε > classθ and faceε < faceθ)
c) Image is not a face and is recognized (kclassε < classθ and faceε > faceθ)
d) Image is not a face and is not recognized (kclassε > classθ and faceε > faceθ)

For input image inputΓ , we subtract Ψ from it to form mean adjusted input image

inputΦ , and project inputΓ onto face space to obtain weight vector TΩ . We then

compute faceΦ and the face class kclassε and face space faceε metrics, and classify

the input image with respect to the rules in Table 1. Note that kclassε represents

the smallest Euclidean distance between TΩ and kΩ for face classes

Xk ,,1 K= .

The classθ and faceθ threshold values are carefully chosen by trial and error,

since they are critical to the recognition performance of the PCA classifier. In

addition, one cannot be specified independently of the other in the case that input

images are not in the same classification as the training images. For example, if

the PCA classifier is trained with face images and input images are not faces,

then specifying a high faceθ value causes the classifier to err for input images that

are known not to be face images. On the other hand, specifying a low faceθ value

 24

causes the classifier to be overly conservative and reject images that are known

to be faces, regardless of whether a match is found for a face class. However, if

we assume a priori that all images are face images, then faceθ may be

disregarded by setting it to a sufficiently large value. We note that the optimal

values for classθ and faceθ to maximize the percentage of recognized faces is

dependent on the set of input images. The classification rules in Table 1

essentially divide the input space into four classification groups. Therefore, the

addition of new input images can change the values for classθ and faceθ and shift

the optimal division lines.

3.2.2 Program Functionality

The program functionality follows the algorithm and details as outlined in

the previous section. Figure 2 shows the user-interface for the eigenface

program. Prior to running the program, a set of training images is loaded and

processed by initially assigning to each person (face class) a directory (name of

which is also the name of the face class) containing one or more images of the

person in different orientations, lighting, or facial expressions, etc. The user

selects the root directory path where the face class directories are stored, and

the program loads into memory the names of the face classes and the paths of

all the associated training images. PCA training is then performed by computing

the eigenfaces (principal components) of all the training images in the selected

root directory, and determining the average weight vector of each face class.

After the training process, the user can match a single face image to its

 25

Figure 2: Eigenface program interface

corresponding face class, or classify a group of input images and determine the

maximum face class and face space values. These values are then used to

maximize the percentage of recognized faces from the set of input images. The

eigenface program implementation also supports image reconstruction. Both

image classification and reconstruction first projects the input image onto the set

of eigenfaces to obtain its characteristic weight vector. For image classification,

the input weight vector is used to compute the face class and face space metrics

by
22

kkclass Ω−Ω=ε and
22

faceface Φ−Φ=ε , respectively. The classification rules

of Table 1 are then used to classify the input image accordingly. For image

reconstruction, the input weight vector is used to compute equations (9) and (10).

 26

3.2.3 Program Design

The eigenface program is implemented in C++ and MFC (Microsoft

Foundation Classes) for user-interface development in the Visual Studio

environment. The class diagram of the eigenface program is shown in Figure 3.

The CImageViewer and CEigenDlg classes are derived from the MFC class

CDialog, which is used to display a dialog box on the screen. The

CImageViewer class implements functionality to display grayscale images by

using the MFC class CImage, which provides imaging support between the user

and the windows device context of a dialog box. The CEigenDlg class

implements functionality for all of the GUI controls. CStringToPtrMap is an MFC

class that maps an MFC CString object to a pointer of type CObject.

CFaceClassData inherits from CObject and maps face class names to

CImageData objects, which encapsulate image pixel data stored in CMatrix

objects. The CImageUtil class provides support for the reading, writing, and

scaling of grayscale pgm images. The pgm image format represents pixel values

in 8 or 16 bit P2 or P5 ASCII format. The P2 version represents each pixel value

by an ASCII number string (e.g. 255 for white). The P5 version represents each

pixel value by an ASCII character in binary format (e.g. character ÿ for white).

The CWinUtil class supports the retrieval of path names of files or directories

stored in a given directory, display of a directory search dialog box, and various

path name manipulation functions. The CWinUtil class encapsulates code that is

taken from the Windows Programming book [12]. CEigenSolver encapsulates

functionality to solve and sort eigenvalues and eigenvectors of a symmetric real

 27

matrix. The implementation is taken from Chapter 11 of Numerical Recipes in C

[8]. The matrix class provides support for most matrix operations and is taken

from the Matrix TCL website [19]. CMatrix extends the matrix class with

additional functions specific to the computation of eigenfaces.

Figure 3: Eigenface program class design

 28

3.2.4 Reconstruction and Recognition Results

To obtain image data for the eigenface program, we retrieve 400 pgm

images from the Cambridge University Engineering Department Database of

Faces [15]. These images consist of 40 face classes with 10 images for a given

person in each face class that varies in lighting, facial expressions, as well as in-

plane and out-of-plane face rotations, with no background details. To train the

eigenface program, we create 40 face classes each assigned 5 images of the

same person for a total of 200 training images. Figure 4 shows several training

images. After training, we obtain eigenfaces and mean images as shown in

Figure 5. To test the program, we reconstruct the remaining 200 non-training

 (a) (b) (c) (d) (e)

 (f) (g) (h) (i) (j)
Figure 4: Training images of two face classes

Figure 5: Example eigenfaces (left four) and mean image

 29

images from the same face classes as the training images, and observe that

about half are reconstructed such that they resemble human faces with

reasonable clarity. For this test, we don’t separate the input images by gender

since they are from the same face classes as the training images. We also retain

all eigenvectors to maximize reconstruction accuracy. Figure 6 shows several

reconstructed images. We note that the lower images in Figures (6b) and (6d)

look very similar to the images in Figures (4b) and (4i), respectively. Patterns

observed from the test results demonstrate that if the input image looks similar to

a subset of the training images, the reconstructed image also looks similar to this

subset. Conversely, if an input image does not resemble a subset of training

images, the quality of the reconstructed image suffers.

 (a) (b) (c) (d)
Figure 6: Input (top) and reconstructed (bottom) images

To obtain recognition performance statistics, we classify the same 200

non-training images as in the reconstruction case. We obtain results in Table 2

by setting θclass = 3602 and θface = 2680, just slightly larger than the maximum

εclass and εface values. This causes the classifier to regard all images as faces

 30

and maximizes the percentage of correctly classified faces at the expense of

increasing the percentage of incorrectly classified faces.

Table 2: Recognition results for 200 test images
a) Correctly classified faces 92%
b) Incorrectly classified faces 8%
c) Unrecognized faces (no face class matches) 0%
d) Not faces 0%
e) Minimum εclass 1151.56
f) Maximum εclass 3601.87
g) Minimum εface 1061.93
h) Maximum εface 2679.54

Figure 7 shows the reconstructed results of a training image using 100,

75, 50, 25, and 0 percent of top eigenvectors retained, respectively. As the

percentage of retained eigenvectors approaches zero, the reconstructed image

approaches the mean image, as predicted by equation (10). Even with only half

of the eigenvectors, the reconstructed image is still discernible.

Figure 7: Eigenvector truncation results

3.3 Grayscale Age Progression

In this section, we describe the implementation of an image-retrieval and

preprocessing tool that downloads applicable images from a missing children's

web server, preprocesses the images in terms of size, orientation, format, and

 31

creates a directory structure to organize and store the images. Specifically, this

tool retrieves young and corresponding aged image pairs of a given person. The

(young, aged) image pairs are then concatenated and input into the eigenface

program to produce age-progressed grayscale images.

3.3.1 Image Retrieval and Preprocessing

The image retrieval and preprocessing tool consists of three command

line Python scripts (webcrawler.py, face_ops.py, and image_ops.py) and a C

helper program (trackface.exe) that calls a face detection library from

http://vasc.ri.cmu.edu/NNFaceDetector [16]. Figure 8 illustrates a high-level

overview of the image retrieval, preprocessing, and age progression process for

grayscale images.

The function of the webcrawler.py script is to communicate with a specific

missing children’s web server and download all missing children's images by

state (e.g. California). Each missing child is represented by one young image

and a corresponding digitally aged image. This script interacts with a Java

servlet object by sending the appropriate parameters. For example, the url

http://www.missingkids.com/missingkids/servlet/PubCaseSearchServlet?act=

usMapSearch&missState=CA&searchLang=en_US returns a web-page that

contains images of all missing children in the state of California. The

webcrawler.py script parses this web-page for all the relevant image tags and

uses the url’s to download the images. Each (young, aged) image pair is stored

 32

in a directory assigned to a given missing person. All image directories are then

stored in a specified root directory.

Figure 8: Image retrieval, preprocessing, and age progression process

The face_ops.py script traverses the directory structure created by

webcrawler.py and preprocesses all images stored in it. First, the script converts

each image to grayscale pgm image file format. It then invokes a helper program

trackface.exe to read the pgm image. The helper program uses a neural network

based face detection library [16] to locate the boundary of a face and center

points of the eyes. It then saves the dimensions to a file that face_ops.py

parses. The face_ops.py script reads the dimensions and then crops a face in

each image to maximize the face area (i.e. reduce pixels covered by hair and

 33

background), and corrects any in-plane rotation so that faces are vertical. The

in-plane rotation angle is determined between a line through the centers of the

eyes and the horizontal axis, and is applied to the center of an image. Each

rotated and cropped (young, aged) face pair is resized, concatenated, and stored

in a specific directory structure. The image_ops.py script traverses the directory

structure created by face_ops.py, and creates a new directory structure that

contains concatenated input or training grayscale pgm images as illustrated in

Figures 11 and 13, respectively. We rely on the Python programming

environment and imaging library to provide the necessary image processing tools

and operations as needed.

3.3.2 Age Progression Test Results

We use the eigenface program to train on a number of concatenated

images created by face_ops.py. Then we input a concatenated image of the

same young face on both sides of the image into the eigenface program. We

wish to obtain a reconstructed image with one side of the image aged-

progressed and extracted. We first download a number of images from

http://www.missingkids.com by using the webcrawler.py python script. An

example pair of young and aged images is shown in Figure 9. The Python

scripts face_ops.py and image_ops.py are then invoked to produce a set of

preprocessed training images as shown in Figure 10. Given a concatenated

input image as shown in Figure 11, the eigenface program produces a

 34

reconstruction of the input image that is shown in Figure 12. The corresponding

training image is shown in Figure 13. Note that the input image in Figure 11 is

Figure 9: Young and corresponding aged image pair

the same left face of Figure 13, and therefore the resultant image should be well

reconstructed. In general, however, we want to reconstruct input images that are

not from the training image set.

Figure 10: Concatenated training image Figure 11: Concatenated input image

Figure 12: Reconstructed input image Figure 13: Concatenated training image

 35

We retrieve and preprocess 300 female (young, aged) face pairs (100 by

100 pixels) with the Python scripts webcrawler.py and face_ops.py. We assign

200 of them as concatenated training images as in Figure 10, and the rest as

young concatenated input images as in Figure 11. For this test we do not

separate the training images according to any criteria, and essentially gather

them in a single group. We use the eigenface program to reconstruct the 100

input images without truncating any eigenvectors, and visually determine that 60

out of the 100 resultant images are reconstructed successfully, and 15 of the 60

successfully reconstructed images are adequately age-progressed. Doing the

same for 150 male training images and 50 male input images, we observe 30 out

of the 50 resultant images are successfully reconstructed, and 10 of the 30

successfully reconstructed images are adequately age-progressed. Figure 14

shows successful grayscale reconstructions of aged female and male grayscale

images for this test. Of the successfully reconstructed images that are not well

age-progressed, the eigenface program is not able to discernibly age the images.

Figure 14: Grayscale reconstructions of aged (right side) female and male

 36

3.4 Feature Matching Program

In this section, we discuss the feasibility of shape contexts as described in

the paper by Belongie and Malik [2] to provide a robust means of quantifying and

representing the shape of an object. This representation is then used in

conjunction with other techniques to locate features on face images. The idea is

to manually select features on a template image, perform edge detection and

sample points from the edges, and then find points on a test image that best

correspond to sampled points of features on the template image.

3.4.1 Shape Context and Bipartite Matching

Shape context is characterized by the spatial relationship between a given

point and all other points in a shape. Specifically, it is defined by a set of points

sampled from the internal or external edges of a shape. The edges are

determined by using an edge detection algorithm that searches for regions of

changing image intensity and localizes the edges between these regions. This

application uses the Boie-Cox edge detector from Practical Algorithms for Image

Analysis [10]. Figure 15 shows an example of an edge-detected image.

Figure 15: Edge detected image

 37

Since face images are inherently random, it is generally difficult to register

points on the edges of an edge-detected face for exact spatial correspondence

and ordering of points between two images. Therefore, we use a random

sampling of points for this application. For a given sampled point, a shape

context descriptor is defined by determining the set of vectors from the point to all

other sampled points on the shape. Specifically, the shape context for a point is

a log-polar histogram that sorts all vectors for a given point by relative distance

and angular orientation. Therefore, for N sampled points, each point has N - 1

vectors to all other points. And the corresponding log-polar histogram that has x

radial and y angular separations has x * y bins. The log-polar plot can be

visualized as a series of concentric circles enclosing a number of wedge bins.

The wedge bins are uniform in angular spacing, but vary logarithmically in the

radial direction. In other words, in Cartesian space, the inner circles are closer

together than the outer circles. But in log space, the circles are spaced uniformly

in the radial direction. Figure 16 below illustrates this. The second picture shows

Figure 16: Log-polar bins and corresponding flattened histogram [2]

 38

a flattened shape context histogram with the relative darkness of the bins

indicating point density. The advantage of using shape contexts is that several

geometric invariances are inherent with this method. Specifically, invariance to

translation is built-in since vectors are between all points on a given shape.

Invariance to scaling is achieved by normalizing all vectors with respect to the

mean vector for all N * (N - 1) pairs of points. Rotational invariance is achieved

by determining the average vector from a point to all other points and using this

vector as the axis to measure the angle from for each point.

Qualitatively, the shape context for each point gives a precise description

of the relative position of a point to all other points. Thus, the shape context can

be used as an effective measurement of shape similarity for a corresponding

point on another shape to be compared. This implies that there must be a point-

to-point correspondence between points on two shapes. To obtain point-to-point

correspondence, the log-polar histogram representing the shape context for each

point on a shape, may be used to calculate the measurement cost between

points on two shapes. Specifically, the χ2 (chi-squared) distance metric is used.

Given two shapes each with N sampled points, a cost matrix of size NN × is set

up where each matrix element is the χ2 cost between points on the two shapes.

The cost equation is defined by
() ()[]
() ()∑

= +

−
=

K

k ji

ji
ij khkh

khkh
C

1

2

2
1 for K bins, where ijC

represents the cost between points pi on one shape and pj on the other. The

term ()khi represents the kth bin of the normalized histograms at pi and pj. In

 39

essence, we are comparing the similarity between histograms at two points. The

denominator for ijC may go to zero, in which case we just assign a zero to the

ratio for a particular k.

Therefore, the matrix represents the cost between all possible pairs of

points, and is an instance of the weighted bipartite matching problem. This

problem may be cast in the more familiar form of the machine scheduling

problem, where the goal is to assign one task to every machine so that every

task will be tended to. The cost elements of the matrix measure the

effectiveness of a machine to perform a specific task, while the objective value

aims to maximize the value for all machine and task pairs. In modeling the

bipartite matching problem with respect to shape contexts, we wish to minimize

the total cost for all point pairs. The bipartite matching problem may be solved in

O(n3) by using the Hungarian algorithm. This application uses a more efficient

algorithm given by Jonker and Volgenant [14] in solving the linear assignment

problem.

By solving the bipartite matching problem, we have the optimal

correspondence between sampled points from features on the template and test

images. We then determine the centroid of each group of points, which

approximately locates corresponding features on the test image. For each group

of corresponded points on the test image, we remove outliers greater than a

 40

number of standard deviations from the mean radial distance between the group

center and each point.

3.4.2 Program Functionality

As detailed above, the application first performs edge detection to retrieve

the edge data of images. These edges are then sampled for both test and target

point-sets for the two images to be mapped. Next, point-to-point correspondence

is performed between the two point-sets to obtain a minimum overall cost. The

Figure 17: Feature Matching Program Interface

 41

user-interface shown in Figure 17 consists of four (control, template, test, and

feature-locate) views. The control view allows the user to load, display, edge

detect, and sample points from images in the template and test views. After

determining the optimal mapping of points, the user selects features in the

template view to be corresponded to features in the test view, which are then

displayed in the feature-locate view. The program takes all the user-selected

points from the template view, maps it to the test image, and removes outliers

that are not within a specified number of standard deviations from the group

center. Next, the convex hull of each group of matched and culled points are

computed, and displayed along with the group centers in the feature-locate view.

The user can fine-tune overall performance by modifying sigma and threshold

values for edge detection sensitivity, angular and radial bin count for point

matching performance, and sample point count from the edge data.

3.4.3 Program Design

The feature matching program is implemented in C++ and MFC and

supports the display of pgm images only. A class diagram of the feature-

matching program is shown in Figure 18. The CControlView class implements

functionality for all of the GUI controls, and is derived from MFC class

CFormView, which is a view with embedded GUI controls. The scroll-enabled

CTemplateView, CTestView, and CFeatureView classes provide support for the

display of grayscale template, test, and feature-matched images, respectively.

The CPGMUtil class implements functionality to read, write, and superimpose

 42

Figure 18: Feature matching program class design

 43

different images (e.g. sampled points and edges overlaid on top of a face image).

The CPointUtil class implements functions for random point sampling from

edges, and determining the centroid and removing outliers from a group of

points. CShapeContextUtil implements the shape context descriptor as detailed

in Section 3.4.1. The implementation takes two sets of points and rearranges

one of them such that each pair of points is (least-cost) optimal in accordance

with a cost matrix determined by the shape context descriptor.

CShapeContextUtil relies on the CBipartiteMatcher class to solve the point

correspondence problem represented by a cost matrix. The CBipartiteSolver

class encapsulates functionality and source code taken from

www.magiclogic.com/assignment.html. CConvexHull implements Graham’s scan

algorithm and encapsulates source code taken from Computational Geometry

[6]. The CEdgeDetector class encapsulates edge detection functionality and

source code taken from Practical Algorithms for Image Analysis [10]. The

CWinUtil and CMatrix classes are described in Section 3.2.3.

3.4.4 Feature Matching Test Results

 We test the program with three sets of data consisting of shape and face

images, and obtain test results by experimenting with various values of detector

sensitivity, angular and radial bin counts, and number of sampled points. We

select values for detector sensitivity, bin count, and sampled point count that

avoid excessive detected edges, decrease in point matching performance, and

increase in computation time, respectively. Excessive detected edges imply a

 44

higher probability that points may be sampled from non-feature edges, which

biases the cost matrix towards non-features. A large bin count causes the cost

matrix to approach a zero matrix and degenerate into random point matching,

assuming a random sampling of points from the edges. Increasing the number of

sampled points also increases the size of the cost matrix, which is solved by the

linear assignment algorithm [14] in O(n3).

To test the program with shapes, we use pgm images of alphanumeric

characters for a total of 36 pairs of test images (A – Z and 0 – 9). With this test

set, the program successfully locates features on 32 of the 36 character images.

Figure 19 shows several feature-located images for various shapes. Next, to test

Figure 19: Shape matching results (selected boxes – top, matched features – bottom)

 45

the program for face images of the same person, we use 50 (young, aged) image

pairs retrieved and preprocessed by the Python scripts webcrawler.py and

face_ops.py described in Section 3.3.1. The program successfully locates user-

selected features (e.g. eyes, nose, and mouth) for 30 of the 50 (young, aged)

pairs. Figure 20 shows a successfully feature-located test image. We then test

50 pairs of face images of different persons and successfully match features for

15 face pairs. Figure 21 illustrates an unsuccessful attempt at feature location

for two different faces.

Figure 20: Successful feature matching of (young, aged) pair of same person

Figure 21: Unsuccessful feature matching of different faces

 46

3.5 Discussion of Initial Results

The test results from Section 3.2.3 suggest that an input image must be

similar to a subset of the training images to be accurately reconstructed. More

specifically, we want the projected input image onto the transformed coordinate

system to be in close proximity to a cluster of training images with specific aged

features. However, PCA is an unsupervised technique such that the outputs are

dependent solely on the training data with no direct control over how the clusters

are formed. Therefore, the optimal training image set is one that contains a

sufficient number of faces of different people, as well as adequate variation in

expression, orientation, lighting, and other parameters for a given person, etc.

This increases the probability that the projected input image is positioned near a

cluster of training images that captures the desired age traits, and with the

reconstructed image resembling the input image, since PCA minimizes the error

between the two.

Image dimensionality is another factor that must be considered. By

increasing the dimensions of the training images, we increase the number of

parameters that may be used to discriminate the different clusters. As a result,

we increase the dimensionality and descriptiveness of the set of principal

components. Also, the dimensionality reduction process is more effective since

for high-dimensional data, the number of eigenvectors that may be truncated far

exceeds the dimensions needed to accurately represent a data point in the new

 47

coordinate system. We conclude that image reconstruction for smaller images is

more sensitive to differences between input and training image data.

To mitigate the limitations of inadequate range and size of the training

data in terms of the number of available images, Section 3.4 begins exploring

feature-based reconstruction and age progression by evaluating a solution for

locating features on a face image. The results of the feature matching program

indicate that using shape contexts and solving the bipartite matching problem,

provide a robust solution for locating features for similar shapes with an exact or

similar ordering and configuration of vertices. However, this solution does not

work well for images that do not have a well registered set of vertices. Given that

face images are inherently random, it is difficult to obtain a precise registration of

points between images. We look to a more robust method of locating features by

using the face detection library from [16], and to explore the feasibility of using

color images to incorporate RGB data and increasing reconstruction

performance.

 48

Chapter 4

Final Design and Implementation

4.1 Feature-Based Age Progression

In this chapter and following sections, we discuss the extension of the

eigenface program to support feature-based face reconstruction and age

progression for color images. Since PCA is an unsupervised training technique,

there is no direct control over the training process. By extracting and analyzing

individual image features, this gives some indirect control over how individual

features are trained and reconstructed. In addition, there is less variation for

individual features as compared to an entire face, and as a result the probability

of accurately reconstructing a feature increases. Next, we conclude from the

results of Section 3.4.4 that a more reliable method of locating features on a face

image is needed. Therefore, we use a neural network based face detection

library [16] that is described in Section 3.3.1. Also, since this application

supports color images, and eigenfaces are derived from grayscale images, we

use an image matrix encoding to incorporate the (red, green, blue) values of a

24-bit color image in a format that supports matrix operations.

4.2 Feature-Based Overview

In feature-based age progression, the process first searches for key

features on a face image (i.e. eyes, nose, mouth, and face). Then, features are

extracted and encoded in a specific image matrix format as in Figure 25. This is

 49

done for each young and corresponding aged image, results of which are

concatenated to form a training image that separates the RGB intensity values

and creates a mapping between each (young, aged) image pair. Next,

eigenfeatures (principal components) are computed from the sets of training

images for each feature on a face image. To age progress an input image, the

features are extracted, projected onto their corresponding eigenfeatures, and

reconstructed to obtain age-progressed features (Sections 2.1.3 and 3.1.2).

These age-progressed features are then blended back to respective locations to

form an overall age-progressed face. Figure 22 illustrates this feature-based

aging process.

4.2.1 Feature Detection and Extraction

To locate features on a face image, we use the neural network based face

detection library from [16]. However, this face detection library only locates the

center of the eyes and face crop boundary of a head image. Therefore, we use

the position of the eyes and face to locate and bound the rest of the features (i.e.

nose and mouth). More specifically, we use the distance between the left and

right eye as a base metric from which to estimate the locations and sizes of the

other features. Figure 23 illustrates a simple dimension scheme to parameterize

all major features on a face.

 50

Figure 22: Feature-based age progression process

 51

Figure 23: Parameterized face dimensions (not to scale)

This dimension scheme, obtained by trial and error, only gives rough

estimates of the dimensions, assumes that certain face feature ratios do not vary

significantly between face images, and works best for frontal faces (no out-of-

plane rotations). To refine the locations and sizes of the face feature boundaries,

we use a simple bounding box algorithm. The algorithm first re-centers a rough

bounding box by performing edge detection on the bounded feature, and using

the edge map within the rough boundary box to approximate the new center. It

then determines the extremities of the edge map within the re-centered box and

uses them to set the borders of the new bounding box. Figure 24 shows several

feature-detected face images.

 52

Figure 24: Feature detected faces

As Figure 25 illustrates, the RGB matrix format is a concatenation of the

red, green, and blue color channels for a young face image that is concatenated

with the same results of an aged face image. Therefore, it is essentially six

Figure 25: RGB image matrix format

images concatenated into a larger one. Since PCA calculates the eigenvalues

and eigenvectors of a real matrix for this application, this is a simple method of

incorporating the RGB values into a format that supports matrix operations. It

also allows an aged-progressed image to be easily extracted by truncating the

 53

proper half a reconstructed image, and then multiplexing the RGB values into a

color image.

 Subsequent to feature-detection, in-plane face / head rotation is removed.

The corrective angle θ is measured between a line passing through the center of

the eyes and the horizontal axis, and the corresponding rotation is applied at the

center of the face image. We obtain the new centers of the eyes by applying the

2D rotation matrix

− θθ

θθ
cossin
sincos

. By applying the rotation angle θ, all features

are then centered about the mid vertical axis. The dimension scheme in Figure

23 is then used in conjunction with edge detection to determine the location and

best fit bounding box of each feature. Next, since PCA derives principal

components from data with the same dimensionality, corresponding features

extracted from each face image are resized to the common dimensions to ensure

valid matrix computations.

4.2.2 Feature Blending and Reconstruction

Subsequent to the computation of the principal components

(eigenfeatures) of each feature, we extract and age-progress features from an

input image by projecting them onto their corresponding eigenfeatures by

equation (9). Age progression is performed by reconstructing the features from

the weight vectors by equation (10). An overall age-progressed face is then

formed from the constituents as illustrated in Figure 26. To blend in the

individual aged features, edge detection is first applied to determine the

 54

Figure 26: Reconstruction and blending process

extremities of each feature. The convex hull is then computed from the edges to

obtain a rough contour. By doing so, each feature can more readily blend into

the face without leaving behind demarcation lines of the bounding boxes around

each feature. We then substitute the hulled features onto the aged face in their

respective locations, essentially overwriting the features on the aged face. The

final post-processing step involves applying a low-pass Gaussian filter to remove

 55

high-frequency effects, resulting in the slight blurring of the image to further

reduce the lines of demarcation left from the blending process. This filter

convolves a square kernel matrix with a Gaussian profile to each pixel of the

input matrix, essentially applying a neighborhood averaging effect that

emphasizes the center kernel values. The Gaussian profile provides a more

effective filter as compared with a uniform filter by removing noise while

preserving detail. Figure 27 shows features that are isolated to highlight the

approximated contour, and the corresponding aged and blended image.

Figure 27: Input image, aged and contoured features, and blended image

4.3 Program Functionality

The feature-based age progression program is implemented in the

Microsoft Visual Studio environment using C++ and MFC, and incorporates most

of the functionality illustrated in Figure 8 except for the retrieval of images,

thereby eliminating the need for multiple modules. Figure 28 shows a screenshot

of the user-interface. The program’s interface consists of four (control, training,

 56

input, and output) views. The left control view allows a user to load, train, and

reconstruct color images, manually modify the in-plane rotation angle of an input

Figure 28: Feature-based age progression program interface

or training image, display the edge map of an image, and select a feature-

detected training image to display. The top-right training view displays feature-

detected training images, and allows the user to modify the feature detection

results by manually dragging and selecting new feature-bounding boxes in the

 57

view area. The lower-middle input view displays the image to be age-

progressed, and also allows user to drag and select bounding boxes around

features to be age-progressed. And the lower-right output view displays the

reconstructed and age-progressed image. The user may also fine-tune

parameters for edge detection and low-pass filter sensitivity, and percentage of

eigenvectors to truncate. Modifying edge detection sensitivity affects the location

of the bounding box of each detected feature. Increasing filter sensitivity causes

the output image to be more blurred. And truncating eigenvectors decreases

execution time at the expense of reconstruction quality.

To run the program, we use the Python script webcrawler.py described in

Section 3.3.1 to retrieve the needed training (young, aged) image pairs. Each

pair is stored in a separate directory, with all directories stored in a root directory.

The user selects the root directory and the program loads all the training (young,

aged) image pairs into memory. PCA training is then performed by first invoking

the face detection library to locate the features (i.e. eyes, nose, mouth, and face)

for all training images. The extracted features from the young and aged images

are formed into training images in the format illustrated in Figure 25, and the

principal components are computed for each respective feature. Next, the user

selects an input image to load into memory to be reconstructed and age-

progressed as illustrated in Figure 22.

 58

4.4 Program Design

A class diagram of the feature-based age progression program is shown

in Figure 29. The CControlView class implements functionality for all of the GUI

controls. The CImageView class supports the display of 24-bit RGB images.

CSelectView extends CImageView by implementing functionality that allows user

to drag selection boxes in the view area. COutputView extends CImageView by

implementing a pop-up context menu in the view area. The CInputView and

CTrainingView classes provide support for both selection boxes and pop-up

menus. The CImageMatrix class implements functionality for various image

processing operations such as rotation, scaling, low-pass filtering, and

conversion from a 24-bit RGB image to the image format as illustrated in Figure

25. It encapsulates MFC class CImage to provide low-level imaging support.

The source code for image rotation, scaling, and low-pass filtering are taken from

Practical Algorithms for Image Analysis [10]. The CFaceMap class maps the

path name of each training image with a CTrainingData object. Each

CTrainingData object contains two CImageData objects, one to hold data for a

young image, and the other for an aged image. The CFaceParams class stores

various face parameters such as bounding box dimensions of detected features

and in-plane face rotation angle. The CFeatureLocate class implements

functionality that locates features on a face image (eyes, nose, mouth, and face),

and determines the best-fit bounding box around each feature by using edge

detection provided by CEdgeDetector. It invokes the face detection library [16] to

find the center positions of the eyes and boundaries of the face, and uses the

 59

Figure 29: Feature-based program class design

 60

dimension scheme in Figure 23 to determine the locations of the other features.

The dimensions of the face features are then mapped in CFaceMap and stored

in CImageData objects for each training image. The CEigenUtil class

implements functionality that traverses a CFaceMap object, uses the in-plane

rotation angle and bounding box dimensions stored in each CImageData object,

and extracts the pixel values in bounding boxes from each training image. It then

forms a set of training images for each feature, and uses each set to compute the

principal components for a given feature. CEigenUtil uses CEigenSolver to

compute the eigenvalues and eigenvectors from the covariance matrix of each

feature. The CReconstruct class implements functionality to extract features

from an input face image by using the CFeatureLocate class, performs feature

age-progression by projecting each input feature onto a corresponding set of

principal components, and reconstructs an overall aged face using the image

processing functionality provided by CImageMatrix. The CPolygonTester class

implements functionality to test whether a point is in a given polygon. This class

is used to extract pixels from a convex hull region of a face image as illustrated in

Figure 27. CMatrix and CWinUtil are discussed in Section 3.2.3. And

CConvexHull and CEdgeDetector are discussed in Section 3.4.3.

4.5 Feature-Based Test Results

We use the same test images as in Section 3.3.2, but of different

dimensions. This includes 300 female (young, aged) face pairs that are 240 by

300 pixels of various age ranges. We assign 200 of them as concatenated

 61

training images as in Figure 10, and the rest as young concatenated input

images as in Figure 11. We use the feature-based aging program to reconstruct

the 100 input images without truncating any eigenvectors, and visually determine

that 85 out of the 100 resultant images are reconstructed successfully, and 30 of

the 85 successfully reconstructed images are adequately age-progressed. Doing

the same for 150 male training images and 50 male input images also 240 by

300 pixels, we observe 35 out of the 50 resultant images are successfully

reconstructed, and 15 of the 35 successfully reconstructed images are

adequately age-progressed. There is a marked improvement in the number of

successfully reconstructed and age-progressed images as compared to the

results from Section 3.3.2. Specifically, we get a 100% and 50% improvement

for female and male age progression results, respectively. This is attributed to

the use of color images and increase in image dimensions, as discussed in

Section 3.5.

We attempt to improve on the feature-based age progression results by

including more (young, aged) training image pairs for a given person. Due the

limited number of (young, aged) pairs per person that can be retrieved from

www.missingkids.com, we obtain images from a family album to obtain create

more training images for a given person. The idea is to gather a number of

images to represent four distinct age groups: baby, toddler, adolescent, and

adult. We then produce a set of training images concatenating all possible pairs

between images in the baby toddler, and adolescent group with images in the

 62

adult group. Specifically, we use the baby, toddler, adolescent, and adult images

as shown in Figure 30 to produce a total of (7 + 6 + 4) x 6 = 102 concatenated

training images.

Figure 30: Training images for clustering test (permission from Chris Pollett)

The idea behind this test, as discussed in Section 3.5, is to have the

projected input image be in close proximity to a cluster of projected training

images with the desired age traits. We input a baby, toddler, and adolescent

image and obtain corresponding reconstructed images as shown in Figure 31,

with feature extraction disabled due to poor extraction results. The results

demonstrate that the close clustering of training images causes the reconstructed

 63

result to resemble a weighted averaging of all the adult training images. The

averaging depends on the input image and where it lies in reference to the

training images. We note that the reconstructed results of (5a) and (5c) are quite

similar, which implies that the projection of the baby and adolescent input images

onto the set of principal components has a smaller Euclidean distance value as

compared to the projection of the toddler input image. Therefore, the PCA

classifier regards the baby and adolescent input faces as being more similar.

 (a) (b) (c)
Figure 31: Reconstructed results (bottom) of baby, toddler, and adolescent

We then add 100 (young, aged) image pairs into the training image set

retrieved by the Python script webcrawler.py to observe how clustering performs

with images from different people. We add a sufficient number of additional

training images and hope that excessive skewing from the intended cluster of

training images is prevented by an averaging effect. Figure 32 shows the

 64

corresponding reconstructed results of the same input images using the

extended training image set with feature extraction disabled. We see from Figure

32 that the addition of training images of different people diminishes the quality of

the reconstruction such that the images no longer resemble the adult images in

Figure 30. This is because as more training images are added, a reconstructed

image is formed with a greater number of principal components due to the

increase in dimensionality of the transformed coordinate system needed to

represent the extra data. As a result, the reconstructed result also captures

unwanted features from the added training images.

Figure 32: Reconstructed results with extended training set

4.6 Colorization Application and Results

To perform further testing of the feature-based aging program, we create

training image pairs to consist of a gray and color image of the same person, as

opposed to a young and aged image pair. By doing so, we attempt to convert

the application from one that ages a color face image, to one that colorizes a

grayscale face image by changing the training image data. Figure 33 shows two

grayscale images and corresponding colorized images.

 65

Figure 33: Example colorization results

For the colorization test, we use webcrawler.py to retrieve 300 young face

images, and copy and convert 200 of them to grayscale images. Each grayscale

and corresponding color image is concatenated to form a training image.

Colorization is then attempted on the remaining 100 grayscale images. Results

show that 90 of the 100 images are successfully reconstructed to reasonably

resemble the input images in color. Visual inspection of the colorization results

shows that the colorized images demonstrate consistent usage of color for skin

tone and features. However, some of the results tend to exhibit regions of

extreme white blending into areas of color as shown in Figure 34. Also, as

Figure 34: Colorized face with bright regions

 66

previously mentioned, aside from color, the reconstructed faces do not look

exactly like the input faces, as there are some slight variations (e.g. shape of

features), therefore this may not be acceptable for a practical application.

 67

 Chapter 5

Conclusion

The test results from Section 4.5 demonstrate that PCA image

reconstruction is highly sensitive to the inclusion of other training images,

particularly those that are not in close proximity to existing projected training

image clusters in multi-dimensional space. The results also show that it is

difficult to manipulate the training images to obtain the desired clustering such

that the projection of an input image is near a cluster of projected training images

in the transformed coordinate system with the desired aged features. In addition,

since image reconstruction in PCA involves a linear combination of all the

principal components, the reconstructed result may capture features from training

images that are not desired. One possible solution is to manually group images

by face classes as described in Section 3.2.1 on eigenface recognition. The idea

is to project an input image to obtain its weight vector, and determine the

smallest Euclidean distance between the input weight vector and average weight

vector for all face classes. Essentially, we classify the input image with respect

to one of the groups of images (face class) representing a given person, and

reconstruct the corresponding average weight vector. This has the effect of

reconstructing a weighted average of the images belonging to the matched face

class.

 68

Another evident issue from the test results of Section 4.5 is program

runtime. We traced the bottlenecks to two locations for the computation of

eigenfaces. Specifically, the algorithm that solves for the eigenvalues and

eigenvectors from a symmetric matrix runs in O(n3). This bottleneck may be

reduced by truncating eigenvectors with negligible eigenvalues at the expense of

reconstruction accuracy, and therefore is not a robust solution. The other

significantly larger bottleneck occurs for the computation of principal components

using equation (8), or ∑
=

=Φ=
M

j
ijiji vAvu

1
, Mifor ,,1 K= , where matrix

{ }MA ΦΦΦ= ,,, 21 K and Ψ−Γ=Φ ii (input minus mean image). Since each

column of A is an image stretched out to an N2 by 1 vector (assuming NN ×

images), increasing the size of the images by multiplying the width or height by a

constant factor also increases the size of A by the same factor. This

observation points to the inefficient image encoding illustrated in Figure 24.

Here, we essentially increase the size of an image by a factor of six. This

increases A by the same factor, and in turn increases execution time by a factor

of six, in computing a set of principal components. To improve runtime, we need

an alternative image format that is more efficient in terms of the size of a matrix

required to store the RGB image data, and also supports closed matrix

operations.

The final issue that needs to be addressed is more accurate feature

detection and location of the eyes, nose, and mouth. Currently, feature detection

relies on the accurate location of the centers of the eyes, and on the assumption

 69

that certain key face ratios do not vary greatly between images (e.g. ratio of

distance between eyes and vertical distance between eyes and nose). This

technique works poorly for faces that are skewed out-of-plane, or have face

ratios that are not typical of the norm. A more robust solution would require a

major undertaking in applying, for example, image segmentation or a customized

neural network application. For image segmentation, the idea is to first convert

images to HSI (hue, saturation, and intensity) color space. This color model

decouples intensity from the color components. This allows color to be

represented by hue and saturation values, where hue is a measure of the

dominant color within the color spectrum, and saturation is a measure of strength

or purity of a certain color. Image segmentation relies on the fact that human

skin typically exhibits hue and saturation values that fall within relatively narrow

bands. Faces can then be segmented by throwing out pixels that do not fall

within these bands. Further image processing are performed, such as feature

erosion / dilation, noise elimination, and region detection, to isolate the major

features on a face that are not of skin tone (i.e. eyes and mouth). Region

detection is then applied to label and identify the remaining processed features.

For a neural network application, the training process would be similar to that of

PCA training. However, coming up with a viable architecture (e.g. number of

nodes per layer) requires a time-consuming trial and error process to determine a

good balance between accuracy and generalization. In addition, given that

images are typically of high dimensionality, there would be an inordinate number

of weights that must be trained.

 70

References

[1] Christopher M. Bishop. Neural Networks for Pattern Recognition.
Oxford University Press, 1995.

[2] Serge Belongie and Jitendra Malik. Matching Shapes. Eighth

IEEE International Conference on Computer Vision (July 2001).

[3] Richard O. Duda, Peter E. Hart, and David G. Stork. Pattern
Classification. John Wiley & Sons, 2001.

[4] Rafael Gonzalez and Richard E. Woods. Digital Image Processing.

Prentice Hall, 2002.

[5] R. Jonker and A. Volgenant. A Shortest Augmenting Path
Algorithm for Dense and Sparse Linear Assignment Problems.
Computing 38, 325-340, 1987.

[6] Joseph O’Rourke. Computational Geometry. Cambridge

University Press, 1998.

[7] Maria Petrou and Panagiota Bosdogianni. Image Processing: The

Fundamentals. Wiley & Sons, 1999.

[8] William H. Press, Brian P. Flannery, Saul A. Teukolsky, and William

T. Vetterling. Numerical Recipes in C. Cambridge University
Press, 1988.

[9] Stuart Russell and Peter Norvig. Artificial Intelligence: A Modern

Approach. Pearson Education, Inc., 2003.

[10] Michael Seul, Lawrence O'Gorman, and Michael J. Sammon.
Practical Algorithms for Image Analysis: Description, Examples,
and Code. Cambridge University Press, 2000.

[11] Matthew Turk and Alex Pentland. Eigenfaces for Recognition.

Journal of Cognitive Neuroscience, Vol. 3, No. 1, 1991.

[12] Mario Giannini and Jim Keogh. Windows Programming:

Programmer's Notebook. Prentice Hall, 2001.

 71

Web References

[13] Lindsay I. Smith. A Tutorial on Principal Components Analysis.
http://www.cs.otago.ac.nz/cosc453/student_tutorials/principal_com
ponents.pdf, 2002.

[14] R. Jonker and A. Volgenant. Linear Assignment Source Code.

http://www.magiclogic.com/assignment.html.

[15] Cambridge University Engineering Department Database of Faces.
http://www.uk.research.att.com/facedatabase.html.

[16] Henry A. Rowley, Shumeet Baluja, and Takeo Kanade. Face

Detection Library. http://vasc.ri.cmu.edu/NNFaceDetector/.

[17] Missing Children’s Website. http://www.missingkids.com.

[18] Dmitri Pissarenko. Eigenface-Based Facial Recognition.
http://dapissarenko.com/resources/2002_12_01_eigenfaces.pdf,
2002.

[19] Matrix TCL Lite Source Code. http://www.techsoftpl.com.

