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Abstract 

Principal Components Analysis is a dimensionality reduction technique 

that determines eigenvectors (principal components) and corresponding 

eigenvalues from the covariance matrix of a data set.  The eigenvectors that do 

not contribute much to scatter are truncated without excessive data loss.  The 

remaining eigenvectors represent a new coordinate system in lower dimensional 

space, allowing a more compact and efficient representation of the original data.  

In this project, we age-progress digital face images of children by applying PCA 

to training images that maps young to aged faces.  Once we compute the 

principal components from the training images, we project an input image onto 

the principal components to obtain a weight vector.  The coefficients of the 

weight vector represent proportions of each corresponding principal component 

needed to approximately reconstruct the original input image by a weighted 

summation.  We want the weight vector to be in close proximity to a cluster of 

projected training images.  As a result, the reconstructed image should capture 

the aged features by resembling a weighted average result.  In this report, we 

explain the mathematical derivation of PCA, and the eigenface approach that 

applies PCA to image data.  We then cover the design and development of our 

age progression program that applies PCA to grayscale images of whole faces.  

Next, we discuss the extension of the program to support color images, and a 

feature-based approach to age progression.  Finally, we show results of tests 

performed to evaluate the performance of the age progression program using 

various training image sets of young and aged face images. 
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Chapter 1 

Introduction 

 

In this project, we use the eigenface technique as described in the classic 

paper by Turk and Pentland [11] to produce age-progressed face images of 

missing children.  The eigenface approach is based on using PCA on image 

data.  Principal Components Analysis (PCA or Karhunen-Loéve transformation) 

is a technique that has been used extensively for pattern recognition applications 

such as face detection and recognition.  PCA determines a linear transformation 

of the coordinate system of multi-variate data such that the axes of the new 

coordinate system are in the directions of maximum point scatter.  The data with 

respect to each new axis are then completely de-correlated.  PCA has the 

advantage of allowing the reduction of high-dimensional data onto lower 

dimensional space by combining features in a least squares fashion.  In other 

words, data points may be represented with fewer variables in this new 

coordinate system. 

 

Mathematically, we wish to determine the eigenvectors of the covariance 

matrix of a sample data set that represents a new coordinate system in a lower 

dimensional space.  The covariance matrix consists of covariances between all 

possible pairs of scalar elements in a vector, where covariance measures how 

closely two variables change in relation to each other.  Therefore, the covariance 

matrix indicates the amount of correlation of data between axes.  PCA minimizes 
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the amount of correlation between axes, and hence the amount of redundancy.  

If we assume a matrix that is real and symmetric, a set of orthonormal 

eigenvectors can always be found.  The eigenvectors are then sorted by their 

respective eigenvalues.  The eigenvectors with the largest eigenvectors are 

retained, such that the lesser eigenvectors that do not result in much scatter, 

may be truncated without sacrificing excessive accuracy of data reconstruction.  

Thus high-dimensionality data is reduced significantly in dimensions, allowing 

efficient algorithms that use only the required eigenvectors for the largest few 

corresponding eigenvalues.  PCA has the property such that projecting data onto 

the eigenvectors results in a set of weights that represent linear proportions of 

the principal components.  The weights can also be used to reconstruct a data 

point.  PCA represents a sample data point with a proper linear combination of 

the eigenvectors (principal components) that minimizes the error between the 

reconstructed result and all sample data points.  The goal of this project is to 

collect an adequately large training image set, compute the principal 

components, and reconstruct an input image by determining the proper linear 

combination of the principal components.  In doing so, we attempt to capture the 

essence of aging for each reconstructed image by proportionally combining the 

variations across the set of training images represented by each principal 

component. 

 

This project consists of several smaller projects that focus on research, 

demonstration, and evaluation of several key concepts and techniques used for 
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image reconstruction and age progression.  First, we explore the feasibility of 

using PCA by implementing a program for image reconstruction and recognition 

of grayscale images.  Second, we implement an image-retrieval and 

preprocessing tool to obtain and prepare a sufficient set of training and input 

images, and use the eigenface program to reconstruct aged grayscale images of 

missing children.  Third, we begin exploring feature-based age progression by 

looking at shape contexts to solve the key problem of locating features on a face 

image (e.g. eyes, nose, and mouth).  Finally, we take use these concepts and 

techniques to implement a program that takes color face images as inputs and 

locates major features (e.g. eyes, nose, mouth, and face) to be PCA trained.  

Prior to this, the images are preprocessed in terms of size, removal of in-plane 

rotation, and cropping to eliminate background and maximize face area.  For 

each selected feature, each (RGB) color channel is extracted to produce three 

separate grayscale images that are concatenated to form an overall grayscale 

image.  This is done for young and aged sets of images, results of which are also 

concatenated to form final training images for each feature.  These training 

images provide a mapping between young and corresponding aged features.  An 

input face image is preprocessed in a similar manner as mentioned above except 

that the selected features are concatenated with themselves.  Each selected 

feature from the input image is projected onto a corresponding set of principal 

components to produce a set of weights, which are then used to reconstruct a 

predicted aged feature.  The aged features are then blended back onto the aged 

faces at their respective locations.  PCA is an unsupervised learning technique 
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that relies entirely on the training data, and therefore does not take advantage of 

specific target data.  Selecting, removing, and training on specific features allows 

more control over how PCA performs image reconstruction.  In addition, we rely 

on the preprocessing and normalization of training and input data to minimize 

any variants that may negatively affect the output results. 
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Chapter 2 

Background and Theory 

 

2.1   Principal Component Analysis (PCA) 

In this section, we give a brief description and analysis of PCA.  We 

provide more mathematical detail for PCA in the coming sections as it applies to 

images.  Given N points in d-dimensional space, the eigenvectors of the 

covariance matrix for the data set form the new axes of the d-dimensional data 

points.  Multi-variate data can be expressed more efficiently in terms of the top d’ 

orthogonal eigenvectors.  This is done by projecting the data points onto a vector 

passing through the mean of the data points in the direction of the eigenvectors 

with the largest eigenvalues.  The eigenvectors are sorted such that the ones 

with the largest eigenvalues dominate in scatter in their respective directions. 

 

Given a d x d covariance matrix, there are d eigenvectors that may be 

computed.  PCA reduces this dimensionality by using a mapping process 

(Hotelling transform) that attempts to project vectors in d-dimensional space to 

vectors in d’ dimensional space in a least squares fashion for d’ < d.  Specifically, 

instead of a d x d transformation matrix, we form a d’ x d’ transformation matrix 

from the top d’ eigenvectors that performs the mapping process.  However, since 

dimensionality reduction is a lossy process, reconstruction of each sample data 

point is no longer exact.  To minimize the error between each reconstructed data 

point in d’ dimensional space and original sample data point, we solve for the top 
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d’ eigenvectors from the covariance matrix of the sample data set.  In 

applications with high-dimensional data (e.g. digital image data), the first d’ 

eigenvectors have significantly greater eigenvalues than the other d - d’ 

eigenvectors. 

 

PCA determines and uses the eigenvectors to represent patterns across 

all sample data points.  Each eigenvector represents a principal component such 

that any sample data point may be reconstructed with a weighted linear 

combination of the principal components.  Each principal component contributes 

more or less to each original data point.  To reconstruct each training data point 

from the eigenvectors, the proper proportions or weights must be determined.  

This is done by projecting each sample data point onto the subset of principal 

components to form a weight vector. 

 

2.2   PCA Theory 

The following mathematical derivation of PCA is taken from Pattern 

Classification [3].  Given N d-dimensional sample data vectors nxx ,,1 K , we want 

to find a d-dimensional vector 0x  that best represents nxx ,,1 K  in a least squares 

sense.  Specifically, ∑
=

=
N

i
ixN

m
1

1  minimizes the error function 

( ) ∑
=

−=
N

i
ixxxE

1

2
00 .  However, the mean m  does not show the variability of the 

data set.  To do so, we project the data set onto a d’-dimensional representation, 

where d’ ≤ d.  Starting with a simpler and more intuitive example, we have e  as a 
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unit vector passing through m , and project the data onto a line given by 

cemx += .  Given nccc ,,1 K= , we redefine the error function to be  
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Solving for the partial derivative of the error function, we have 

0222 =+−=
∂
∂ mexec
c
E T

i
T

i
i

 

and obtain 

( )mxec i
T

i −=        (2) 

Substituting equation (2) into (1), and noting that the covariance matrix is given 

by ( )( )∑
=
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−
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i

T
ii mxmx
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where the scatter matrix S  is the covariance matrix times N - 1. 

 

By maximizing SeeT  the error function ( )ecE ,  is minimized.  We use the 

Lagrange multiplier method given by ( ) ( ) ( )xgxfxL ⋅+= λλ,  subject to ( ) 0=xg  

and derivative 0=
∂
∂

+
∂
∂

=
∂
∂

x
g

x
f

x
L λ .  We have ( ) ( ) ( )egefeL λλ +=,  where 
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( ) Seeef T= , and since 1== eee T , the constraint function becomes 

( ) 01 =−= eeeg T .  We compute the partial derivative of ( )λ,eL  yielding 

( ) ( ) ( )( ) eSeeSe
e
eg

e
ef

e
eL λλλλ

=→=−=
∂

∂
+

∂
∂

=
∂

∂ 022,   (3) 

Equations (2) and (3) indicate that the eigenvector e  with the largest eigenvalue 

λ  of the scatter matrix points in the direction such that the projection of the data 

onto cemx +=  is maximized.  Figure 1 and ( ) ( ) ( )∑
=

−−==
N

i
ii mxececExE

1

2,  

from equation (1) indicate that the subtraction of m  centers the entire point 

distribution about m , and ic  extends e  such that eci  approaches mxi − .  We  

 
Figure 1: Principal components of 2-D data points 

 

also note that 1e  in Figure 1 is clearly the dominant principal component.  

Therefore, the projection of data onto 1e  is well approximated without excessive 

loss of accuracy.  We can extend cemx +=  and equation (1) in one dimension 

to obtain a least squares projection in d’ dimensions with the following error 

function in which ijc  are coefficients that represent linear proportions of je  
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( ) ∑ ∑
= =

−+=
N

i
i

D

j
jijD xecmeE

1

2
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1
'      (4) 

(principal components) to approximate the original sample data point.  In general, 

PCA provides a mapping between N data vectors ( )NDxx ,,1 K  of d dimensions to 

( )NDxx '1 ',,' K  of d’ dimensions where d’ ≤ d.  The top d’ eigenvectors of the 

covariance matrix represent the orthogonal axes of the new coordinate system. 

 

2.3   Solving for Eigenvalues and Eigenvectors 

We first assume a symmetric real matrix S  such that TSS =  where 

( )jiij ss = .  We use the Jacobi method with the following derivation from Numerical 

Recipes in C [8] that applies a sequence of planar rotational transformation pqT  to 

S  until pq
T

pq TSTS ⋅⋅='  is diagonal.  Given the planar rotational matrix 
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L

ab

ba

q

p

qp

Tpq , subscripts p and q refer to the rows and 

columns of scalars φcos=a  and φsin=b .  All diagonal elements are unity 

except for scalars a , and all off-diagonals are zero except for scalars b .  

Multiplying out the diagonalization of pq
T

pq TSTS ⋅⋅=' , the following equations are 

obtained: 
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We see that only rows p and q, and columns p and q are changed for 'S .  The 

idea is to zero-out the non-diagonal elements of 'S  by applying the planar 

rotation matrix pqT  with θ iteratively.  Since the subscript pq is off-diagonal, we 

set equation (5e) to zero and define 
pq

ppqq

s
ss

ba
ba

22

22 −
=
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≡θ  and 

a
bt ≡ .  We then 

have  
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      (6) 

Equation (6) may be solved with the quadratic formula for t.  With equation (6) 

and setting 0' =pqs , we substitute (5e) into (5c), separate pps  from qqs , and obtain  

( )astss pqpppp 7' −=  

Further substitutions with (5a – 5e) yield 

( )
( ) ( )
( ) ( )dssbss
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where 
2

tan
1

φτ =
+

=
a
b . 

Therefore, for each off-diagonal element of 'S , the Jacobi method involves 

using equations (7a – 7d) iteratively to compute S  →  11 TST T ⋅⋅  →  
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2112 TTSTT TT ⋅⋅⋅⋅  →  ZSZSTTTTSTTTT T
N

TTTT
N ⋅⋅==⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ '321123 KK .  Once 

'S  becomes diagonal, the eigenvalues are located in the diagonals of 'S , and the 

eigenvectors are located in the columns of Z .  Numerical Recipes in C [8] gives 

an algorithm that executes in ( )3nO . 

 

2.4   PCA Algorithm and Eigenfaces 

We begin with a digital image as an NN ×  array of 8-bit grayscale pixel 

values from 0 to 255.  To prepare a set of M images for PCA analysis, we first 

stretch out each NN ×  image array so that it is 12 ×N , and concatenate M 

images to form image matrix { }MΓΓΓ=Γ ,,, 21 K  of size MN ×2 .  We then 

calculate mean image ∑
=

Γ=Ψ
M

i
iM 1

1  and obtain mean adjusted image matrix 

{ }MA ΦΦΦ= ,,, 21 K  with Ψ−Γ=Φ ii .  The corresponding eigenvalues MiKλ  and 

eigenvectors MiuK  are determined from the covariance matrix 

TT
i

M

i
i AA

M
C =ΦΦ= ∑

=1

1 .  Recall from Section 2.1.1 that we wish to find the top d’ 

(M in this case) eigenvectors of the covariance matrix that best represents the 

data set with respect to the new coordinate system by solving equation (3).  It 

follows that ( )( ) i
T

i

M

i
i

T
ii

TT uu
M

eeSeeeSe Ψ−ΓΨ−Γ=→=→= ∑
=1

1λλλ , such that the 

ith largest eigenvalue iλ  and corresponding eigenvector iu  are subject to 
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maximizing ( )∑
=

Φ=
M

i
i

T
ii u

M 1

21λ , and 


 =

==
otherwise

ji
uu jii
T
j 0

1
δ  so that eigenvectors 

MiuK  must be orthonormal. 

 

 We note that since TAA  is 22 NN × , computing for all 2N  eigenvalues and 

corresponding eigenvectors is infeasible for very large images.  An optimized 

method given by Turk and Pentland [11] in computing the principal components 

first solves for the eigenvalues and eigenvectors of AAT .  By doing so, the total 

number of eigenvectors is reduced from 2N  to M.  Mathematically, we solve for 

the eigenvectors iv  of AAT  such that ii
T vvAA λ= , and multiply both sides by A 

yielding ii
T vAvAAA λ= .  It is apparent that ivA  are eigenvectors of TAA .  To 

obtain the principal components iu , we form the proper linear combinations of 

the mean adjusted images Φ  by  

MivAvu
M

j
ijiji ,,1,

1
K==Φ=∑

=

     (8) 

Since M << N2 for typical image sizes, only a relatively small number M’ < M of 

eigenvectors are needed.  Therefore computation time to solve for the 

eigenvalues and corresponding eigenvectors is significantly reduced using this 

method.  Using proper terminology, we refer to the set of eigenvectors computed 

from the covariance matrix of a set of images as eigenfaces, as they resemble 

ghostly images of faces.  Finally, to project an input image onto the set of 

eigenvectors to obtain its corresponding weight vector we compute 

{ }==Ω '1 ,, M
T ωω K  ( )Ψ−Γinput

Tu  →  ( )Ψ−Γ= input
T
ii uω   (9) 
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',,1 Mifor K= .  To reconstruct an image from TΩ , we have  

( ) ( ) ( )→Ψ−Γ=Ω
−−

input
TTTT uuu 11  Ψ+Ω=Γ T

input u    (10) 

where ( ) ( ) uuu TTT ==
−1  and Iuu T =  for orthonormal vectors '1 Mu K .  We note that 

these equations are irreversible since the principal components iu  represent a 

lossy reduction in dimensionality such that some amount information is lost, but 

minimized with respect to equation (4). 
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Chapter 3 

Initial Design and Implementation 

 

3.1   Design and Evaluation 

In this chapter and sections that follow, we describe, demonstrate, and 

evaluate key concepts and techniques that are used to support our main focus of 

face reconstruction and age progression. 

 

3.2   Eigenface Program 

The purpose of the eigenface program is to demonstrate the feasibility of 

the eigenface approach for face recognition and reconstruction.  The eigenface 

method applies PCA to reduce a set of training images by representing them in 

terms of a more compact set of orthogonal vectors (principal components).  An 

input image is then projected onto the set of principal components to obtain a 

weight vector that represents the proportions of each eigenface to reconstruct the 

input image. 

 

3.2.1 Image Recognition 

To extend the application of eigenfaces for face recognition, we use the 

face class and face space Euclidean distance metrics defined by 

22
kkclass Ω−Ω=ε  and 

22
faceface Φ−Φ=ε  respectively.  The Euclidean distance 

between two vectors { }Nxxx ,,1 K=  and { }Nyyy ,,1 K=  is determined by 
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( ) ( )∑
=

−=
N

i
ii yxyxd

1

2, .  A face class is defined as a group of images (varying in 

orientation, lighting, and expression, etc.) of the same person (or object).  The 

weight vector kΩ  is the average of the weight vectors of images in face class k.  

For the face space metric, we project an input image onto face space consisting 

of M’ eigenfaces, obtain its characteristic weight vector with equation (9), and 

compute ∑
=

=Ω=Φ
'

1

M

i
ii

T
face uu ω . 

 

 To perform face recognition, we first gather a set of M training images 

{ }MΓΓΓ=Γ ,,, 21 K  for X face classes, and assign one or more images to each 

person such that each image of the person varies in facial expression, 

orientation, and lighting, etc.  AAL T=  is computed where { }MA ΦΦΦ= ,,, 21 K , 

Ψ−Γ=Φ ii , and ∑
=

Γ=Ψ
M

i
iM 1

1 .  The eigenvalues MiKλ  and corresponding 

eigenvectors MivK  are computed from L , MivK  sorted in the order of descending 

eigenvalues, and the top M’ eigenvalues and corresponding eigenvectors are 

selected such that M’ ≤ M.  Next, the eigenfaces (principal components) are 

computed from equation (8).  Then for each training image trainingΓ , we compute 

the weight vector from equation (9).  kΩ  is obtained by averaging the weight 

vectors of training images in face class k.  XK1Ω  represents the knowledge base 

that the PCA classifier uses to distinguish between the X face classes.  Finally, 
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we specify face class and face space threshold values classθ  and faceθ , 

respectively, such that the classification rules in Table 1 apply. 

 

Table 1: Eigenface classification rules 
a) Image is a face and is recognized ( kclassε  < classθ  and faceε  < faceθ ) 
b) Image is a face and is not recognized ( kclassε  > classθ  and faceε  < faceθ ) 
c) Image is not a face and is recognized ( kclassε  < classθ  and faceε  > faceθ ) 
d) Image is not a face and is not recognized ( kclassε  > classθ  and faceε  > faceθ ) 

 

For input image inputΓ , we subtract Ψ  from it to form mean adjusted input image 

inputΦ , and project inputΓ  onto face space to obtain weight vector TΩ .  We then 

compute faceΦ  and the face class kclassε  and face space faceε  metrics, and classify 

the input image with respect to the rules in Table 1.  Note that kclassε  represents 

the smallest Euclidean distance between TΩ  and kΩ  for face classes 

Xk ,,1 K= . 

 

The classθ  and faceθ  threshold values are carefully chosen by trial and error, 

since they are critical to the recognition performance of the PCA classifier.  In 

addition, one cannot be specified independently of the other in the case that input 

images are not in the same classification as the training images.  For example, if 

the PCA classifier is trained with face images and input images are not faces, 

then specifying a high faceθ  value causes the classifier to err for input images that 

are known not to be face images.  On the other hand, specifying a low faceθ  value 
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causes the classifier to be overly conservative and reject images that are known 

to be faces, regardless of whether a match is found for a face class.  However, if 

we assume a priori that all images are face images, then faceθ  may be 

disregarded by setting it to a sufficiently large value.  We note that the optimal 

values for classθ  and faceθ  to maximize the percentage of recognized faces is 

dependent on the set of input images.  The classification rules in Table 1 

essentially divide the input space into four classification groups.  Therefore, the 

addition of new input images can change the values for classθ  and faceθ  and shift 

the optimal division lines. 

 

3.2.2 Program Functionality 

The program functionality follows the algorithm and details as outlined in 

the previous section.  Figure 2 shows the user-interface for the eigenface 

program.  Prior to running the program, a set of training images is loaded and 

processed by initially assigning to each person (face class) a directory (name of 

which is also the name of the face class) containing one or more images of the 

person in different orientations, lighting, or facial expressions, etc.  The user 

selects the root directory path where the face class directories are stored, and 

the program loads into memory the names of the face classes and the paths of 

all the associated training images.  PCA training is then performed by computing 

the eigenfaces (principal components) of all the training images in the selected 

root directory, and determining the average weight vector of each face class.  

After the training process, the user can match a single face image to its  
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Figure 2: Eigenface program interface 

 

corresponding face class, or classify a group of input images and determine the 

maximum face class and face space values.  These values are then used to 

maximize the percentage of recognized faces from the set of input images.  The 

eigenface program implementation also supports image reconstruction.  Both 

image classification and reconstruction first projects the input image onto the set 

of eigenfaces to obtain its characteristic weight vector.  For image classification, 

the input weight vector is used to compute the face class and face space metrics 

by 
22

kkclass Ω−Ω=ε  and 
22

faceface Φ−Φ=ε , respectively.  The classification rules 

of Table 1 are then used to classify the input image accordingly.  For image 

reconstruction, the input weight vector is used to compute equations (9) and (10). 
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3.2.3 Program Design 

The eigenface program is implemented in C++ and MFC (Microsoft 

Foundation Classes) for user-interface development in the Visual Studio 

environment.  The class diagram of the eigenface program is shown in Figure 3.  

The CImageViewer and CEigenDlg classes are derived from the MFC class 

CDialog, which is used to display a dialog box on the screen.  The 

CImageViewer class implements functionality to display grayscale images by 

using the MFC class CImage, which provides imaging support between the user 

and the windows device context of a dialog box.  The CEigenDlg class 

implements functionality for all of the GUI controls.  CStringToPtrMap is an MFC 

class that maps an MFC CString object to a pointer of type CObject.  

CFaceClassData inherits from CObject and maps face class names to 

CImageData objects, which encapsulate image pixel data stored in CMatrix 

objects.  The CImageUtil class provides support for the reading, writing, and 

scaling of grayscale pgm images.  The pgm image format represents pixel values 

in 8 or 16 bit P2 or P5 ASCII format.  The P2 version represents each pixel value 

by an ASCII number string (e.g. 255 for white).  The P5 version represents each 

pixel value by an ASCII character in binary format (e.g. character ÿ for white).  

The CWinUtil class supports the retrieval of path names of files or directories 

stored in a given directory, display of a directory search dialog box, and various 

path name manipulation functions.  The CWinUtil class encapsulates code that is 

taken from the Windows Programming book [12].  CEigenSolver encapsulates 

functionality to solve and sort eigenvalues and eigenvectors of a symmetric real 
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matrix.  The implementation is taken from Chapter 11 of Numerical Recipes in C 

[8].  The matrix class provides support for most matrix operations and is taken 

from the Matrix TCL website [19].  CMatrix extends the matrix class with 

additional functions specific to the computation of eigenfaces. 

 

 
 
Figure 3: Eigenface program class design 
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3.2.4 Reconstruction and Recognition Results 

To obtain image data for the eigenface program, we retrieve 400 pgm 

images from the Cambridge University Engineering Department Database of 

Faces [15].  These images consist of 40 face classes with 10 images for a given 

person in each face class that varies in lighting, facial expressions, as well as in-

plane and out-of-plane face rotations, with no background details.  To train the 

eigenface program, we create 40 face classes each assigned 5 images of the 

same person for a total of 200 training images.  Figure 4 shows several training 

images.  After training, we obtain eigenfaces and mean images as shown in 

Figure 5.  To test the program, we reconstruct the remaining 200 non-training  

 

     
        (a)                    (b)                    (c)                    (d)                    (e) 
 

     
          (f)                    (g)                    (h)                     (i)                     (j) 
Figure 4: Training images of two face classes 

 
 

     
Figure 5: Example eigenfaces (left four) and mean image 
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images from the same face classes as the training images, and observe that 

about half are reconstructed such that they resemble human faces with 

reasonable clarity.  For this test, we don’t separate the input images by gender 

since they are from the same face classes as the training images.  We also retain 

all eigenvectors to maximize reconstruction accuracy.  Figure 6 shows several 

reconstructed images.  We note that the lower images in Figures (6b) and (6d) 

look very similar to the images in Figures (4b) and (4i), respectively.  Patterns 

observed from the test results demonstrate that if the input image looks similar to 

a subset of the training images, the reconstructed image also looks similar to this 

subset.  Conversely, if an input image does not resemble a subset of training 

images, the quality of the reconstructed image suffers. 

 

    

    
        (a)                      (b)                      (c)                     (d) 
Figure 6: Input (top) and reconstructed (bottom) images 

 

To obtain recognition performance statistics, we classify the same 200 

non-training images as in the reconstruction case.  We obtain results in Table 2 

by setting θclass = 3602 and θface = 2680, just slightly larger than the maximum 

εclass and εface values.  This causes the classifier to regard all images as faces 
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and maximizes the percentage of correctly classified faces at the expense of 

increasing the percentage of incorrectly classified faces. 

 

Table 2: Recognition results for 200 test images 
a) Correctly classified faces 92% 
b) Incorrectly classified faces 8% 
c) Unrecognized faces (no face class matches) 0% 
d) Not faces 0% 
e) Minimum εclass 1151.56 
f)  Maximum εclass 3601.87 
g) Minimum εface 1061.93 
h) Maximum εface 2679.54 

 
 

Figure 7 shows the reconstructed results of a training image using 100,  

75, 50, 25, and 0 percent of top eigenvectors retained, respectively.  As the 

percentage of retained eigenvectors approaches zero, the reconstructed image 

approaches the mean image, as predicted by equation (10).  Even with only half 

of the eigenvectors, the reconstructed image is still discernible. 

 

 
Figure 7: Eigenvector truncation results 

 

3.3   Grayscale Age Progression 

In this section, we describe the implementation of an image-retrieval and 

preprocessing tool that downloads applicable images from a missing children's 

web server, preprocesses the images in terms of size, orientation, format, and 
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creates a directory structure to organize and store the images.  Specifically, this 

tool retrieves young and corresponding aged image pairs of a given person.  The 

(young, aged) image pairs are then concatenated and input into the eigenface 

program to produce age-progressed grayscale images. 

 

3.3.1 Image Retrieval and Preprocessing 

The image retrieval and preprocessing tool consists of three command 

line Python scripts (webcrawler.py, face_ops.py, and image_ops.py) and a C 

helper program (trackface.exe) that calls a face detection library from 

http://vasc.ri.cmu.edu/NNFaceDetector [16].  Figure 8 illustrates a high-level 

overview of the image retrieval, preprocessing, and age progression process for 

grayscale images. 

 

The function of the webcrawler.py script is to communicate with a specific 

missing children’s web server and download all missing children's images by 

state (e.g. California).  Each missing child is represented by one young image 

and a corresponding digitally aged image.  This script interacts with a Java 

servlet object by sending the appropriate parameters.  For example, the url 

http://www.missingkids.com/missingkids/servlet/PubCaseSearchServlet?act= 

usMapSearch&missState=CA&searchLang=en_US returns a web-page that 

contains images of all missing children in the state of California.  The 

webcrawler.py script parses this web-page for all the relevant image tags and 

uses the url’s to download the images.  Each (young, aged) image pair is stored 
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in a directory assigned to a given missing person.  All image directories are then 

stored in a specified root directory. 

 

 
Figure 8: Image retrieval, preprocessing, and age progression process 

 

The face_ops.py script traverses the directory structure created by 

webcrawler.py and preprocesses all images stored in it.  First, the script converts 

each image to grayscale pgm image file format.  It then invokes a helper program 

trackface.exe to read the pgm image.  The helper program uses a neural network 

based face detection library [16] to locate the boundary of a face and center 

points of the eyes.  It then saves the dimensions to a file that face_ops.py 

parses.  The face_ops.py script reads the dimensions and then crops a face in 

each image to maximize the face area (i.e. reduce pixels covered by hair and 
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background), and corrects any in-plane rotation so that faces are vertical.  The 

in-plane rotation angle is determined between a line through the centers of the 

eyes and the horizontal axis, and is applied to the center of an image.  Each 

rotated and cropped (young, aged) face pair is resized, concatenated, and stored 

in a specific directory structure.  The image_ops.py script traverses the directory 

structure created by face_ops.py, and creates a new directory structure that 

contains concatenated input or training grayscale pgm images as illustrated in 

Figures 11 and 13, respectively.  We rely on the Python programming 

environment and imaging library to provide the necessary image processing tools 

and operations as needed. 

 

3.3.2 Age Progression Test Results 

We use the eigenface program to train on a number of concatenated 

images created by face_ops.py.  Then we input a concatenated image of the 

same young face on both sides of the image into the eigenface program.  We 

wish to obtain a reconstructed image with one side of the image aged-

progressed and extracted.  We first download a number of images from 

http://www.missingkids.com by using the webcrawler.py python script.  An 

example pair of young and aged images is shown in Figure 9.  The Python 

scripts face_ops.py and image_ops.py are then invoked to produce a set of 

preprocessed training images as shown in Figure 10.  Given a concatenated 

input image as shown in Figure 11, the eigenface program produces a 
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reconstruction of the input image that is shown in Figure 12.  The corresponding 

training image is shown in Figure 13.  Note that the input image in Figure 11 is  

 

  
Figure 9: Young and corresponding aged image pair 

 

the same left face of Figure 13, and therefore the resultant image should be well 

reconstructed.  In general, however, we want to reconstruct input images that are 

not from the training image set. 

 

    
Figure 10: Concatenated training image Figure 11: Concatenated input image 

 

    
Figure 12: Reconstructed input image  Figure 13: Concatenated training image 
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We retrieve and preprocess 300 female (young, aged) face pairs (100 by 

100 pixels) with the Python scripts webcrawler.py and face_ops.py.  We assign 

200 of them as concatenated training images as in Figure 10, and the rest as 

young concatenated input images as in Figure 11.  For this test we do not 

separate the training images according to any criteria, and essentially gather 

them in a single group.  We use the eigenface program to reconstruct the 100 

input images without truncating any eigenvectors, and visually determine that 60 

out of the 100 resultant images are reconstructed successfully, and 15 of the 60 

successfully reconstructed images are adequately age-progressed.  Doing the 

same for 150 male training images and 50 male input images, we observe 30 out 

of the 50 resultant images are successfully reconstructed, and 10 of the 30 

successfully reconstructed images are adequately age-progressed.  Figure 14 

shows successful grayscale reconstructions of aged female and male grayscale 

images for this test.  Of the successfully reconstructed images that are not well 

age-progressed, the eigenface program is not able to discernibly age the images. 

 

   
Figure 14: Grayscale reconstructions of aged (right side) female and male 
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3.4   Feature Matching Program 

In this section, we discuss the feasibility of shape contexts as described in 

the paper by Belongie and Malik [2] to provide a robust means of quantifying and 

representing the shape of an object.  This representation is then used in 

conjunction with other techniques to locate features on face images.  The idea is 

to manually select features on a template image, perform edge detection and 

sample points from the edges, and then find points on a test image that best 

correspond to sampled points of features on the template image. 

 

3.4.1 Shape Context and Bipartite Matching 

Shape context is characterized by the spatial relationship between a given 

point and all other points in a shape.  Specifically, it is defined by a set of points 

sampled from the internal or external edges of a shape.  The edges are 

determined by using an edge detection algorithm that searches for regions of 

changing image intensity and localizes the edges between these regions.  This 

application uses the Boie-Cox edge detector from Practical Algorithms for Image 

Analysis [10].  Figure 15 shows an example of an edge-detected image. 

 

 
Figure 15: Edge detected image 
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Since face images are inherently random, it is generally difficult to register 

points on the edges of an edge-detected face for exact spatial correspondence 

and ordering of points between two images.  Therefore, we use a random 

sampling of points for this application.  For a given sampled point, a shape 

context descriptor is defined by determining the set of vectors from the point to all 

other sampled points on the shape.  Specifically, the shape context for a point is 

a log-polar histogram that sorts all vectors for a given point by relative distance 

and angular orientation.  Therefore, for N sampled points, each point has N - 1 

vectors to all other points.  And the corresponding log-polar histogram that has x 

radial and y angular separations has x * y bins.  The log-polar plot can be 

visualized as a series of concentric circles enclosing a number of wedge bins.  

The wedge bins are uniform in angular spacing, but vary logarithmically in the 

radial direction.  In other words, in Cartesian space, the inner circles are closer 

together than the outer circles.  But in log space, the circles are spaced uniformly 

in the radial direction.  Figure 16 below illustrates this.  The second picture shows  

 

 
Figure 16: Log-polar bins and corresponding flattened histogram [2] 
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a flattened shape context histogram with the relative darkness of the bins 

indicating point density.  The advantage of using shape contexts is that several 

geometric invariances are inherent with this method.  Specifically, invariance to 

translation is built-in since vectors are between all points on a given shape.  

Invariance to scaling is achieved by normalizing all vectors with respect to the 

mean vector for all N * (N - 1) pairs of points.  Rotational invariance is achieved 

by determining the average vector from a point to all other points and using this 

vector as the axis to measure the angle from for each point. 

 

Qualitatively, the shape context for each point gives a precise description 

of the relative position of a point to all other points.  Thus, the shape context can 

be used as an effective measurement of shape similarity for a corresponding 

point on another shape to be compared.  This implies that there must be a point-

to-point correspondence between points on two shapes.  To obtain point-to-point 

correspondence, the log-polar histogram representing the shape context for each 

point on a shape, may be used to calculate the measurement cost between 

points on two shapes.  Specifically, the χ2 (chi-squared) distance metric is used.  

Given two shapes each with N sampled points, a cost matrix of size NN ×  is set 

up where each matrix element is the χ2 cost between points on the two shapes.  

The cost equation is defined by 
( ) ( )[ ]
( ) ( )∑

= +

−
=

K

k ji

ji
ij khkh

khkh
C

1

2

2
1  for K bins, where ijC  

represents the cost between points pi on one shape and pj on the other.  The 

term ( )khi  represents the kth bin of the normalized histograms at pi and pj.  In 
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essence, we are comparing the similarity between histograms at two points.  The 

denominator for ijC  may go to zero, in which case we just assign a zero to the 

ratio for a particular k. 

 

Therefore, the matrix represents the cost between all possible pairs of 

points, and is an instance of the weighted bipartite matching problem.  This 

problem may be cast in the more familiar form of the machine scheduling 

problem, where the goal is to assign one task to every machine so that every 

task will be tended to.  The cost elements of the matrix measure the 

effectiveness of a machine to perform a specific task, while the objective value 

aims to maximize the value for all machine and task pairs.  In modeling the 

bipartite matching problem with respect to shape contexts, we wish to minimize 

the total cost for all point pairs.  The bipartite matching problem may be solved in 

O(n3) by using the Hungarian algorithm.  This application uses a more efficient 

algorithm given by Jonker and Volgenant [14] in solving the linear assignment 

problem. 

 

By solving the bipartite matching problem, we have the optimal 

correspondence between sampled points from features on the template and test 

images.  We then determine the centroid of each group of points, which 

approximately locates corresponding features on the test image.  For each group 

of corresponded points on the test image, we remove outliers greater than a 
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number of standard deviations from the mean radial distance between the group 

center and each point. 

 
3.4.2 Program Functionality 

As detailed above, the application first performs edge detection to retrieve 

the edge data of images.  These edges are then sampled for both test and target 

point-sets for the two images to be mapped.  Next, point-to-point correspondence 

is performed between the two point-sets to obtain a minimum overall cost.  The  

 

 
Figure 17: Feature Matching Program Interface 
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user-interface shown in Figure 17 consists of four (control, template, test, and 

feature-locate) views.  The control view allows the user to load, display, edge 

detect, and sample points from images in the template and test views.  After 

determining the optimal mapping of points, the user selects features in the 

template view to be corresponded to features in the test view, which are then 

displayed in the feature-locate view.  The program takes all the user-selected 

points from the template view, maps it to the test image, and removes outliers 

that are not within a specified number of standard deviations from the group 

center.  Next, the convex hull of each group of matched and culled points are 

computed, and displayed along with the group centers in the feature-locate view.  

The user can fine-tune overall performance by modifying sigma and threshold 

values for edge detection sensitivity, angular and radial bin count for point 

matching performance, and sample point count from the edge data. 

 

3.4.3 Program Design 

The feature matching program is implemented in C++ and MFC and 

supports the display of pgm images only.  A class diagram of the feature-

matching program is shown in Figure 18.  The CControlView class implements 

functionality for all of the GUI controls, and is derived from MFC class 

CFormView, which is a view with embedded GUI controls.  The scroll-enabled 

CTemplateView, CTestView, and CFeatureView classes provide support for the 

display of grayscale template, test, and feature-matched images, respectively.  

The CPGMUtil class implements functionality to read, write, and superimpose  
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Figure 18: Feature matching program class design 
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different images (e.g. sampled points and edges overlaid on top of a face image).  

The CPointUtil class implements functions for random point sampling from 

edges, and determining the centroid and removing outliers from a group of 

points.  CShapeContextUtil implements the shape context descriptor as detailed 

in Section 3.4.1.  The implementation takes two sets of points and rearranges 

one of them such that each pair of points is (least-cost) optimal in accordance 

with a cost matrix determined by the shape context descriptor.  

CShapeContextUtil relies on the CBipartiteMatcher class to solve the point 

correspondence problem represented by a cost matrix.  The CBipartiteSolver 

class encapsulates functionality and source code taken from 

www.magiclogic.com/assignment.html.  CConvexHull implements Graham’s scan 

algorithm and encapsulates source code taken from Computational Geometry 

[6].  The CEdgeDetector class encapsulates edge detection functionality and 

source code taken from Practical Algorithms for Image Analysis [10].  The 

CWinUtil and CMatrix classes are described in Section 3.2.3. 

 

3.4.4 Feature Matching Test Results 

 We test the program with three sets of data consisting of shape and face 

images, and obtain test results by experimenting with various values of detector 

sensitivity, angular and radial bin counts, and number of sampled points.  We 

select values for detector sensitivity, bin count, and sampled point count that 

avoid excessive detected edges, decrease in point matching performance, and 

increase in computation time, respectively.  Excessive detected edges imply a 
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higher probability that points may be sampled from non-feature edges, which 

biases the cost matrix towards non-features.  A large bin count causes the cost 

matrix to approach a zero matrix and degenerate into random point matching, 

assuming a random sampling of points from the edges.  Increasing the number of 

sampled points also increases the size of the cost matrix, which is solved by the 

linear assignment algorithm [14] in O(n3). 

 

To test the program with shapes, we use pgm images of alphanumeric 

characters for a total of 36 pairs of test images (A – Z and 0 – 9).  With this test 

set, the program successfully locates features on 32 of the 36 character images.  

Figure 19 shows several feature-located images for various shapes.  Next, to test  

 

   

   
Figure 19: Shape matching results (selected boxes – top, matched features – bottom) 
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the program for face images of the same person, we use 50 (young, aged) image 

pairs retrieved and preprocessed by the Python scripts webcrawler.py and 

face_ops.py described in Section 3.3.1.  The program successfully locates user-

selected features (e.g. eyes, nose, and mouth) for 30 of the 50 (young, aged) 

pairs.  Figure 20 shows a successfully feature-located test image.  We then test 

50 pairs of face images of different persons and successfully match features for 

15 face pairs.  Figure 21 illustrates an unsuccessful attempt at feature location 

for two different faces. 

 

   
Figure 20: Successful feature matching of (young, aged) pair of same person 

 

   
Figure 21: Unsuccessful feature matching of different faces 
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3.5   Discussion of Initial Results 

The test results from Section 3.2.3 suggest that an input image must be 

similar to a subset of the training images to be accurately reconstructed.  More 

specifically, we want the projected input image onto the transformed coordinate 

system to be in close proximity to a cluster of training images with specific aged 

features.  However, PCA is an unsupervised technique such that the outputs are 

dependent solely on the training data with no direct control over how the clusters 

are formed.  Therefore, the optimal training image set is one that contains a 

sufficient number of faces of different people, as well as adequate variation in 

expression, orientation, lighting, and other parameters for a given person, etc.  

This increases the probability that the projected input image is positioned near a 

cluster of training images that captures the desired age traits, and with the 

reconstructed image resembling the input image, since PCA minimizes the error 

between the two. 

 

Image dimensionality is another factor that must be considered.  By 

increasing the dimensions of the training images, we increase the number of 

parameters that may be used to discriminate the different clusters.  As a result, 

we increase the dimensionality and descriptiveness of the set of principal 

components.  Also, the dimensionality reduction process is more effective since 

for high-dimensional data, the number of eigenvectors that may be truncated far 

exceeds the dimensions needed to accurately represent a data point in the new 
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coordinate system.  We conclude that image reconstruction for smaller images is 

more sensitive to differences between input and training image data. 

 

To mitigate the limitations of inadequate range and size of the training 

data in terms of the number of available images, Section 3.4 begins exploring 

feature-based reconstruction and age progression by evaluating a solution for 

locating features on a face image.  The results of the feature matching program 

indicate that using shape contexts and solving the bipartite matching problem, 

provide a robust solution for locating features for similar shapes with an exact or 

similar ordering and configuration of vertices.  However, this solution does not 

work well for images that do not have a well registered set of vertices.  Given that 

face images are inherently random, it is difficult to obtain a precise registration of 

points between images.  We look to a more robust method of locating features by 

using the face detection library from [16], and to explore the feasibility of using 

color images to incorporate RGB data and increasing reconstruction 

performance. 
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Chapter 4 

Final Design and Implementation 

 

4.1   Feature-Based Age Progression 

In this chapter and following sections, we discuss the extension of the 

eigenface program to support feature-based face reconstruction and age 

progression for color images.  Since PCA is an unsupervised training technique, 

there is no direct control over the training process.  By extracting and analyzing 

individual image features, this gives some indirect control over how individual 

features are trained and reconstructed.  In addition, there is less variation for 

individual features as compared to an entire face, and as a result the probability 

of accurately reconstructing a feature increases.  Next, we conclude from the 

results of Section 3.4.4 that a more reliable method of locating features on a face 

image is needed.  Therefore, we use a neural network based face detection 

library [16] that is described in Section 3.3.1.  Also, since this application 

supports color images, and eigenfaces are derived from grayscale images, we 

use an image matrix encoding to incorporate the (red, green, blue) values of a 

24-bit color image in a format that supports matrix operations. 

 

4.2   Feature-Based Overview 

In feature-based age progression, the process first searches for key 

features on a face image (i.e. eyes, nose, mouth, and face).  Then, features are 

extracted and encoded in a specific image matrix format as in Figure 25.  This is 
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done for each young and corresponding aged image, results of which are 

concatenated to form a training image that separates the RGB intensity values 

and creates a mapping between each (young, aged) image pair.  Next, 

eigenfeatures (principal components) are computed from the sets of training 

images for each feature on a face image.  To age progress an input image, the 

features are extracted, projected onto their corresponding eigenfeatures, and 

reconstructed to obtain age-progressed features (Sections 2.1.3 and 3.1.2).  

These age-progressed features are then blended back to respective locations to 

form an overall age-progressed face.  Figure 22 illustrates this feature-based 

aging process. 

 

4.2.1 Feature Detection and Extraction 

To locate features on a face image, we use the neural network based face 

detection library from [16].  However, this face detection library only locates the 

center of the eyes and face crop boundary of a head image.  Therefore, we use 

the position of the eyes and face to locate and bound the rest of the features (i.e. 

nose and mouth).  More specifically, we use the distance between the left and 

right eye as a base metric from which to estimate the locations and sizes of the 

other features.  Figure 23 illustrates a simple dimension scheme to parameterize 

all major features on a face.
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Figure 22: Feature-based age progression process 
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Figure 23: Parameterized face dimensions (not to scale) 

 

This dimension scheme, obtained by trial and error, only gives rough 

estimates of the dimensions, assumes that certain face feature ratios do not vary 

significantly between face images, and works best for frontal faces (no out-of-

plane rotations).  To refine the locations and sizes of the face feature boundaries, 

we use a simple bounding box algorithm.  The algorithm first re-centers a rough 

bounding box by performing edge detection on the bounded feature, and using 

the edge map within the rough boundary box to approximate the new center.  It 

then determines the extremities of the edge map within the re-centered box and 

uses them to set the borders of the new bounding box.  Figure 24 shows several 

feature-detected face images. 
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Figure 24: Feature detected faces 

 

As Figure 25 illustrates, the RGB matrix format is a concatenation of the  

red, green, and blue color channels for a young face image that is concatenated 

with the same results of an aged face image.  Therefore, it is essentially six  

 
Figure 25: RGB image matrix format 

 

images concatenated into a larger one.  Since PCA calculates the eigenvalues 

and eigenvectors of a real matrix for this application, this is a simple method of 

incorporating the RGB values into a format that supports matrix operations.  It 

also allows an aged-progressed image to be easily extracted by truncating the 
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proper half a reconstructed image, and then multiplexing the RGB values into a 

color image. 

 

 Subsequent to feature-detection, in-plane face / head rotation is removed.  

The corrective angle θ is measured between a line passing through the center of 

the eyes and the horizontal axis, and the corresponding rotation is applied at the 

center of the face image.  We obtain the new centers of the eyes by applying the 

2D rotation matrix 







− θθ

θθ
cossin
sincos

.  By applying the rotation angle θ, all features 

are then centered about the mid vertical axis.  The dimension scheme in Figure 

23 is then used in conjunction with edge detection to determine the location and 

best fit bounding box of each feature.  Next, since PCA derives principal 

components from data with the same dimensionality, corresponding features 

extracted from each face image are resized to the common dimensions to ensure 

valid matrix computations. 

 

4.2.2 Feature Blending and Reconstruction 

Subsequent to the computation of the principal components  

(eigenfeatures) of each feature, we extract and age-progress features from an 

input image by projecting them onto their corresponding eigenfeatures by 

equation (9).  Age progression is performed by reconstructing the features from 

the weight vectors by equation (10).  An overall age-progressed face is then 

formed from the constituents as illustrated in Figure 26.  To blend in the 

individual aged features, edge detection is first applied to determine the  
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Figure 26: Reconstruction and blending process 

 

extremities of each feature.  The convex hull is then computed from the edges to 

obtain a rough contour.  By doing so, each feature can more readily blend into 

the face without leaving behind demarcation lines of the bounding boxes around 

each feature.  We then substitute the hulled features onto the aged face in their 

respective locations, essentially overwriting the features on the aged face.  The 

final post-processing step involves applying a low-pass Gaussian filter to remove 
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high-frequency effects, resulting in the slight blurring of the image to further 

reduce the lines of demarcation left from the blending process.  This filter 

convolves a square kernel matrix with a Gaussian profile to each pixel of the 

input matrix, essentially applying a neighborhood averaging effect that 

emphasizes the center kernel values.  The Gaussian profile provides a more 

effective filter as compared with a uniform filter by removing noise while 

preserving detail.  Figure 27 shows features that are isolated to highlight the 

approximated contour, and the corresponding aged and blended image. 

 

    
Figure 27: Input image, aged and contoured features, and blended image 

   

4.3   Program Functionality 

The feature-based age progression program is implemented in the 

Microsoft Visual Studio environment using C++ and MFC, and incorporates most 

of the functionality illustrated in Figure 8 except for the retrieval of images, 

thereby eliminating the need for multiple modules.  Figure 28 shows a screenshot 

of the user-interface.  The program’s interface consists of four (control, training, 
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input, and output) views.  The left control view allows a user to load, train, and 

reconstruct color images, manually modify the in-plane rotation angle of an input  

 

 
Figure 28: Feature-based age progression program interface 

 

or training image, display the edge map of an image, and select a feature-

detected training image to display.  The top-right training view displays feature-

detected training images, and allows the user to modify the feature detection 

results by manually dragging and selecting new feature-bounding boxes in the  
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view area.  The lower-middle input view displays the image to be age-

progressed, and also allows user to drag and select bounding boxes around 

features to be age-progressed.  And the lower-right output view displays the 

reconstructed and age-progressed image.  The user may also fine-tune 

parameters for edge detection and low-pass filter sensitivity, and percentage of 

eigenvectors to truncate.  Modifying edge detection sensitivity affects the location 

of the bounding box of each detected feature.  Increasing filter sensitivity causes 

the output image to be more blurred.  And truncating eigenvectors decreases 

execution time at the expense of reconstruction quality. 

 

To run the program, we use the Python script webcrawler.py described in 

Section 3.3.1 to retrieve the needed training (young, aged) image pairs.  Each 

pair is stored in a separate directory, with all directories stored in a root directory.  

The user selects the root directory and the program loads all the training (young, 

aged) image pairs into memory.  PCA training is then performed by first invoking 

the face detection library to locate the features (i.e. eyes, nose, mouth, and face) 

for all training images.  The extracted features from the young and aged images 

are formed into training images in the format illustrated in Figure 25, and the 

principal components are computed for each respective feature.  Next, the user 

selects an input image to load into memory to be reconstructed and age-

progressed as illustrated in Figure 22. 
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4.4   Program Design 

A class diagram of the feature-based age progression program is shown 

in Figure 29.  The CControlView class implements functionality for all of the GUI 

controls.  The CImageView class supports the display of 24-bit RGB images.  

CSelectView extends CImageView by implementing functionality that allows user 

to drag selection boxes in the view area.  COutputView extends CImageView by 

implementing a pop-up context menu in the view area.  The CInputView and 

CTrainingView classes provide support for both selection boxes and pop-up 

menus.  The CImageMatrix class implements functionality for various image 

processing operations such as rotation, scaling, low-pass filtering, and 

conversion from a 24-bit RGB image to the image format as illustrated in Figure 

25.  It encapsulates MFC class CImage to provide low-level imaging support.  

The source code for image rotation, scaling, and low-pass filtering are taken from 

Practical Algorithms for Image Analysis [10].  The CFaceMap class maps the 

path name of each training image with a CTrainingData object.  Each 

CTrainingData object contains two CImageData objects, one to hold data for a 

young image, and the other for an aged image.  The CFaceParams class stores 

various face parameters such as bounding box dimensions of detected features 

and in-plane face rotation angle.  The CFeatureLocate class implements 

functionality that locates features on a face image (eyes, nose, mouth, and face), 

and determines the best-fit bounding box around each feature by using edge 

detection provided by CEdgeDetector.  It invokes the face detection library [16] to 

find the center positions of the eyes and boundaries of the face, and uses the  
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Figure 29: Feature-based program class design 
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dimension scheme in Figure 23 to determine the locations of the other features.  

The dimensions of the face features are then mapped in CFaceMap and stored 

in CImageData objects for each training image.  The CEigenUtil class 

implements functionality that traverses a CFaceMap object, uses the in-plane 

rotation angle and bounding box dimensions stored in each CImageData object, 

and extracts the pixel values in bounding boxes from each training image.  It then 

forms a set of training images for each feature, and uses each set to compute the 

principal components for a given feature.  CEigenUtil uses CEigenSolver to 

compute the eigenvalues and eigenvectors from the covariance matrix of each 

feature.  The CReconstruct class implements functionality to extract features 

from an input face image by using the CFeatureLocate class, performs feature 

age-progression by projecting each input feature onto a corresponding set of 

principal components, and reconstructs an overall aged face using the image 

processing functionality provided by CImageMatrix.  The CPolygonTester class 

implements functionality to test whether a point is in a given polygon.  This class 

is used to extract pixels from a convex hull region of a face image as illustrated in 

Figure 27.  CMatrix and CWinUtil are discussed in Section 3.2.3.  And 

CConvexHull and CEdgeDetector are discussed in Section 3.4.3. 

   

4.5   Feature-Based Test Results 

We use the same test images as in Section 3.3.2, but of different 

dimensions.  This includes 300 female (young, aged) face pairs that are 240 by 

300 pixels of various age ranges.  We assign 200 of them as concatenated 
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training images as in Figure 10, and the rest as young concatenated input 

images as in Figure 11.  We use the feature-based aging program to reconstruct 

the 100 input images without truncating any eigenvectors, and visually determine 

that 85 out of the 100 resultant images are reconstructed successfully, and 30 of 

the 85 successfully reconstructed images are adequately age-progressed.  Doing 

the same for 150 male training images and 50 male input images also 240 by 

300 pixels, we observe 35 out of the 50 resultant images are successfully 

reconstructed, and 15 of the 35 successfully reconstructed images are 

adequately age-progressed.  There is a marked improvement in the number of 

successfully reconstructed and age-progressed images as compared to the 

results from Section 3.3.2.  Specifically, we get a 100% and 50% improvement 

for female and male age progression results, respectively.  This is attributed to 

the use of color images and increase in image dimensions, as discussed in 

Section 3.5. 

 

We attempt to improve on the feature-based age progression results by 

including more (young, aged) training image pairs for a given person.  Due the 

limited number of (young, aged) pairs per person that can be retrieved from 

www.missingkids.com, we obtain images from a family album to obtain create 

more training images for a given person.  The idea is to gather a number of 

images to represent four distinct age groups: baby, toddler, adolescent, and 

adult.  We then produce a set of training images concatenating all possible pairs 

between images in the baby toddler, and adolescent group with images in the 
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adult group.  Specifically, we use the baby, toddler, adolescent, and adult images  

as shown in Figure 30 to produce a total of (7 + 6 + 4 ) x 6 = 102 concatenated 

training images. 

 

 

  

 

 
Figure 30: Training images for clustering test (permission from Chris Pollett) 

 

The idea behind this test, as discussed in Section 3.5, is to have the 

projected input image be in close proximity to a cluster of projected training 

images with the desired age traits.  We input a baby, toddler, and adolescent 

image and obtain corresponding reconstructed images as shown in Figure 31, 

with feature extraction disabled due to poor extraction results.  The results 

demonstrate that the close clustering of training images causes the reconstructed 
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result to resemble a weighted averaging of all the adult training images.  The 

averaging depends on the input image and where it lies in reference to the 

training images.  We note that the reconstructed results of (5a) and (5c) are quite 

similar, which implies that the projection of the baby and adolescent input images 

onto the set of principal components has a smaller Euclidean distance value as 

compared to the projection of the toddler input image.  Therefore, the PCA 

classifier regards the baby and adolescent input faces as being more similar. 

 

   

   
           (a)                                  (b)                                   (c) 
Figure 31: Reconstructed results (bottom) of baby, toddler, and adolescent 

 

We then add 100 (young, aged) image pairs into the training image set 

retrieved by the Python script webcrawler.py to observe how clustering performs 

with images from different people.  We add a sufficient number of additional 

training images and hope that excessive skewing from the intended cluster of 

training images is prevented by an averaging effect.  Figure 32 shows the 
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corresponding reconstructed results of the same input images using the 

extended training image set with feature extraction disabled.  We see from Figure 

32 that the addition of training images of different people diminishes the quality of 

the reconstruction such that the images no longer resemble the adult images in 

Figure 30.  This is because as more training images are added, a reconstructed 

image is formed with a greater number of principal components due to the 

increase in dimensionality of the transformed coordinate system needed to 

represent the extra data.  As a result, the reconstructed result also captures 

unwanted features from the added training images. 

 

   
Figure 32: Reconstructed results with extended training set 

 

4.6   Colorization Application and Results 

To perform further testing of the feature-based aging program, we create 

training image pairs to consist of a gray and color image of the same person, as 

opposed to a young and aged image pair.  By doing so, we attempt to convert 

the application from one that ages a color face image, to one that colorizes a 

grayscale face image by changing the training image data.  Figure 33 shows two 

grayscale images and corresponding colorized images. 
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Figure 33: Example colorization results 

 

For the colorization test, we use webcrawler.py to retrieve 300 young face 

images, and copy and convert 200 of them to grayscale images.  Each grayscale 

and corresponding color image is concatenated to form a training image.  

Colorization is then attempted on the remaining 100 grayscale images.  Results 

show that 90 of the 100 images are successfully reconstructed to reasonably 

resemble the input images in color.  Visual inspection of the colorization results 

shows that the colorized images demonstrate consistent usage of color for skin 

tone and features.  However, some of the results tend to exhibit regions of 

extreme white blending into areas of color as shown in Figure 34.  Also, as  

 

  
Figure 34: Colorized face with bright regions 
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previously mentioned, aside from color, the reconstructed faces do not look 

exactly like the input faces, as there are some slight variations (e.g. shape of 

features), therefore this may not be acceptable for a practical application. 
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 Chapter 5  

Conclusion 

 

The test results from Section 4.5 demonstrate that PCA image 

reconstruction is highly sensitive to the inclusion of other training images, 

particularly those that are not in close proximity to existing projected training 

image clusters in multi-dimensional space.  The results also show that it is 

difficult to manipulate the training images to obtain the desired clustering such 

that the projection of an input image is near a cluster of projected training images 

in the transformed coordinate system with the desired aged features.  In addition, 

since image reconstruction in PCA involves a linear combination of all the 

principal components, the reconstructed result may capture features from training 

images that are not desired.  One possible solution is to manually group images 

by face classes as described in Section 3.2.1 on eigenface recognition.  The idea 

is to project an input image to obtain its weight vector, and determine the 

smallest Euclidean distance between the input weight vector and average weight 

vector for all face classes.  Essentially, we classify the input image with respect 

to one of the groups of images (face class) representing a given person, and 

reconstruct the corresponding average weight vector.  This has the effect of 

reconstructing a weighted average of the images belonging to the matched face 

class. 
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Another evident issue from the test results of Section 4.5 is program 

runtime.  We traced the bottlenecks to two locations for the computation of 

eigenfaces.  Specifically, the algorithm that solves for the eigenvalues and 

eigenvectors from a symmetric matrix runs in O(n3).  This bottleneck may be 

reduced by truncating eigenvectors with negligible eigenvalues at the expense of 

reconstruction accuracy, and therefore is not a robust solution.  The other 

significantly larger bottleneck occurs for the computation of principal components 

using equation (8), or ∑
=

=Φ=
M

j
ijiji vAvu

1
, Mifor ,,1 K= , where matrix 

{ }MA ΦΦΦ= ,,, 21 K  and Ψ−Γ=Φ ii  (input minus mean image).  Since each 

column of A  is an image stretched out to an N2 by 1 vector (assuming NN ×  

images), increasing the size of the images by multiplying the width or height by a 

constant factor also increases the size of A  by the same factor.  This 

observation points to the inefficient image encoding illustrated in Figure 24.  

Here, we essentially increase the size of an image by a factor of six.  This 

increases A  by the same factor, and in turn increases execution time by a factor 

of six, in computing a set of principal components.  To improve runtime, we need 

an alternative image format that is more efficient in terms of the size of a matrix 

required to store the RGB image data, and also supports closed matrix 

operations. 

 

The final issue that needs to be addressed is more accurate feature 

detection and location of the eyes, nose, and mouth.  Currently, feature detection 

relies on the accurate location of the centers of the eyes, and on the assumption 
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that certain key face ratios do not vary greatly between images (e.g. ratio of 

distance between eyes and vertical distance between eyes and nose).  This 

technique works poorly for faces that are skewed out-of-plane, or have face 

ratios that are not typical of the norm.  A more robust solution would require a 

major undertaking in applying, for example, image segmentation or a customized 

neural network application.  For image segmentation, the idea is to first convert 

images to HSI (hue, saturation, and intensity) color space.  This color model 

decouples intensity from the color components.  This allows color to be 

represented by hue and saturation values, where hue is a measure of the 

dominant color within the color spectrum, and saturation is a measure of strength 

or purity of a certain color.  Image segmentation relies on the fact that human 

skin typically exhibits hue and saturation values that fall within relatively narrow 

bands.  Faces can then be segmented by throwing out pixels that do not fall 

within these bands.  Further image processing are performed, such as feature 

erosion / dilation, noise elimination, and region detection, to isolate the major 

features on a face that are not of skin tone (i.e. eyes and mouth).  Region 

detection is then applied to label and identify the remaining processed features.  

For a neural network application, the training process would be similar to that of 

PCA training.  However, coming up with a viable architecture (e.g. number of 

nodes per layer) requires a time-consuming trial and error process to determine a 

good balance between accuracy and generalization.  In addition, given that 

images are typically of high dimensionality, there would be an inordinate number 

of weights that must be trained. 
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