Recognition and Age Prediction with Digital Images of Missing Children

By Wallun Chan Advisor: Dr. Pollett Committee: Dr. Stamp, Dr. Chun December 2005

Outline

- Introduction
- Principal Components Analysis (PCA)
- Eigenface Algorithm
- Image Retrieval and Preprocessing
- Feature Detection
- Feature-Based Age Progression
- Conclusion

Introduction

- Project attempts to age digital images of faces
- Application of PCA on image data
- Two-Phase Process
 - Training: compute lower dimension coordinate system for data
 - Reconstruction: project input image onto new coordinate system to obtain weight vector; reconstruct image with weight vector
- Training data concatenated (young, aged) face pairs
- Want projected input image to be near cluster of projected training images with desired aged features
- Reconstruct input image to capture aged features of cluster by a weighted averaging effect

Principal Components Analysis (PCA)

- Transform coordinate system of data set so new axes in directions of max. scatter
- Axes with little point spread truncated so fewer variables needed to represent data
- Compute eigenvectors/eigenvalues from covariance matrix
- Principal components: eigenvectors with top eigenvalues
- Lossy process as some information is lost (e.g. spread information about e₂)

Eigenface Algorithm

- Face class group of images of same person
- Ω_k average weight vector in face class k
- ε_k smallest between input weight vector and average weight vector for all face classes

Eigenface Program

- C++ and MFC implementation of eigenface algorithm
- Performs image recognition and reconstruction
- Supports only grayscale images

Eigenvectors to keep (0 - 100%)	Training images (double-click path to d	isplay)
100		
Face space threshold :		
10000		
Face class threshold :		
3500		
Display Train Reset	Figenfaces to display :	
Class name to add :	×	Classify
	Mean Image Reconstruct	Test
Select loaded class (person) :	Batch Reconstruct	Stop

Image Retrieval and Preprocessing

- Consists of three Python command line scripts and executable
- webcrawler.py interacts with <u>www.missingkids.com</u> to retrieve (young, aged) pairs
- Uses face detection API [8] to locate eyes and face

Reconstruction Test

- Use scripts to retrieve and preprocess 300 female and 200 male (young, aged) grayscale face pairs (100 by 100 pixels)
- Assign 200 female pairs as training images
- Assign 150 male pairs as training images
- Separately reconstruct remaining female and male input images

Example training image

Example input images

Reconstruction Test Results

	Female	Male
Successful reconstruction	60 / 100	30 / 50
Successful aged	15 / 100	10 / 50

Some successful reconstructed aged faces from test

- Poor reconstruction and hence poor aging results stem from inadequately sized images
- Smaller images have less descriptive (lowerdimensionality) principal components
- Less descriptive principal components mean less accurate reconstruction

Recognition Test

- Downloaded 400 (100 by 100 pixels) grayscale images from <u>http://www.uk.research.att.com/facedatabase.html</u>
- Images normalized in terms of lighting, cropping of head, and background removal
- Separate images into 40 face classes with 5 images each person for training
- Remaining 200 images for testing

Recognition Test Results

- Classified the 200 test images and obtained:
 - Correctly classified faces 92%
 - Incorrectly classified faces 8%
 - Minimum ε_{class} 1151.56
 - Maximum ε_{class} 3601.87
- Set θ_{class} larger than the max. ϵ_{class} value
- Maximizes % of correctly classified faces at expense of more incorrectly classified faces

2 training face classes and associated training images

Some eigenfaces (principal components)

Extension of Eigenface Program

- Support reconstruction of color face images
- Feature-based approach to age progression
 - Locate face and major features on face
 - Age progress individual features
 - Blend aged features into aged face
- First attempt to locate features uses shape context descriptor method

Shape Context Descriptor

- Edge detect and sample N points from edges
- For a point, form vectors to all other N 1 points; N * (N – 1) total vectors
- Use log-polar histogram to sort vectors

• Assign
$$\chi^2 \cos t$$
 $C_{ij} = \frac{1}{2} \sum_{k=1}^{K} \frac{[h_i(k) - h_j(k)]^2}{h_i(k) + h_j(k)}$

- h_i(k) represents bin k for point i
- N by N matrix to represent costs of all point pairs between two shapes

Shape Context Descriptor (continued)

- Solve cost matrix as constraint optimization problem
- Select groups of points for features on one shape
- Find corresponding points on second shape
- Determine centroid of each group on second shape to approximately locate features
- Remove outliers greater than a number of standard deviations from the mean radial distance between the group center and each point

Feature Matching Program

- C++ and MFC implementation of shape context descriptors
- Features on one image to be matched to another image
- May tweak number of sampled points, bin count, and edge detection sensitivity to improve performance

Feature Matching Test

- Three test sets of shapes and faces
- For shapes, 36 pairs of images of alphanumeric characters (A – Z, 0 – 9)
- Retrieve images from <u>www.missingkids.com</u>
- Set of 50 (young, aged) image pairs
- Set of 50 pairs of different faces

Feature Matching Results

	Successful Feature Matching
Character images	32 / 36
(young, aged) faces	30 / 50
Different faces	15 / 50

- Examples of successful matching on the right
- Poor results for different faces
- Conclusion: need more robust face / feature location method

Feature-Based Age Progression (continued)

- Uses neural net based face detection API [8] to locates eyes and face boundary
- Use distance between eyes as metric to locate and bound other features
- Dimension scheme gives rough bounding boxes only
- Tighten bounding boxes using edge detection data

Feature-Based Age Progression (continued)

- Input features and principal components of each feature (eigenfeatures)
- Age-progress face and individual features
- Find best-fit contour around each feature
- Blend aged features back into face
- Result should be smooth seamless aged face

Feature-Based Program

- C++ and MFC implementation
- Automatically extracts features, or manually select features to train or age
- Improve results with various parameters:
 - Edge detection parameter for tighter bounding boxes
 - Increase low-pass filter value for better blending of features

Feature-Based Test

- Use scripts to retrieve and prepare 300 female and 200 male (young, aged) color images (240 by 300 pixels)
- Train with 200 of the 300 female image pairs
- Reconstruct remaining young female images
- Train with 150 of the 200 male image pairs
- Reconstruct remaining young male images

Feature-Based Test Results

	Female	Male
Successful reconstruction	85 / 100	35 / 50
Successful aging	30 / 100	15 / 50

- Improvement over previous test with grayscale eigenface program
 - Improvement in % of reconstructions
 - 100% and 50% improvement for female and male aging results, respectively
- Attributed to larger sized training images and use of color

Example feature-based aged results

Clustering Test

- Create training images of all pairs between baby, adolescent, and toddler images with adult images (images to the right)
- Total of (6 + 6 + 4) * 6 = 96 training images to cluster images
- First train and test with the 96 images only
- Then add 100 images of other people to see how clustering performs with mixed training set

Clustering Results

- Test images on top row
- Mid row results of 96 training images
- Lower row results of extended training image set
- Row illustrates a weighted _____ average effect from all training images

Colorization Test

- Concatenate training image pairs to consist of a gray and color image of the same person
- Convert application from one that ages a color face image, to one that colorizes a grayscale face image
- Use scripts to retrieve 300 (240 by 300 pixels) color face images from <u>www.missingkids.com</u>
- Convert 200 images to grayscale and concatenate color to grayscale images to form training image set
- Colorize 100 grayscale test images

Colorization Results

- 90 of the 100 test images are reasonably colorized with consistent skin tone
- Images tend to exhibit areas of gray blending into color
- Reconstructed faces vary slightly with input gray faces

Conclusion

• Clustering test summary:

- Results highly sensitive to inclusion of other training images
- Reconstruction captures spurious features from training images and skews projection from intended cluster of training images
- Proposed solution: reconstruct image from average weight vector of a matched face class using ϵ_k metric

• Runtime bottleneck during training

- Computation of eigenvectors and eigenvalues, and formation of principal components
- RGB image encoding increases runtime by a factor of six
- Need a more efficient color encoding in terms of matrix size
- Improve current feature extraction method
 - Poor for out-of-plane face rotations
 - Poor for faces with atypical face feature ratios
 - Need more robust extraction method (e.g. image segmentation, customized neural application)

References

- [1] Matthew Turk and Alex Pentland. Eigenfaces for Recognition. Journal of Cognitive Neuroscience, Vol. 3, No. 1, 1991.
- [2] William H. Press, Brian P. Flannery, Saul A. Teukolsky, and William T. Vetterling. Numerical Recipes in C. Cambridge University Press, 1988.
- [3] Christopher M. Bishop. Neural Networks for Pattern Recognition. Oxford University Press, 1995.
- [4] Serge Belongie and Jitendra Malik. Matching with shape contexts. *CBAIVL*, 2000.
- [5] Richard O. Duda, Peter E. Hart, and David G. Stork. Pattern Classification. John Wiley & Sons, 2001.
- [6] Cambridge University Engineering Department Database of Faces. <u>http://www.uk.research.att.com/facedatabase.html</u>.
- [7] Missing Children's Website. <u>http://www.missingkids.com</u>.
- [8] Henry A. Rowley, Shumeet Baluja, and Takeo Kanade. Face Detection Library. http://vasc.ri.cmu.edu/NNFaceDetector.
- [9] R. Jonker and A. Volgenant. Linear Assignment Source Code. <u>http://www.magiclogic.com/assignment.html</u>.