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1.  INTRODUCTION 

The purpose of this report is to provide a synopsis of the results achieved in CS 

297 for Fall 2005.  The results culminate in four deliverables that demonstrate research 

and implementation work during the course of the semester.  These deliverables provide 

support for image retrieval and preprocessing, and initial attempts at image recognition 

and reconstruction.  Also, the work performed provides the initial groundwork for further 

research and experimentation with advanced feature-based methods of extraction, 

analysis and processing of faces, and reconstruction of age-predicted face images. 

2.  DELIVERABLE 1 - Face Recognition / Reconstruction with Eigenfaces 

The purpose of Deliverable 1 is to verify the feasibility of using the eigenface 

approach for image recognition and reconstruction.  Once successful demonstration of 

this is achieved, age prediction could be attempted with this technique.  The eigenface 

approach is based on using Principal Component Analysis (PCA) to select patterns that 

best represent correlations between images thereby reducing redundancy.  Given N points 

in D-dimensional space, the eigenvectors of the covariance matrix for the data set forms 

the principal axes of the D-dimensional data points.  In other words, the image data can 

be expressed more efficiently in terms of D orthogonal eigenvectors that form a new 

coordinate system.  This is done by projecting the data points onto a vector passing 

through the mean of the data points in the direction of the eigenvectors.  The direction of 

the new principal axes (eigenvectors) is chosen such that the scatter is maximized for 

each axis.  A fraction of the eigenvectors will typically dominant in this scatter.  The 

measure of scatter is the covariance matrix multiplied by N - 1.  The covariance matrix 

generalizes variance for a random scalar variable to a random vector variable.  The 
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elements of the covariance matrix are the covariances of all pairs of scalar elements of 

the vector variable.  The amount of data may be reduced by eliminating those 

eigenvectors that do not contribute much to the scatter.  This is the basis for image 

compression.  Also, it can be observed that for any set of images, although differences 

exist, redundancy may still be reduced by taking advantage of the correlation between 

images.  The covariance matrix as described, allows for a transformation that de-

correlates a set of data in a least squares sense. 

PCA determines and uses the eigenvectors to express the variation between 

images.  Each eigenvector (eigenface) represents a principal component such that any 

original training image may be reconstructed with a weighted linear combination of the 

eigenvectors.  Each eigenvector contributes more or less to each original image.  To 

reconstruct the each training image from the eigenvectors, the right proportions or 

weights must be determined.  This is done by projecting each training image onto the 

dominant eigenvectors to form a weight vector.  Each training image will have its own 

characteristic weight vector.  In addition, these weights can be used not only for image 

reconstruction, but also for image recognition.  This is done by first projecting a test 

image to form its weight vector.  The test weight vector is then compared with the weight 

vectors of each training image.  The comparison criteria used is the Euclidean distance 

between the weight vectors.  The smallest Euclidean distance found of the weight vectors 

between the test image and all the training images is that of the recognized image. 

2.1  Implementation and Functionality of Application Program 

The application program for Deliverable 1 was written and compiled in Visual 

C++.  A screenshot of the program is shown in Figure 1.  The application program uses a 
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specific directory structure in which each person (class) is assigned a directory containing 

a number of images of that person.  In turn, each of these class directories are stored 

under a root directory for the training and test set of images. 

 
Figure 1:  Face recognition / reconstruction program 

2.2  Testing the Application Program 

A sub-goal of Deliverable 1 is to determine how well PCA performs on unseen 

images. That is, given a set of training images of various people, how well does the 

classifier perform on images that it was not trained on.  Therefore, to test the recognition 

performance of the application program, grayscale .pgm images were downloaded from 

[14].  These images represent 10 various facial poses from 40 subjects for a total of 400 

images.  The size of each image is 92 by 112 pixels, at 8-bits grayscale.  The faces vary 

with respect to the lighting, facial expressions like closed or open eyes and mouths, and 

face accessories like glasses.  The background features are eliminated, leaving just details 

of the head.  In-plane and out-of-plane head rotation also vary. 
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The images are separated into training and test sets as noted above.  Each set 

consists of 40 directories, each containing 5 images for a particular class (person).  The 

test set consists of the same 40 classes as the training set, but with different facial poses 

as that of the training images.  By loading the training images into the application 

program, training the classifier, and generating recognition performance statistics for the 

test images, we have the results as shown in Figure 2. 

 
Figure 2:  Recognition results for 200 test images 

The results above show a maximum face class value of 3601.88.  It also indicates 

that 6.5% of tested images are unrecognized.  This margin may be decreased by 

increasing the face class threshold to 3602.0 to force classification at the expense of 

increasing the number of incorrectly classified images.  The maximum face space value is 

noted to be 2679.54.  But since we know a priori that we are testing images, we set the 

face space threshold to a large number so that all images are considered faces.  In general, 

given unknown images, the face space threshold must be specified (usually with trial and 

error) in conjunction with the face class threshold to classify images accordingly. 
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2.3  Image Reconstruction 

The main goal of this application program is to determine how well images can be 

reconstructed.  More specifically, how effective is the eigenface approach in 

reconstructing recognizable new images given known input images.  The "Reconstruct" 

button reconstructs an original or new image.  Figure 4 shows the reconstruction results 

for a training image from [14] with different percentages of eigenvectors retained.  As 

eigenvectors are truncated, the reconstructed image approaches the mean image. 

 
Figure 3:  100%, 75%, 50%, and 25% of eigenvectors retained; mean image (last) 

3.  DELIVERABLE 2 - Python Webcrawler and Image Preprocessor 

The purpose of this deliverable is to implement Python scripts that enter a missing 

children's website, downloads all relevant images by using the web-page metadata, 

preprocesses the images in terms of color, size, scale, orientation, and sets up a directory 

structure to organize and store the images.  The implementation consists of three Python 

modules, webcrawler.py, face_ops.py, and image_ops.py, and a C++ helper program 

"trackface.cpp". 

3.1  Python Script 1 - webcrawler.py  

The function of this script is to go through a website and download all children's 

images for a particular state.  After the images are downloaded, a specified destination 

directory structure is created, and the images are stored in the file format as downloaded.  

This script communicates with a servlet object to obtain the needed data by sending the 
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appropriate parameters:  

http://www.missingkids.com/missingkids/servlet/PubCaseSearchServlet? 

act=usMapSearch&missState=CA&searchLang=en_US). 

3.2  Python Script 2 - face_ops.py 

This script takes as input the directory structure created by webcrawler.py.  It 

traverses the directory structure and crops all faces in the images to maximize face space.  

Images are also converted from .jpg to grayscale .pgm format.  A new directory structure 

is created and copied from the original.  In addition, in-plane rotation is attempted to 

correct for head tilts.  And lastly, a non-aged and aged face image is compared to see if 

person is facing the same direction.  If not, one of the faces is mirrored.  This is done by 

comparing the weighted average of the image difference between the non-aged and aged 

image, and between the non-aged and mirrored aged image.  Otherwise, images are not 

cropped and converted to grayscale .pgm format only.  Either way, images are resized to 

specified dimensions and stored in the intended destination paths. 

3.3  Python Script 3 - image_ops.py 

This script takes as input the output directory structure created by face_ops.py and 

produces another directory structure with resultant images from the subtraction of non-

aged and aged images, concatenation of non-aged and aged images, concatenation of 

images with a blank image, and concatenation of images with themselves.  Specifically, 

the output from face_ops.py should be such that corresponding non-aged and aged 

images are stored in the same directory. 
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3.4  Helper Program - trackface.cpp 

 The purpose of "trackface.cpp" is to process a grayscale .pgm face image for the 

pixel locations of the face boundaries and eye locations.  The face boundary locations are 

used to crop the faces accordingly, and the eye locations are used to correct for in-plane 

face rotations, in essence straightening out each face, if needed.  "face_ops.py" calls this 

program to generate a log file that contains the face boundary and eye locations of a face. 

"face_ops.py" then parses this log file for the data, and uses it to crop faces and straighten 

out any in-plane rotation. 

4.  DELIVERABLE 3 - Image Alignment / Feature Location with Shape Contexts 

This deliverable explores the feasibility of using the idea of shape contexts to 

provide a robust means of quantifying and representing the shape of an object.  This 

representation is then used along with several other techniques to support image 

alignment and feature location of an image.  The idea is to manually select features on a 

template image, and then align a test image to the template image thereby locating the 

features in question on the test image. 

4.1  Description of Shape Context 

Shape context is characterized by the spatial relationship between a point and all 

other points in a shape.  Specifically, it is defined by a set of points sampled from the 

internal or external edges of a shape.  The edges may be obtained by using an edge 

detection algorithm.  This application uses the Boie-Cox edge detector [12] which 

exhibits excellent characteristics in detection (high signal-to-noise ratio), localization 

(accurate pixel marking), and unique response (low sensitivity to spurious signals).  For a 

given sampled point, a shape context descriptor is defined by determining the set of 
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vectors from this point to all other sampled points on the shape.  Specifically, the shape 

context for a point is a log-polar histogram that sorts all vectors for a given point by 

relative distance and angular orientation.  Figure 4 from [1] illustrates this. 

 
Figure 4:  Log-polar bins; corresponding flattened histogram 

Qualitatively, the shape context for each point gives a precise description of the 

relative position of a point to all other points.  Thus, it can be used as an effective 

measurement of shape similarity for a corresponding point on another shape to be 

compared.  This implies that there must be a full point-to-point correspondence between 

points on two shapes.  To obtain point-to-point correspondence, the log-polar histogram 

representing the shape context for each point on a shape may be used to calculate the 

measurement cost between points on two shapes.  Given two shapes each with n sampled 

points, a cost matrix representing all point pairs of size n by n is set up where each matrix 

element is the χ2 cost between points on two shapes.  The cost equation is given below, 

where Cij represents the cost between points pi and pj on different shapes, and hi(k) 

represents the kth bin of the normalized histograms at points pi and pj. 
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The cost matrix represents an instance of the weighted bipartite matching 

problem.  In modeling the bipartite matching problem with respect to shape contexts, we 

wish to minimize the total cost for all point pairs.  The bipartite matching problem may 

be solved in O(n3) by using the Hungarian algorithm.  This application uses a more 

efficient algorithm provided by [4] and [13] in solving the linear assignment problem. 

4.2  Thin-Plate-Spline Point Alignment Method 

Having solved the point-to-point correspondence problem, the shapes must be 

aligned to match features on one image to another.  [1] suggests using the thin-plate-

spline method of point-set alignment.  This technique attempts to model coordinate 

transformations from one set of points to another by using a weighted combination of 

thin-plate-splines centered about each control point that allows a mapping function to be 

interpolated through these points exactly.  Figure 5 from [9] illustrates this. 

 
Figure 5:  Illustration of thin-plate-spline mapping 

4.3  Operations of the Image Alignment / Feature Locate Program 

The implementation of this application first performs edge detection to retrieve 

the edge data of images.  These edges are then sampled for both test and target point-sets 

for two images to be aligned.  Point-to-point correspondence is determined between the 

two point-sets for a minimum overall matching between point-sets.  Thin-plate-spline 
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interpolation is then performed to provide a mapping function from test to target image 

coordinates.  Selected test points are then grouped in target image coordinates.  A 

screenshot of the application program is shown in Figure 6. 

 

Figure 6:  Image Alignment / Feature Locate Program 

4.4  Functionality of the Image Alignment / Feature Locate Program 

The program consists of four views:  the control, template, test, and feature locate 

views.  The control view allows the user to load and display images for the template and 

test views.  The “Load” button reads and displays images in the template and test views.  

The “Edge Detect and Sample” button performs edge detection on the template and test 

images and samples points from these edges.  The "Map" button applies thin-plate-spline 
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interpolation to the test and target point-sets.  The user may then click and create boxes in 

the template view to select features to map to the test view, which are then shown in the 

feature locate view.  The "Locate Feature(s)" button takes all the user-selected points 

from the template view, maps it to the test view, groups them into convex hulls according 

to user selections, and then displays the centroid of each group in the feature locate view. 

The "Reduce Outliers & Update" button attempts to reduce the number of outliers during 

grouping.  This is done by removing any points of a group that are greater than a fixed 

number of standard deviations from the mean radial distance between the group centroid 

and a point. 

5.  DELIVERABLE 4 - Age Progression by Reconstructing Concatenated Images 

The purpose of this deliverable is to use the tools developed for Deliverables 1 

and 2 to produce results for an initial attempt at age progression of images of missing 

children.  Deliverable 1 is an implementation of the eigenface approach for image 

recognition and reconstruction.  Deliverable 2 consists of Python script implementations 

that download missing children’s images, preprocess images in terms of size and file 

format, and support image cropping, mirroring, and concatenation. 

Specifically, we want to create new images that are concatenations of original 

images with their corresponding enhanced images.  We use the face reconstruction 

program of Deliverable 1 to train on a number of these concatenated images.  Then we 

input into the face reconstruction program a concatenated image that consists of the same 

original image of a child on both sides of the image.  We also input into the 

reconstruction program a concatenated image that consists of an original image on one 

side and a blank image on the other side.  In both cases, we wish to obtain a reconstructed 
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image with one side of the image converted into an enhanced (aged) version of the 

original image. 

5.1  Testing the Python Scripts 

We first retrieve a number of missing children’s images by using the 

"webcrawler.py" python script to download from [16].  After the images are downloaded, 

a specific directory structure is created and the images are stored as downloaded.  Next 

the Python script "face_ops.py" is invoked.  This script takes as input the directory 

structure created by "webcrawler.py".  It traverses the directory structure and crops all 

faces in the images to bring them forward to maximize face space (i.e. reduces pixels 

covered by hair and background). Images are also rotated to correct for in-plane rotation 

and converted from .jpg to grayscale .pgm format.  A new directory structure is created. 

We then call the Python script "image_ops.py" to perform further image preprocessing on 

the output directory structure of "face_ops.py".  As previously mentioned, we want to 

create a set of concatenated images that consist of original images on one side, and 

enhanced images on the other side.  We also want to create a set of concatenated images 

that consist of the same original image of a child on both sides of the concatenated image. 

We use one set for classifier training, and the other set for image reconstruction. 

5.2  Reconstruction of Concatenated Images 

Given the generated sets of concatenated training and input images, we use the 

reconstruction program of Deliverable 1 to produce age-enhanced images.  We train the 

program and obtain example reconstruction results as shown in Figures 8 and 9. 
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Figure 7:  Concatenated training image 

 

   

Figure 8:  Original on left and right  Figure 9:  Original on left and blank on right 

5.3  Discussion of Results 

Some of the reconstructed results for Deliverable 4 look reasonably legible.  

However, this simplistic global approach for image reconstruction is limited to a large 

degree, and paradoxically, by the similarity between the original and enhanced images.  

The more similar an original and enhanced image is, the better the reconstruction results, 

which defeats the purpose of reconstructing the image.  This approach works reasonably 

well when the configuration of the overall face and specific features are not drastically 

different. 

6.0  Future Work 

Future research and implementation will focus on more flexible feature-based 

methods of extraction, analysis, and reconstruction.  Specifically, work in CS 298 will 

concentrate on researching and developing methods to analyze and process discernible 

facial features such as the eyes, mouth, and perhaps the nose.  A significant portion of CS 

298 will also consist of developing techniques to produce legible age enhanced faces 

using the processed facial feature data.
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