

RECOGNITION AND AGE PREDICTION WITH DIGITAL IMAGES OF
MISSING CHILDREN

CS 297 Report
by

Wallun Chan

Advisor: Dr. Chris Pollett
Department of Computer Science

San Jose State University
May 2005

 2

1. INTRODUCTION

The purpose of this report is to provide a synopsis of the results achieved in CS

297 for Fall 2005. The results culminate in four deliverables that demonstrate research

and implementation work during the course of the semester. These deliverables provide

support for image retrieval and preprocessing, and initial attempts at image recognition

and reconstruction. Also, the work performed provides the initial groundwork for further

research and experimentation with advanced feature-based methods of extraction,

analysis and processing of faces, and reconstruction of age-predicted face images.

2. DELIVERABLE 1 - Face Recognition / Reconstruction with Eigenfaces

The purpose of Deliverable 1 is to verify the feasibility of using the eigenface

approach for image recognition and reconstruction. Once successful demonstration of

this is achieved, age prediction could be attempted with this technique. The eigenface

approach is based on using Principal Component Analysis (PCA) to select patterns that

best represent correlations between images thereby reducing redundancy. Given N points

in D-dimensional space, the eigenvectors of the covariance matrix for the data set forms

the principal axes of the D-dimensional data points. In other words, the image data can

be expressed more efficiently in terms of D orthogonal eigenvectors that form a new

coordinate system. This is done by projecting the data points onto a vector passing

through the mean of the data points in the direction of the eigenvectors. The direction of

the new principal axes (eigenvectors) is chosen such that the scatter is maximized for

each axis. A fraction of the eigenvectors will typically dominant in this scatter. The

measure of scatter is the covariance matrix multiplied by N - 1. The covariance matrix

generalizes variance for a random scalar variable to a random vector variable. The

 3

elements of the covariance matrix are the covariances of all pairs of scalar elements of

the vector variable. The amount of data may be reduced by eliminating those

eigenvectors that do not contribute much to the scatter. This is the basis for image

compression. Also, it can be observed that for any set of images, although differences

exist, redundancy may still be reduced by taking advantage of the correlation between

images. The covariance matrix as described, allows for a transformation that de-

correlates a set of data in a least squares sense.

PCA determines and uses the eigenvectors to express the variation between

images. Each eigenvector (eigenface) represents a principal component such that any

original training image may be reconstructed with a weighted linear combination of the

eigenvectors. Each eigenvector contributes more or less to each original image. To

reconstruct the each training image from the eigenvectors, the right proportions or

weights must be determined. This is done by projecting each training image onto the

dominant eigenvectors to form a weight vector. Each training image will have its own

characteristic weight vector. In addition, these weights can be used not only for image

reconstruction, but also for image recognition. This is done by first projecting a test

image to form its weight vector. The test weight vector is then compared with the weight

vectors of each training image. The comparison criteria used is the Euclidean distance

between the weight vectors. The smallest Euclidean distance found of the weight vectors

between the test image and all the training images is that of the recognized image.

2.1 Implementation and Functionality of Application Program

The application program for Deliverable 1 was written and compiled in Visual

C++. A screenshot of the program is shown in Figure 1. The application program uses a

 4

specific directory structure in which each person (class) is assigned a directory containing

a number of images of that person. In turn, each of these class directories are stored

under a root directory for the training and test set of images.

Figure 1: Face recognition / reconstruction program

2.2 Testing the Application Program

A sub-goal of Deliverable 1 is to determine how well PCA performs on unseen

images. That is, given a set of training images of various people, how well does the

classifier perform on images that it was not trained on. Therefore, to test the recognition

performance of the application program, grayscale .pgm images were downloaded from

[14]. These images represent 10 various facial poses from 40 subjects for a total of 400

images. The size of each image is 92 by 112 pixels, at 8-bits grayscale. The faces vary

with respect to the lighting, facial expressions like closed or open eyes and mouths, and

face accessories like glasses. The background features are eliminated, leaving just details

of the head. In-plane and out-of-plane head rotation also vary.

 5

The images are separated into training and test sets as noted above. Each set

consists of 40 directories, each containing 5 images for a particular class (person). The

test set consists of the same 40 classes as the training set, but with different facial poses

as that of the training images. By loading the training images into the application

program, training the classifier, and generating recognition performance statistics for the

test images, we have the results as shown in Figure 2.

Figure 2: Recognition results for 200 test images

The results above show a maximum face class value of 3601.88. It also indicates

that 6.5% of tested images are unrecognized. This margin may be decreased by

increasing the face class threshold to 3602.0 to force classification at the expense of

increasing the number of incorrectly classified images. The maximum face space value is

noted to be 2679.54. But since we know a priori that we are testing images, we set the

face space threshold to a large number so that all images are considered faces. In general,

given unknown images, the face space threshold must be specified (usually with trial and

error) in conjunction with the face class threshold to classify images accordingly.

 6

2.3 Image Reconstruction

The main goal of this application program is to determine how well images can be

reconstructed. More specifically, how effective is the eigenface approach in

reconstructing recognizable new images given known input images. The "Reconstruct"

button reconstructs an original or new image. Figure 4 shows the reconstruction results

for a training image from [14] with different percentages of eigenvectors retained. As

eigenvectors are truncated, the reconstructed image approaches the mean image.

Figure 3: 100%, 75%, 50%, and 25% of eigenvectors retained; mean image (last)

3. DELIVERABLE 2 - Python Webcrawler and Image Preprocessor

The purpose of this deliverable is to implement Python scripts that enter a missing

children's website, downloads all relevant images by using the web-page metadata,

preprocesses the images in terms of color, size, scale, orientation, and sets up a directory

structure to organize and store the images. The implementation consists of three Python

modules, webcrawler.py, face_ops.py, and image_ops.py, and a C++ helper program

"trackface.cpp".

3.1 Python Script 1 - webcrawler.py

The function of this script is to go through a website and download all children's

images for a particular state. After the images are downloaded, a specified destination

directory structure is created, and the images are stored in the file format as downloaded.

This script communicates with a servlet object to obtain the needed data by sending the

 7

appropriate parameters:

http://www.missingkids.com/missingkids/servlet/PubCaseSearchServlet?

act=usMapSearch&missState=CA&searchLang=en_US).

3.2 Python Script 2 - face_ops.py

This script takes as input the directory structure created by webcrawler.py. It

traverses the directory structure and crops all faces in the images to maximize face space.

Images are also converted from .jpg to grayscale .pgm format. A new directory structure

is created and copied from the original. In addition, in-plane rotation is attempted to

correct for head tilts. And lastly, a non-aged and aged face image is compared to see if

person is facing the same direction. If not, one of the faces is mirrored. This is done by

comparing the weighted average of the image difference between the non-aged and aged

image, and between the non-aged and mirrored aged image. Otherwise, images are not

cropped and converted to grayscale .pgm format only. Either way, images are resized to

specified dimensions and stored in the intended destination paths.

3.3 Python Script 3 - image_ops.py

This script takes as input the output directory structure created by face_ops.py and

produces another directory structure with resultant images from the subtraction of non-

aged and aged images, concatenation of non-aged and aged images, concatenation of

images with a blank image, and concatenation of images with themselves. Specifically,

the output from face_ops.py should be such that corresponding non-aged and aged

images are stored in the same directory.

 8

3.4 Helper Program - trackface.cpp

 The purpose of "trackface.cpp" is to process a grayscale .pgm face image for the

pixel locations of the face boundaries and eye locations. The face boundary locations are

used to crop the faces accordingly, and the eye locations are used to correct for in-plane

face rotations, in essence straightening out each face, if needed. "face_ops.py" calls this

program to generate a log file that contains the face boundary and eye locations of a face.

"face_ops.py" then parses this log file for the data, and uses it to crop faces and straighten

out any in-plane rotation.

4. DELIVERABLE 3 - Image Alignment / Feature Location with Shape Contexts

This deliverable explores the feasibility of using the idea of shape contexts to

provide a robust means of quantifying and representing the shape of an object. This

representation is then used along with several other techniques to support image

alignment and feature location of an image. The idea is to manually select features on a

template image, and then align a test image to the template image thereby locating the

features in question on the test image.

4.1 Description of Shape Context

Shape context is characterized by the spatial relationship between a point and all

other points in a shape. Specifically, it is defined by a set of points sampled from the

internal or external edges of a shape. The edges may be obtained by using an edge

detection algorithm. This application uses the Boie-Cox edge detector [12] which

exhibits excellent characteristics in detection (high signal-to-noise ratio), localization

(accurate pixel marking), and unique response (low sensitivity to spurious signals). For a

given sampled point, a shape context descriptor is defined by determining the set of

 9

vectors from this point to all other sampled points on the shape. Specifically, the shape

context for a point is a log-polar histogram that sorts all vectors for a given point by

relative distance and angular orientation. Figure 4 from [1] illustrates this.

Figure 4: Log-polar bins; corresponding flattened histogram

Qualitatively, the shape context for each point gives a precise description of the

relative position of a point to all other points. Thus, it can be used as an effective

measurement of shape similarity for a corresponding point on another shape to be

compared. This implies that there must be a full point-to-point correspondence between

points on two shapes. To obtain point-to-point correspondence, the log-polar histogram

representing the shape context for each point on a shape may be used to calculate the

measurement cost between points on two shapes. Given two shapes each with n sampled

points, a cost matrix representing all point pairs of size n by n is set up where each matrix

element is the χ2 cost between points on two shapes. The cost equation is given below,

where Cij represents the cost between points pi and pj on different shapes, and hi(k)

represents the kth bin of the normalized histograms at points pi and pj.

 10

The cost matrix represents an instance of the weighted bipartite matching

problem. In modeling the bipartite matching problem with respect to shape contexts, we

wish to minimize the total cost for all point pairs. The bipartite matching problem may

be solved in O(n3) by using the Hungarian algorithm. This application uses a more

efficient algorithm provided by [4] and [13] in solving the linear assignment problem.

4.2 Thin-Plate-Spline Point Alignment Method

Having solved the point-to-point correspondence problem, the shapes must be

aligned to match features on one image to another. [1] suggests using the thin-plate-

spline method of point-set alignment. This technique attempts to model coordinate

transformations from one set of points to another by using a weighted combination of

thin-plate-splines centered about each control point that allows a mapping function to be

interpolated through these points exactly. Figure 5 from [9] illustrates this.

Figure 5: Illustration of thin-plate-spline mapping

4.3 Operations of the Image Alignment / Feature Locate Program

The implementation of this application first performs edge detection to retrieve

the edge data of images. These edges are then sampled for both test and target point-sets

for two images to be aligned. Point-to-point correspondence is determined between the

two point-sets for a minimum overall matching between point-sets. Thin-plate-spline

 11

interpolation is then performed to provide a mapping function from test to target image

coordinates. Selected test points are then grouped in target image coordinates. A

screenshot of the application program is shown in Figure 6.

Figure 6: Image Alignment / Feature Locate Program

4.4 Functionality of the Image Alignment / Feature Locate Program

The program consists of four views: the control, template, test, and feature locate

views. The control view allows the user to load and display images for the template and

test views. The “Load” button reads and displays images in the template and test views.

The “Edge Detect and Sample” button performs edge detection on the template and test

images and samples points from these edges. The "Map" button applies thin-plate-spline

 12

interpolation to the test and target point-sets. The user may then click and create boxes in

the template view to select features to map to the test view, which are then shown in the

feature locate view. The "Locate Feature(s)" button takes all the user-selected points

from the template view, maps it to the test view, groups them into convex hulls according

to user selections, and then displays the centroid of each group in the feature locate view.

The "Reduce Outliers & Update" button attempts to reduce the number of outliers during

grouping. This is done by removing any points of a group that are greater than a fixed

number of standard deviations from the mean radial distance between the group centroid

and a point.

5. DELIVERABLE 4 - Age Progression by Reconstructing Concatenated Images

The purpose of this deliverable is to use the tools developed for Deliverables 1

and 2 to produce results for an initial attempt at age progression of images of missing

children. Deliverable 1 is an implementation of the eigenface approach for image

recognition and reconstruction. Deliverable 2 consists of Python script implementations

that download missing children’s images, preprocess images in terms of size and file

format, and support image cropping, mirroring, and concatenation.

Specifically, we want to create new images that are concatenations of original

images with their corresponding enhanced images. We use the face reconstruction

program of Deliverable 1 to train on a number of these concatenated images. Then we

input into the face reconstruction program a concatenated image that consists of the same

original image of a child on both sides of the image. We also input into the

reconstruction program a concatenated image that consists of an original image on one

side and a blank image on the other side. In both cases, we wish to obtain a reconstructed

 13

image with one side of the image converted into an enhanced (aged) version of the

original image.

5.1 Testing the Python Scripts

We first retrieve a number of missing children’s images by using the

"webcrawler.py" python script to download from [16]. After the images are downloaded,

a specific directory structure is created and the images are stored as downloaded. Next

the Python script "face_ops.py" is invoked. This script takes as input the directory

structure created by "webcrawler.py". It traverses the directory structure and crops all

faces in the images to bring them forward to maximize face space (i.e. reduces pixels

covered by hair and background). Images are also rotated to correct for in-plane rotation

and converted from .jpg to grayscale .pgm format. A new directory structure is created.

We then call the Python script "image_ops.py" to perform further image preprocessing on

the output directory structure of "face_ops.py". As previously mentioned, we want to

create a set of concatenated images that consist of original images on one side, and

enhanced images on the other side. We also want to create a set of concatenated images

that consist of the same original image of a child on both sides of the concatenated image.

We use one set for classifier training, and the other set for image reconstruction.

5.2 Reconstruction of Concatenated Images

Given the generated sets of concatenated training and input images, we use the

reconstruction program of Deliverable 1 to produce age-enhanced images. We train the

program and obtain example reconstruction results as shown in Figures 8 and 9.

 14

Figure 7: Concatenated training image

Figure 8: Original on left and right Figure 9: Original on left and blank on right

5.3 Discussion of Results

Some of the reconstructed results for Deliverable 4 look reasonably legible.

However, this simplistic global approach for image reconstruction is limited to a large

degree, and paradoxically, by the similarity between the original and enhanced images.

The more similar an original and enhanced image is, the better the reconstruction results,

which defeats the purpose of reconstructing the image. This approach works reasonably

well when the configuration of the overall face and specific features are not drastically

different.

6.0 Future Work

Future research and implementation will focus on more flexible feature-based

methods of extraction, analysis, and reconstruction. Specifically, work in CS 298 will

concentrate on researching and developing methods to analyze and process discernible

facial features such as the eyes, mouth, and perhaps the nose. A significant portion of CS

298 will also consist of developing techniques to produce legible age enhanced faces

using the processed facial feature data.

 15

Bibliography

[1] S. Belongie, J. Malik, and J. Puzicha. Shape matching and object recognition
using shape contexts. Technical Report UCB//CSD-00-1128, UC Berkeley,
January 2001.

[2] F. L. Bookstein. Principal warps: thin-plate splines and decomposition of

deformations. IEEE Trans. Pattern Analysis and Machine Intelligence, June
1989.

[3] Pattern Classification. Richard O. Duda, Peter E. Hart, and David G. Stork. John

Wiley & Sons, 2001.

[4] R. Jonker and A. Volgenant. "A Shortest Augmenting Path Algorithm for Dense

and Sparse Linear Assignment Problems", Computing 38, 325-340, 1987.

[5] Numerical Recipes in C. William H. Press, Brian P. Flannery, Saul A. Teukolsky,

William T. Vetterling. Cambridge University Press, 1988.

[6] Stuart Russell and Peter Norvig. Artificial Intelligence: A Modern Approach.

Pearson Education, Inc., 2003.

[7] Practical Algorithms for Image Analysis: Description, Examples, and Code.

Michael Seul, Lawrence O'Gorman, and Michael J. Sammon. Cambridge
University Press, 2000.

[8] Eigenfaces for Recognition. Matthew Turk and Alex Pentland. Journal of

Cognitive Neuroscience, Vol. 3, No. 1, 1991.

Web References

[9] Gianluca Donato and Serge Belongie. Approximation Methods for Thin Plate

Spline Mappings and Principal Warps.
http://www-cse.ucsd.edu/~sjb/pami_tps.pdf, 2002.

[10] Jarno Elonen. Thin Plate Spline editor - an example program in C++.

http://elonen.iki.fi/code/tpsdemo, 2003.

[11] Lindsay I. Smith. A Tutorial on Principal Components Analysis.

http://www.cs.otago.ac.nz/cosc453/student_tutorials/principal_components.pdf,
2002.

[12] Ingemar J. Cox. Boie-Cox Edge Detector Code. http://www.ee.ucl.ac.uk/~icox/.

[13] R. Jonker and A. Volgenant. Linear Assignment Problem Code.

http://www.magiclogic.com/assignment.html.

 16

[14] Cambridge University Engineering Department Database of Faces.

http://www.uk.research.att.com/facedatabase.html.

[15] Henry A. Rowley, Shumeet Baluja, and Takeo Kanade. Face Detection Source

Code. http://vasc.ri.cmu.edu/NNFaceDetector/.

[16] Missing Children’s Image Database. http://www.missingkids.com.

