
USB KEY PROFILE MANAGER FOR MOZILLA

A Project Report

Presented to

The Faculty of the Department of Computer Science

San Jose State University

In Partial Fulfillment

of the Requirements for the Degree

Master of Science

by

Yun Zhou

December 2004

1

© 2004

Yun Zhou

ALL RIGHTS RESERVED

2

 APPROVED FOR THE DEPARTMENT OF COMPUTER SCIENCE

__
Dr. Chris Pollett

__
Dr. Melody Moh

__
Dr. Mark Stamp

APPROVED FOR THE UNIVERSITY

3

ABSTRACT

USB KEY PROFILE MANAGER FOR MOZILLA
By Yun Zhou

 Mozilla's profile manager allows users to save their private information

such as bookmarks, cache and email drafts and customize their preferences

settings. In this project, we build an XPCOM (Cross Platform Component

Object Model) component called the USB (Universal Serial Bus) Key Profile

Manager as an extension to the existing profile manager so that users can

carry their profiles around via removable USB keys and use those profiles on

different computers. To achieve this, three major functions were implemented:

USB profile loader, user authentication and profile encryption. In this report,

we will start with some background information and related work followed

by a detailed description of the project design and an encryption performance

test. We will summarize the report with a conclusion and a brief discussion of

future work.

4

TABLE OF CONTENTS
I. INTRODUCTION.. 1
II. BACKGROUND AND RELATED WORK...3

2.1 Mozilla's Profile Manager... 3
2.1.1 Strengths and Weaknesses ..3
2.1.2 nsProfile...5
2.1.3 nsProfileAccess... 5

2.2 XPCOM - Cross Platform Component Object Model.. 6
2.2.1 Modularity... 6
2.2.2 Interface... 6
2.2.3 XPCOM Glue.. 8
2.2.4 Component Management ...9

2.3 Mozilla's Personal Security Manager (PSM) and Network Security Services (NSS)
...9

2.3.1 Overview... 9
2.3.2 The Structure of PSM..10
2.3.3 NSS API.. 11

2.4 Advanced Encryption Standard (AES)..11
2.4.1 The Algorithm... 11
2.4.2 Operation Modes... 12

2.5 Hash Algorithms... 14
2.5.1 MD5 and SHA-1..14
2.5.2 Dictionary Attack and Salted Hash..15

2.7 Performance Test of a USB Drive...16
2.7.1 Advantages and Disadvantages of USB Drives ..16
2.7.2 Several USB Drives, Their Storage Space and Transfer Rates....................... 16
2.7.3 Read and Write Performance Test ...17

III. DESIGN AND IMPLEMENTATION... 18
3.1. Event-Driven Design..18
3.2 USB Profile Loader... 22

3.2.1 Detect Mounted USB Drives...22
3.2.2 Search for Profiles on Mounted USB drives... 23
3.2.3 Load Profiles to the Registry... 24
3.2.4 Cleanup at Shutdown...26

3.3 User Authentication...28
3.3.1 Password Prompt... 29
3.3.2 How the Project Uses nsIWindowWatcher and nsIPromptService33
3.3.2 Salted Password Digest... 35

3.4 AES Encryption and Decryption... 38

v

5

3.4.1 AES Encryption Functions in the NSS Library... 38
3.4.2 Generate the Key and the IV (Initialization Vector)..40
3.4.3 Pad the Input Text... 40
3.4.4 Encode the Cipher Text in the Base64 Format..41
3.4.5 Example: A Plain Text and Its Encrypted Version ...41

3.5 Detailed Sequence of Operations.. 43
3.5.1 User Authentication during Profile Switch... 43
3.5.2 User Authentication during Startup...48
3.5.3 Profile Decryption and Encryption.. 49
3.5.6 Flow Chart... 50

IV. PERFORMANCE AND USABILITY TEST..53
V. CONCLUSION... 55
VI. FUTURE WORK...56
ACRONYMS...57
REFERENCES.. 58

vi

6

LIST OF FIGURES

Figure 1: Use QueryInterface to Decide Whether an Object Implements An Interface...... 7
Figure 2: Access Mozilla Profile Manager.. 7
Figure 3: USB Profile Manager Learns about Profile Switching.......................................20
Figure 4: Subscribe for Events...21
Figure 5: React According to the Topic of a Received Event..21
Figure 6: Get the Key for the Base Node of the Profiles Subtree...................................... 25
Figure 7: Add a Key for the New Profile... 25
Figure 8: Remove USB Profiles from the Registry... 28
Figure 9: Password Prompt..30
Figure 10: A Warning for an Unprotected USB Profile.. 31
Figure 11: Error Message for Invalid Password...32
Figure 12: Get the Prompt Service via nsIWindowWatcher.. 34
Figure 13: The Definition of the SHA-1 Context.. 36
Figure 14: Compute the SHA-1 Hash of a Given Password..37
Figure 15: The Definition of the AES Context..39
Figure 16: A prefs.js File and Its Cipher Text... 42
Figure 17: Veto the Change of the Profile When Login Fails... 45
Figure 18: Collaboration Diagram for the nsIDOMWindow Interface..............................46
Figure 19: Get the Name of the User-Selected Profile via the DOM Window Object......47
Figure 20: The Sequence of Operations at Startup.. 50
Figure 21: User Authentication and Profile Decryption at Startup....................................52
Figure 22: The Elapsed Time for Encrypting Profiles of Different Sizes..........................54

LIST OF TABLES

Table 1: The Formula for the ECB Mode.. 13
Table 2: The Formula for the CBC Mode..14
Table 3: Several USB Drive Products, Storage Space, and Transfer Rates.......................17
Table 4: Read/Write Performance Test Results...18
Table 5: The Performance of Encrypting USB Profiles...54

vii

7

I. INTRODUCTION

 In this project, an XPCOM (Cross Platform Component Object Model)

component USB (Universal Serial Bus) key profile manager was designed and

implemented to enhance and extend the current functionalities of the Mozilla profile

manager. With the help of the USB profile manager, user profiles stored on USB keys

will be truly location independent and password protected. (In this report, the new

component will be referred to as the USB profie manager, as opposed to the existing

profile manager, i.e. the Mozilla profile manager).

 Mozilla is one of the biggest open source projects at the time of this writing, and

its code base keeps growing as more functionalities are integrated. Mozilla implements

a full-fledged Internet browser with strong security protection, high performance, and

good usability. As the descendant of Netscape, Mozilla's next generation browser

Firefox has the capability of fitting seamlessly with multiple platforms and has

therefore received much attention from the media and Internet users. The Firefox 1.0

release provides a rich yet customizable set of features such as live bookmarks, built-in

popup blocker, Google search toolbar and development tools.

 To achieve location independence, the USB profile manager automatically detects

a mounted USB key and searches for profiles according to certain pattern. If profiles

are detected, they will be registered with the browser so that the user can use them as

8

regular profiles. When the browser is shut down, the loaded USB profiles are removed

from the registry so that no footprint will be left.

 To protect the content of the profiles, the USB profile manager authenticates the

user before a protected profile is accessed. When the user shuts down the browser or

and switches to another profile, the current profile is encrypted using the AES

(Advanced Encryption Standard) algorithm.

 This project was developed on Red Hat Linux 9.0 with Mozilla 1.7 RC1.

However, it can be developed on any other platforms or with other versions of Mozilla

without extra difficulty. The USB key profile manager was implemented as an

XPCOM component for backward compatibility. No modification was made to the

existing code base of Mozilla. After installation, the new component is automatically

registered with the browser and starts functioning. It can also easily be uninstalled.

 The following is the outline of the topics being presented in this report. In Section

II, we will introduce some important background knowledge and related work as a

preparation for the readers to understand the design details presented in Section III.

The background information includes the existing Mozilla profile manager, the

concept of XPCOM components and the key points for developing such components,

Mozilla's Network Security Services (NSS) and Personal Security Manager (PSM) that

9

provide the security algorithms needed for user authentication and encryption, the AES

algorithm and some well-known hash functions. Additionally, a study on the read and

write speed of USB drives is provided. In Section III, we will discuss the detailed

design for the event-driven structure as the base structure of the USB profile manager,

the implementation of the three key features: profile loader and unloader, user

authentication, profile encryption and decryption, followed by a presentation of the

sequence of operations. We then present a set of performance and usability test in the

purpose of investigating whether the overhead is at an acceptable level. The report

ends with a conclusion and a discussion of future work.

II. BACKGROUND AND RELATED WORK

2.1 Mozilla's Profile Manager

2.1.1 Strengths and Weaknesses

 The profile manager is one of the key components of Mozilla. Our USB key

profile manager is meant to be an extension of the existing profile manager. Mozilla

uses profiles to store users' personal settings such as bookmarks, cookies, preferences,

news group subscriptions, browsing history, cache, and so forth. Profiles not only help

users manage their personal information, customize the browser's behavior in response

to different events, but also provide big performance gain. For example, the usage of

cookies and cache largely reduce the number of message exchanges between the

browser and the content servers. Users are allowed to create multiple profiles and save

10

them to user-specified locations, such as removable disks. The profile manager

provides a XUL-based (XML User Interface Language) user interface for the users to

manage their profiles. The content of the profile can be easily accessed through the

browser's link field.

 However, the current profile manager has the following weaknesses that need

improving. First, although profiles can be stored on removable storage medium, they

do not really achieve location independence. This is because Mozilla does not

recognize profiles unless they are registered. Registration can only be done when a

profile is created, meaning that one cannot easily take a profile created on one

computer and use it on another without copying and pasting all the files in the profile

folder.

 Second, the files in a profile folder is saved without any encryption and the

profile folder is given a software-generated folder name ended with “.slt”. Therefore, if

an unauthorized user does a simple file search for folders with the pattern “.slt”, she

can easily locate the profiles and examine the content. This can be a security flaw

because not only can private information be leaked, but also a hacker or malicious

code and change certain security settings such as disabling strong encryption ciphers,

allowing no encryption at all, or disabling pop-up warnings when a suspicious events

occurs.

11

2.1.2 nsProfile

 Most of the Mozilla profile manager is contained in the nsProfile class which

implements the nsIProfileInternal interface. Our USB profile manager interacts with

the Mozilla profile manager through the nsIProfileInternal interface. nsProfile accepts

calls from other components to manage profiles. It can create, rename, copy and delete

profiles. It also handles internationalization as well as migration of profiles created by

former versions of Mozilla or Netscape. nsProfile communicates with the registry

nsProfileAccess.

2.1.3 nsProfileAccess

 The nsProfileAccess class handles directory access such as read and write

operations on the profile registry. When the browser is started up, nsProfileAccess

will create a ProfileStruct object and fill it with the information from the registry file.

This information includes the name, location, the last modified date, creation time,

email address, etc. When changes to the profile need to be updated or a new profile

needs to be created, the UpdateRegistry() function will be called to write those

changes to the registry file. This class also provides a set of “setter” and “getter”

functions that forms an interface with the upper-level nsProfile class.

12

2.2 XPCOM - Cross Platform Component Object Model

2.2.1 Modularity

 As mentioned earlier, the USB key profile manager was implemented as an

XPCOM component. XPCOM is Mozilla's component architecture and it provides a

set of core libraries that facilitates software development cross different platforms,

including all flavors of Windows, Linux, BSD, MacOS, Solaris, HP-UX, AIX, and

OpenVMS. It helps to modularize the code, increase flexibility, scalability,

maintainability and reusability of the code. The components can be implemented

independently and installed separately according to the user's needs. The versioning

support enables developers to modify their components without having to recompile

the entire project.

2.2.2 Interface

 Similar to its counterpart, Microsoft's COM model, XPCOM is also interface-

based. Components are typically compiled into dynamic reusable libraries and they

communicate with each other at runtime through the interfaces. An interface acts as a

contractual agreement and it decides how other components can access the component

that implements this interface.

 All interfaces are derived from a base interface nsISupports which tackles two

major issues of interface-based programming: component lifetime and interface

13

querying. The AddRef and Release methods are responsible for adding and subtracting

reference count. QueryInterface is for deciding whether a component implements a

certain interface. The following is an example from this project that shows how to use

QueryInterface:

Figure 1: Use QueryInterface to decide whether an object implements an interface.

 To identify a particular component, some kind of identifier needs to be assigned.

XPCOM provides three types of identifiers. Here we will describe one of them briefly.

Contract ID, the most frequently used identifier in this project, is a human readable

string. The following is the contract ID of the USB profile manager:

#define USBPROFILE_ContractID "@azhou/USBProfile"

And here is an example of using the contract ID to get the service of Mozilla profile

manager. It shows how we access this component in the project.

Figure 2: Access Mozilla profile manager.

14

2.2.3 XPCOM Glue

 To speed up component development, Mozilla provides a glue library which

contains a set of generic macros and utility classes. By using these tools, our code is

much simplified.

 The smart pointer class nsCOMPtr is probably the most frequently used tool. As

we all know, reference counting is a tedious, tricky and error-prone. When not handled

properly, it will result in memory leak. nsCOMPtr is designed to take care of

bookkeeping reference count for the developers so that they can focus on component

specific code. For instance,

 The generic macros provide the common behaviors needed for all XPCOM

components. For example, instead of implementing the nsISupports for every

component, you just need to call NS_IMPL_ISUPPORTS1 to have the glue library

implement QueryInterface, AddRef, and Release for you.

 Other tools include do_QueryInterface(), do_GetService(), do_CreateInstance(),

15

do_GetInterface(), nsMemory, nsDebug and nsISupport support.

2.2.4 Component Management

 Mozilla's manages components mainly through three core component

management helpers: nsIComponentManager, nsIComponentRegistrar, and

nsIServiceManager. nsIComponentManager is responsible for creating components,

and get a particular implementation of an interface. nsIComponentRegistrar handles

the registration and unregistration of a component. In addition, it can discover newly

installed components and enumerate registered components. nsIServiceManager

creates and provides access to singleton objects. For most of the time, component

developers do not have to use these interfaces explicitly, because most of the tasks can

be achieved through the generic tools defined in the XPCOM glue, such as

do_GetService() and do_CreateInstance() as mentioned in the above section.

2.3 Mozilla's Personal Security Manager (PSM) and Network Security

Services (NSS)

2.3.1 Overview

 This project makes use of some of the existing security functions provided by

Mozilla in the Personal Security Manager (PSM) and Network Security Services

(NSS) modules. PSM supports end-to-end security between the client, i.e., the browser

and Web servers. PSM supports SSL (Secure Socket Layer) v2, v3 and TLS (Transport

16

Layer Security). It provides a large variety of cipher suites for key exchange, digital

signatures, bulk encryption, and data integrity. Its sophisticated user interface allows

users to manage their passwords, cookies, certificates for mutual authentication and

customize their security settings. For instance, users can disable SSL v2, weak ciphers

with small key size, or approve certificates only from certain certificate authorities.

The user interface makes it very easy to understand as long as the user has some basic

knowledge about Internet security. PSM also supports most of the PKI (Public Key

Infrastructure) specifications.

2.3.2 The Structure of PSM

 In the project, the nsIHash interface of the PSM module is used for creating

password digest and user authentication. PSM includes two shared libraries: pki and

ssl. The ssl package links to NSS 3.2, handles all the SSL sockets, provides event

handlers and appropriate warnings, defines and implements IDL interfaces for access

to NSS libraries. The ssl package also allows applications to use the cryptographic

components without having to include other modules of the browser. Besides

functionalities, the ssl package also offers good performance which is fast enough for

disk encryption.

 The pki package implements the user interface using XUL and related XPCOM

objects.

17

2.3.3 NSS API

 NSS provides an open-source implementation of security libraries that can be

easily reused. For example, the USB profile manager encrypts password-protected

profiles with the implementation of the AES algorithm provided in NSS. Besides AES

(Advanced Encryption Standard), NSS supports a complete set of cryptographic

algorithms such as SSL (Secured Sockets Layer) v2 and v3, TLS (Transport Layer

Security) v1, PKCS (Public Key Cryptography Standards) #1, #3, #5, #7, #8, #9, #10,

#11, #12, S/MIME for encrypted MIME (Multipurpose Internet Mail Extensions)

data, X.509 v3 certificates, OCSP (The Online Certificate Status Protocol), and a suite

of advanced ciphers such as RSA, DSA, Triple DES, DES, Diffie- Hellman, RC2,

RC4, SHA-1, MD2, MD5. NSS also provides tools to manage keys and security

modules, and to debug and diagnose code.

2.4 Advanced Encryption Standard (AES)

2.4.1 The Algorithm

 As mentioned earlier, AES (Advanced Encryption Standard) is used in our project

to encrypt profile folders so that they will be tamper-proof. AES is an iterated block

cipher with a block size of 128 bits. It is considered a much stronger encryption

algorithm than DES (Data Encryption Standard). AES allows keys with variable-

length. Typical key sizes are 128-bit, 192-bit, and 256-bit. Depending upon the key

18

length, AES runs through 10 to 14 rounds of encryption, each of which contains four

operations and three layers: an S-box for byte-for-byte subsititutions contributes to the

non-linear layer; ShiftRow for rearrangement of bytes belongs to the linear mixing

layer; MixColumnand also belongs to the non-linear layer; and MixAddRoundKey is

for the key addition layer. [C. Kaufman, R. Perlman and M. Speciner].

2.4.2 Operation Modes

 For block ciphers such as AES, encryption and decryption are done in the unit of

blocks. If the size of the plain text is larger than the block size, the algorithm requires

that the text first be divided into a number of blocks before the iterations. If the text

size is not a multiple of the block size, we have to pad the text so that it is divisible by

the block size. When the plain text is divided into blocks, there are a number of ways

to encrypt these blocks. This is also known as operation modes.

 The two best known modes are Electronic Code Book (ECB) and Cipher Block

Chaining (CBC). These are also the modes that Mozilla's implementation of AES

supports. The ECB mode is the simplest mode for which each block is encrypted and

decrypted separately, and after all the iterations are done, these blocks are assembled to

formed the cipher text or plain text. The formula of the ECB mode is the following (Ci

stands for the cipher text for the ith block; Pi for the plain text for the ith block; K for

the key, i = 0, 1, 2, ..., n) :

19

Encryption Decryption
C0=E(P0,K) P0=D(C0,K)

C1=E(P1,K) P1=D(C1,K)

C2=E(P2,K) P2=D(C2,K)

... ...
Cn=E(Pn,K) Pn=D(Cn,K)

Table 1: The formula of the ECB mode.
Source: [C. Kaufman, R Perlman and M. Speciner]

 ECB is known to be vulnerable to several attacks, such as block rearrangement.

The biggest weakness of ECB is that it is relatively easy for attackers to gain

information from the cipher text because the same block of plain text always results in

the same cipher text with the same key.

 Because of the flaws of ECB, the USB profile manager uses the CBC mode. This

mode requires an IV (Initialization Vector). Here is how CBC works: the first block is

XOR'ed with the IV before being encrypted. The cipher block is then XOR'ed with the

second block before encryption. This process is repeated until all the blocks are

encrypted. During decryption, the procedures are reversed. The formula is shown in

Table 2:

20

Encryption Decryption

C0 = E(IV⊕P0,K) P0 = IV⊕D(C0,K)

C1 = E(C0⊕P1,K) P1 = C0⊕D(C1,K)

C2 = E(C1⊕P2,K) P2 = C1⊕D(C2,K)

... ...

Cn = E(Cn-1⊕Pn,K) Pn = Cn-1⊕D(Cn,K)

Table 2: The formula for the CBC mode.
Source: [V. Klíma and T. Rosa]

 The biggest advantage of CBC is that the cipher texts are different even if the

plain texts are the same, so it exposes much fewer hints to attackers than the ECB

mode. Rearrangement attacks are still possible with CBC, but it is much harder than

with ECB [C. Kaufman, R Perlman and M. Speciner].

2.5 Hash Algorithms

2.5.1 MD5 and SHA-1

 One way to authenticate a user is to compare the message digest of a given

password against a saved digest of the correct password. For our project, a strong hash

function such as SHA-1 is sufficient for generating message digests because it is a

one-way function, meaning that given a digest generated by SHA-1, it is impossible to

decide the original text without using a brute-force attack. Currently, the most popular

hash functions are MD5 and SHA-1. MD5 generates a 16-byte hash and SHA-1 20-

byte hash.

21

 Another important issue for hash functions that needs to be considered is to avoid

collisions of the hash results. However, recently two different texts have been

discovered to produce the same hashes using MD5. Therefore, SHA-1 is applied in

this project.

2.5.2 Dictionary Attack and Salted Hash

 A common attack on passwords is the dictionary attack. Since users tend to use

English words or passwords with some pattern such as birthday or lucky numbers, an

attacker can guess all possible passwords, pre-compute their hashes and store them in a

“dictionary”. When the attacker captures a hash (which is usually not difficult because

many systems save hashes at known locations), he can compare the hash against his

dictionary to see if any match exists. Only one round of computation is needed for all

possible passwords and the dictionary can be used repeatedly.

 A salted hash can be used to make dictionary attack much more time and resource

consuming. In this approach, a password is first appended by some random bits called

salt then hashed. This salt is stored with the password for future authentication. If the

same attacker obtains a salted hash, he has to re-compute all the guessed passwords

with the salt. And he has to repeat the calculation for every different salt.

22

 Due to the advantages of using salted hashes, it was chosen for generating

password digest in this project. Details on this will be discussed in a later section.

2.7 Performance Test of a USB Drive

2.7.1 Advantages and Disadvantages of USB Drives

 USB drives have gained much popularity due to their larger storage space, higher

data transfer rate, smaller physical size compared to traditional floppy disks. USB

drives are also more and more affordable and the prices keep dropping. At the time of

this writing, one can purchase a 512 MB 2.0 USB key at around $60. With the advent

of the 2.0 USB interface, the transfer rate will be much higher. In addition to these

advantages, USB drives are also favored due the fact that newly manufactured

computers usually don't come with a floppy drive any more.

2.7.2 Several USB Drives, Their Storage Space and Transfer Rates

 The two characteristics of USB drives that are of major concern in this project are

storage space and transfer rate. Here is a list of USB drive specifications.

23

Brand Storage Space Transfer
Rate

Kingston Traveler USB 2.0 Hi-Speed Flash Memory 1GB 480 mbps
Lexar Media USB JumpDrive 2.0 Pro 1GB 4.5/6.0 mbps
Sony Corporation Micro Vault USB Storage Media 256 MB 5.5 mbps
*PNY Attache 2.0 USB Flash Drive 128 MB 4.0/5.0 mbps
CD Cyclone Flash Key 128 MB 800 kbps
EasyDisk USB Drive 128 MB 710 kbps
Sonnet Technologies Piccolo USB Flash Drive 256 MB 350/700 kbps
Linksys Instant USB Disk 128 MB 800 kbps

Table 3: Several USB drive products, storage space, and transfer rates
Note: * indicates the USB Drive being used for this projects.
Source:
http://accessories.us.dell.com/sna/productlisting.aspx?c=us&l=en&cs=RC968571&cat
egory_id=5949&first=true

 The USB drives with lower transfer rates are most likely 1.1 USB drives.

However, for 2.0 USB drives, if the underlying operating system does not support 2.0

USB interface, the transfer rate will be that of a 1.1 USB interface. USB keys with

larger disk space and higher transfer rate definitely costs more. For example, the

Kingston Traveler USB 2.0 Hi-Speed Flash Memory is priced at $295.95 at the time

of this writing, while the PNY Attache 2.0 USB Flash Drive only costs about $40.

24

2.7.3 Read and Write Performance Test

 The following table shows the different tests that have been carried out with

regard to the read and write performance of a PNY Attache 128 MB 2.0 USB Flash

Drive. The rates listed were the average rates of five experiments.

Write Rate (Average)
Output File Size: 98 MB

Buffer Size: 1024 B

Read Rate (Average)
Input File Size: 97.7 MB

Buffer Size: 1024 B
USB Drive 7.168 mbps 4.944 mbps
Local Drive 83.152 mbps 156.32 mbps
Local Drive/USB Drive 11 times faster 28.8 times faster

Table 4: Read/Write performance test results

 Although USB drives are much faster than floppy drives, they are still

significantly lower in performance than local hard disks. However, as we can see from

Table 3, faster 2.0 USB drives are coming out to the market. Although they are still

costly at the moment, they will certainly be affordable in the near future.

III. DESIGN AND IMPLEMENTATION

 In this section, we will discuss mainly the design and implementation involved

with the component specific logic. For the issues on implementing interfaces common

to all XPCOM components, please refer to [Turner & Oeschger].

25

3.1. Event-Driven Design

 There are two mechanisms for the USB profile manager to cooperate with the

existing Mozilla's profile manager and change the existing behavior. One is to change

the existing profile manager and have it call the functions in the new component.

These mechanisms were not chosen for this project because the existing profile

manager is a substantial and mature module of Mozilla. Changes may not be easily

accepted and may cause backward compatibility issues. My work is still preliminary

and experimental. Currently the component is developed entirely on the Linux

platform and is platform dependent, which is not compatible with Mozilla's cross-

platform model.

26

 In order to make the USB profile manager a pure add-on component which does

not have any influence to the existing behavior when not installed, the component was

designed based on event-driven mechanism. The component subscribes for the events

that it is interested in, for example “profile-approve-change”. When such event is

generated a initiating component, that component will call the Observe function of all

the subscribers to “notify” them about this event. So when the USB profile manager

receives “profile-approve-change”, it can react accordingly. Event-driven mechanism

is a good way to decouple different modules of an application and yet still make the

communication between them possible. Developers who implement the components

that generate events do not have to have a priori knowledge about the observers of

these events. Many XPCOM components use this way to get created at startup.

 Mozilla provide a service called nsIObserverService for managing and notifying

observers about all kinds of events. This interface defines three basic functions:

addObserver, removeObserver and notifyObservers. Let's take the event “profile-

approve-change” as an example to examine how events are handled via

nsIObserverService. When the user wants to switch from one profile to another, the

profile manager generates the “profile-approve-change” event get an approval from

the interested components in order to proceed. It then calls the nsIObserverService to

notify the observers. nsIObserverService maintains a list of observers for each event.

It calls the Observe function of each of the components subscribed for this event, as

27

shown in Figure 3. If any component vetoes the change, the switching will be aborted.

Figure 3: USB profile manager learns about profile switching

 Any component that wants to receive notifications should inherit nsIObserver

interface and implement the Observe function. If a component signed up for multiple

events, it needs to check the topic of the event it just received in order to act

accordingly. For example, the USB profile manager subscribe for three events:

“profile-approve-change”, “profile-initial-state” and “xpcom-shutdown”. (The

rationale of subscription for these events will be explained in a later section.) The

following pieces of code show how to subscribe for events (Figure 4) and how to

check the topic (Figure 5).

28

Profile Manager

NsIObserverService

Calls NotifyObservers(NotifyObservers(..., "profile-
approve-change", ...)

Calls Observe(..., "profile-approve-
change", ...)

USB Profile Manager Other components...

Figure 4: Subscribe for events.

Figure 5: React according to the topic of a received event.

 Every XPCOM component will be notified of the “xpcom-startup” be default, so

does the USB profile manager. Therefore, the Observe() function acts like the main()

function of an standalone application.

29

3.2 USB Profile Loader

 The first major feature of the USB Profile Manager is to automatically detect and

load profiles from mounted USB drives. As mentioned in the introductory section,

Mozilla's existing profile manager does not recognize a profile unless it was created on

the same local machine, because only in this way does Mozilla's registry have

information about this particular profile such as the name and the location, etc.

 Therefore, the USB profile loader has to first detect mounted USB drives, then

search for Mozilla profiles and at last add information to Mozilla's registry file.

3.2.1 Detect Mounted USB Drives

 This part of code is the only part that is platform dependent. Making this feature

platform independent is future work. We followed the same procedure as the UNIX

command df employs. The idea is to examine the mount table and search for a

mounted element with the device node called "/dev/sda". The getmntent() function

returns important information about each mounted devices, including the device name

and the path name. Therefore, the path name for the "/dev/sda" device is the path for a

mounted USB drive. Note that we assume that only "/dev/sda" corresponds to a USB

drive. However, this may not be true always. So our future tasks also include finding a

more flexible way of detecting USB drives.

30

3.2.2 Search for Profiles on Mounted USB drives

 Once a path name USB drive is located, a recursive function SearchForProfile()

is used to search for Mozilla profile under this path. The way Mozilla arranges its

profile folder is the following:

 In the above example, the name of the profile is “MyProfile”. It contains the

folder with a randomly generated name “cvytwbzr.slt”. All the profile files and

subfolders are located in cvytwbzr.slt. Note that the name of every profile folder ends

with “.slt”. Therefore, in this project, we determine whether a directory is a Mozilla

profile by checking whether the directory name ends with “.slt”. A more sophisticated

way is to check whether some important files exist and have the proper format. These

files can be chrome.rdf, prefs.js, history.dat, etc.

3.2.3 Load Profiles to the Registry

 Once a profile is located, we want to load the information into Mozilla's registry.

Otherwise, the user will not see this profile in the profile selection dialog.

31

 Mozilla's registry is a file based database that stores all the critical data about the

browser, such as profiles, skins and locales. Its functionalities is similar to the

Windows registry. This database maintains a tree structure, where each object is

associated with a key. Possible operations on the registry include addKey, getKey,

removeKey, getString, setString and so forth. The registry is a relatively low-level

component of Mozilla. Ideally, add-on components should avoid manipulating the

registry directly. It is preferred to add profiles through the existing profile manager.

However, the nsIPofile interface does not provide public functions for registering a

profile with an existing directory.

 The data for the profiles forms a subtree of the registry. The string “Profile” is the

name of the key for the base node of all the profiles. To get the node, the following is

done:.

Figure 6: Get the key for the base node of the profiles subtree.

32

 To register a new profile, we first create a new key under the “Profiles” key.

Figure 7: Add a key for the new profile.

 The new key is returned via profKey. We can then save the location of this

profile through the SetString() function.

 Besides the location, there are other values to be set with the profile, such as the

version number, the creation time, last-modified time and whether migration is

needed. However, some of the information is hard to be extracted from the profile

directory itself. So in my implementation, not all the information is provided when a

profile is loaded into the registry.

33

3.2.4 Cleanup at Shutdown

 Imagine a workstation which is worked on by many users everyday. If we keep

adding USB profiles, soon the profile list will be very long and most of them will

inaccessible without the correct the USB drive. So at Mozilla shutdown, all the USB

profiles are removed from the registry. However, the user does not have to worry about

losing the profiles, because the actual files remain untouched. And next time, when the

same user starts Mozilla with the same USB drive, all the profiles contained in this

drive will be loaded again transparently. On the one hand, removing the USB profiles

will avoid cluttering the profile registry and reduce the performance overhead due to

the large number of profiles the profile manager has to keep in the memory. On the

other hand, this approach has the favorable side-effect that the user leaves minimal

footprint on the local drive.

 Removing profiles is much easier than loading them because it can be achieved

by calling the DeleteProfile() function provided by Mozilla's profile manager. The

following code shows how to remove all the USB profiles.

34

Figure 8: Remove USB profiles from the registry.

3.3 User Authentication

 By implementing the USB profile loader, we have achieved location

35

independence. Mozilla users can now store their profiles on a USB disk and use it on

another workstation where the USB profile manager is installed without the hassle of

copying and pasting files over to a profile directory created on the local drive.

However, it's known to all that USB keys are typically small and can easily get lost.

Without user authentication, anyone who gets hold of the USB key with Mozilla

profiles in it will have full access to all the private information, including certificates,

mails, preference settings, bookmarks, history, etc. Therefore, we need to protect USB

profiles from being misused or accessed without the owner's permission. But we still

leave users to decide whether to protect their profiles or not.

3.3.1 Password Prompt

 The password prompt serves two purposes: one is for the first-time signup, and

the other is for login when a password has already be set up in an earlier session. Here

is a snapshot of the dialog for each situation.

36

Figure 9.a: Prompt for the first-time signup.

Figure 9.b: Prompt for user login

 When a USB profile is created, the user will be prompted for password

protection. If the user clicks the “Cancel” button, the profile will still be created and

started as usual. However, no additional protection will be provided, including bulk

37

encryption which we will discuss later in detail. Therefore any holder of the USB key

can access this profile. It is obvious that unprotected USB profiles lead to much less

computational overhead for encryption and decryption and the user does not have to

remember a password. In Section IV, we will discuss how much the overhead can be.

 To alarm the user of his choice, a warning message will be displayed.

Figure 10: A warning for an unprotected USB profile.

 Each time when a user starts using an unprotected USB profile, the USB profile

manager brings up the signup prompt and the user can protect the profile whenever he

or she feels it is necessary.

38

 If the user clicks the “OK” button without entering a password, the dialog will

persist until a password is entered. Currently, there is no rule with regard to the set of

allowed characters or the password length. And the user can apply the same password

to different profiles, although this is not recommended because once the password is

figured out by a hacker, all the profiles sharing the same password can be accessed.

 When a user starts a protected USB profile, she will be prompted for login. If the

user clicks the “Cancel” button, she will not be able to use the profile. If an invalid

password is entered, an error message will be displayed and the profile is also not

started.

Figure 11: Error message for invalid password.

39

3.3.2 How the Project Uses nsIWindowWatcher and nsIPromptService

 The above dialogs are created via Mozilla's nsIPromptService. nsIPromptService

implements a set of standardized prompt dialogs, such as dialog for confirmation,

alert, password, both username and password, etc. For the USB profile manager, these

dialogs are sufficient.

40

 The prompt service is obtained through nsIWindowWatcher. Both

nsIWindowWatcher and nsIPromptService belong to the Gecko embedding API

[Gecko DOM Reference]. Gecko is the component in Mozilla that handles HTML

parsing, page layout and the rendering of the application interface. It is a “fast,

standards-compliant rendering engine that implements the W3C DOM (Document

Object Model) [P. Le Hégaret, R. Whitmer and L. Wood] standards and the DOM-like

(but not standardized) browser object model in the context of web pages and the

application interface, or chrome, of the browser”. We will discuss the DOM structure

further in Chapter IV as we proceed to the technical details of the implementation.

Gecko uses both native and XUL-based windows. XUL stands for XML User interface

Language. nsIWindowWatcher is responsible for creating and destroying windows,

keeping track of the active window and sending notifications about changes to the

windows. These operations are part of the embedding code and are transparent to the

other components. Therefore, a component using a certain window only needs a weak

reference to it. The following code shows how to use nsIWindowWatcher to get a

reference to the prompt service and how to prompt for user login.

41

Figure 12: Get the prompt service via nsIWindowWatcher and prompt for the
password

 Note that when calling GetActiveWindow(), we pass the current window, the

profile selection dialog in this case, as the parent window of the prompt dialog.

Otherwise, system will crash when the prompt persists for a non-empty password. The

password entered by the user is stored in the password argument. To check whether

the user clicked “OK” or “Cancel”, test the retval argument.

42

3.3.2 Salted Password Digest

 When the user enters a password for the first time, a SHA-1 hash is created for

the password. Then a random integer, called “salt” is generated and appended to the

hash and another SHA-1 hash computed and saved under the profile directory. The

first hash is used as the key for the AES encryption, which will be explained in the

next section. The second hash is used for password validation. The salt is also saved at

the same location. The next time when the user tries to log in, after the first hash is

generated, it is appended by the saved salt and hashed again. Then the second hash is

compared against the saved digest. If they match, login succeeds; otherwise, an error

message “Invalid user!” is displayed and the user is rejected to use the profile.

 Considering the weakness of MD5 mentioned in Section 2.5.1, the SHA-1

algorithm is selected for computing the hash. A salt is used to make dictionary attack a

lot more time-consuming. There are two ways of making use of Mozilla's hash

algorithms. One is by calling the NSS library directly, the other is by using the

functions available in the nsIHash interface of PSM's SSL packet.

 The nsIHash interface provides four functions that are sufficient for calculating

hashes. The Create() function creates a computation context for a particular hash

algorithm that the user selects, SHA-1 in our case. The context contains an input

43

buffer as The SHA-1 context is defined in sha_fast.h of the NSS freebl library.

Figure 13: The definition of the SHA-1 context.
Source: mozilla/security/nss/lib/freebl/sha_fast.h

 The Begin() function does some preparation work for a new round of hashing.

Update() updates the context with new information such as the input to be hashed and

the hash length. The End() function finishes the computation. The result is stored in

first argument. This entire procedure is shown in Figure 14.

44

Figure 14: Compute the SHA-1 hash of a given password.

45

3.4 AES Encryption and Decryption

3.4.1 Encryption and Decryption

 Once the user authentication feature is in place, we prevent random users from

accidentally using other people's protected profile without knowing the password.

However, this does not prevent people from peeking into the profile files through a

simple text editor, since all the files are stored in plain text. Hence, an encryption

algorithm must function together with user authentication for a profile's privacy to be

fully protected.

3.4.1 AES Encryption Functions in the NSS Library

 USB profile manager encrypts protected profile with the Rijndael AES algorithm

implemented in the NSS freebl library because AES is much stronger secret key

encryption algorithm than DES. This part of code gives an example of how to use the

NSS library directly.

 We only need to call three functions to have NSS encrypt a file for us. First, we

need to call AES_CreateContext() to create the context. This function takes a key, an

IV and the operation mode as part of the arguments. The possible AES encryption

modes implemented in Mozilla are the ECB mode and the CBC mode. The CBC mode

is applied by USB profile manager because it is a safer mode. (Please refer to chapter

II for a more thorough discussion.) An AES context is defined in rijndael.h as shown

46

in Figure 15. It keeps information needed for the computation such as the IV, the key

and the block size.

Figure 15: The definition of the AES context.
Source: From Mozilla's nss package, mozilla/security/nss/lib/freebl/rijndael.h

 Nb indicates the size of a block in bytes. Nr is the number of rounds each block

encryption will go through. worker indicates whether to use encryption function or

decryption function.

 After creating the context, we call AES_Encrypt() and pass the context variable

and in the text input to actually execute the algorithm. The output text and output

length are stored in the argument variables. Note that the output character array must

be allocated with enough space to hold the entire output. Finally, we destroy the

context and free up the space by calling AES_DestroyContext().

 The decryption procedure is similar except that AES_Decrypt() is called.

47

3.4.2 Generate the Key and the IV (Initialization Vector)

 AES allows variable key sizes. We only use 128-bit key length in the current

version. The first SHA-1 hash generated from the password as mentioned in Section

3.3.2 is used as the key for the AES encryption. To obtain the IV, we compute the hash

for the concatenated string from the password and the salt. The SHA-1 hash contains

20 bytes and only the first 16 bytes are used for encryption.

3.4.3 Pad the Input Text

 When the input plain text is larger than the block size which is the same as the

key size, the text is divided into multiple blocks and encryption is repeatedly applied to

each of the blocks using the CBC mode discussed in Section 2.4.2. Mozilla's

implementation of AES assumes that the size of the input text is divisible by the block

size. But this is usually not the case. So it is the responsibility of the caller of this

function to pad the input text so that its length is a multiple of the block size before

calling AES_Encrypt(). Otherwise, this function will abort. The USB profile manager

pads the plain text with '\0' when necessary.

 Padding should not be necessary because the size of the cipher text generated

from AES_Encrypt() is always a multiple of the block size. But it is a useful practice to

check the size in case that the cipher text has been modified.

48

3.4.4 Encode the Cipher Text in the Base64 Format

 The cipher texts are encoded in the base64 format before written to the files.

Before decryption, the based64 texts are decoded back to the binary format. We can

take advantage of Mozilla's routines for base64 encoding/decoding defined in NSS util

packet.

3.4.5 Example: A Plain Text and Its Encrypted Version

 In this section, we will show a plain text and its encrypted version in the base64

format. See how long it takes you to find the key and the IV.

49

Figure 16.a: A prefs.js file.

50

Figure 16.b: The same prefs.js file after AES encryption and base64 encoding.

3.5 Detailed Sequence of Operations

 In this section, we will discuss the sequence of user authentication, profile

decryption and encryption in more detail and the rational behind this sequence which

is not as straightforward as one would think.

3.5.1 User Authentication during Profile Switch

 The procedure for successful user authentication is straightforward. But if the

password is invalid, the user is rejected the access to the profile. There are two cases

we need to consider separately: the user switches from one profile to a protected USB

51

profile; the user tries to access a protected USB profile at startup. Why do we have to

handle these cases differently? It is because Mozilla's profile manager generates

different set of events in these situations.

 First, let's consider the case where the user tries to switch from one profile to a

protected USB profile but provides an incorrect password. Our USB profile manager

then need to block the access and the user should stay with the previous profile. The

cleanest way is to prompt for the password if the switching actually take place.

Therefore if the login fails, we can keep the old profile. As we mentioned earlier, all

our operations are event-based. So let's first examine the available events we can make

use of and then determine which event is the most appropriate one to subscribe for.

Here is a list of events the Mozilla profile manager generates according to

nsProfile.cpp:

"profile-approve-change"
"profile-change-net-teardown"

 "profile-change-teardown"
 "profile-before-change"
 "profile-change-net-restore"
 "profile-do-change"
 "profile-after-change"
 "profile-initial-state"

The actual switch happens after the "profile-before-change" event. If we veto the the

change at the "profile-approve-change" event, no attempt is made to change the profile

settings. This is the cleanest way to reverse the switch. What's more, Mozilla provides

52

the nsIProfileChangeStatus interface with a VetoChange function. So all the USB

profile manager needs to do is the following:

Figure 17: Veto the change of the profile when login fails

 However, there is one challenge due to this procedure. If the switch has not taken

place, we cannot get the name of the target profile by simply calling

GetCurrentProfile() provided by the Mozilla profile manager. The profile name is

required for finding the corresponding password digest. The only way to get the name

is via the user interface and find out the user selected profile name. This is where we

need to understand the DOM structure employed by Gecko. Figure 18 shows the

collaboration diagram for the nsIDOMWindow interface.

53

Figure 18: Collaboration diagram for the nsIDOMWindow interface
Source: “Mozilla Cross-Reference”.
http://lxr.mozilla.org/mozilla/source/dom/public/idl/base/nsIDOMWindow.idl

 The “Profile Selection” dialog is a DOM window. Every DOM window contains

a document object which is an abstraction of an HTML, XML, SVG or XUL

document. The “Profile Selection” dialog contains a XUL document object called

nsIDOMXULDocument. Each DOM document has a group of nsIDOMElement objects

which can be identified by IDs. To find the elements contained in the DOM document

of the “Profile Selection” dialog, we need to look into the profileSelection.xul file. One

will notice a listbox element with the id “profiles” which may well be the id of the

profile list. According to the class hierarchy, nsIDOMXULSelectControlElement is a

subclass of nsIDOMXULElement which in turn inherits nsIDOMElement. Once we get

a reference to the profile list object through the “profiles” id, we can cast this

nsIDOMElement object into an nsIDOMXULSelectControlElement object by the

do_QueryInterface() macro function and call GetSelectedItem() of the

54

nsIDOMXULSelectControlElement object in order to get the selected profile item. The

follow piece of code shows the entire procedure of getting the name of the user

selected profile.

Figure 19: Get the name of the user-selected profile via the DOM window object.

 For a complete listing of the class hierarchy of the DOM structure, please refer to

http://unstable.elemental.com/mozilla/build/latest/mozilla//dom/dox/inherits.html.

55

3.5.2 User Authentication during Startup

 When user authentication fails at startup, we cannot veto the change as we do

while switching to a new profile, this is because at startup, the Mozilla profile manager

does not generate the “profile-approve-change” event. So the USB profile also needs

to subscribe for the “profile-initial-state” event in this case.

 The first approach attempted was to show the “Profile Selection” or “Profile

Creation” dialog again when an invalid password is entered. However, this approach

did not work out because the browser exited no matter what the user selected in the

dialog. The cause for the termination of the browser was that when we failed the

access to the profile, the first “Profile Selection”dialog shown by the Mozilla profile

manager always returned false.

 The second and the current approach is to let the USB profile manager prompt the

user for a profile selection before the existing profile manager does. If authentication

succeeds, the USB profile manager will set the flag StartWithLastUsedProfile to be

true. When this flag is set, the Mozilla profile manager will not show the “Profile

Selection” dialog, but start with the user-selected profile instead.

 When authentication is unsuccessful, the USB profile manager will either show

the “Profile Selection” dialog or the “Profile Creation” dialog if there is no other

56

profile is available. Note that the “profile-initial-state” event is generated after the

Mozilla profile manager has already loaded the information of the target profile.

Therefore, we need to tell the profile manager to shut down the profile via the

ShutDownCurrentProfile() function.

3.5.3 Profile Decryption and Encryption

 The profile directory is decrypted once the user passes the authentication test.

However, there is still a caveat when the user accesses a secure USB profile at startup:

Mozilla tries to locate the prefs.js file before decryption is done. Since the browser

cannot find prefs.js in the directory of the target profile, it uses the default prefs.js

settings. So after we decrypt the profile, we have to tell Mozilla to use the decrypted

prefs.js file. This can be done by calling ReadUserPrefs() of the nsIPrefService.

ReadUserPrefs() takes an nsIFile argument which represents the preferences file that

we want the browser to use.

 When the user switches from a protected profile to another profile, we need to

encrypt the first profile. One would think that encryption of the previous profile can be

done right after user authentication at the “profile-approve-change” event. But this is

not a good approach because some of the profile files such as bookmarks.html are not

updated when this event is sent out. In order to catch all the updates, the USB profile

manager sets a waitForEncryption flag at the “profile-approve-change” event and

57

waits until it receives the “profile-initial-update” event to encrypt the previous profile.

It also need to remember the key and the IV for the profile to be encrypted.

3.5.6 Flow Chart

 Figure 20 illustrates the sequence of operations at startup.

Figure 20: The sequence of operations at startup.

 The operation labeled “3” in Figure 20 is achieved by calling the Mozilla profile

manager's SetCurrentProfile() function which will generate the “profile-initial-state”

58

event. The USB profile manager has a isStartup flag set to be true by default.

isStartup becomes false when the user successfully started up with any profile. When

the SetCurrentProfile() function returns, if the isStartup flag is still on, we know that

the user did not provide a valid password. Then the browser will exit.

 The logic for handling different cases while opening a target profile is

implemented in the PrepareForSwitchingProfile() function. As mentioned earlier, the

isStartup flag is used to determine whether the user is accessing a profile at startup or

during profile switch. We should distinguish between these two cases because they

trigger different events.

 The operation labeled “4” in Figure 20 sets the isPrevProfileSecure flag to true if

the user has selected to protect this profile. Otherwise, this flag is turned off. This flag

is used to determine whether we need to encrypt the profile when the user switches

from it to another profile or shuts down the browser.

 The following figure shows the zoomed-in sequence of operations of the “User

authentication” step in Figure 20. Note that after the step “Show profile selection

dialog”, we follow the same sequence as indicated by step “1” in Figure 20; after the

step “ Show profile creation dialog”, we follow the step “2” in Figure 20.

59

Figure 21: User authentication and profile decryption at startup.

 When the user switch from one profile to another. There are several points worth

discussion. First, whenever the USB profile manager decides to proceed with the new

profile, it has to check whether the flag isPrevProfileSecure is on. If yes, it sets the

waitForEncryption flag so that then it is notified of the “profile-initial-state” event, it

will remember to encrypt the previous secure profile. If the profile that the user

switches to is also a protected profile, we need to set the flag isPrevProfileSecure back

60

on. This flag is also checked during Mozilla shutdown.

 Also note that the USB profile manager needs to remember the directory path, the

key and the IV of the previous profile in order to do the encryption.

IV. PERFORMANCE AND USABILITY TEST

 Security protections add overheads to the existing functionality. Those overheads

include computational cost and I/O costs during encryption and decryption. When the

profile is large, for example over 10MB, this overhead can become significant. This

situation can happen when the user saves many email drafts, or the cache contains

dozens of files. In addition, encryption and decryption are in-memory operations.

Therefore, when encrypting large files, if the memory is not large enough, it can

become a bottleneck and reduce performance dramatically.

 The following is a list of profiles with different numbers of files and sizes and the

time it takes to encrypt the entire folder. The test was carried out on my personal

computer Mobile Intel Celeron CPU 2.40 GHz with 192 MB of RAM. As mentioned

earlier, in order to reduce the overhead, the USB profile manager only encrypts files

that have been modified during the session. This feature is turned off in this

performance test. Also note that the elapsed time in the figure include the time for

traversing the directory, AES encryption, Base64 encoding and deleting plaintext files.

61

Number of files Total size (in bytes) Time1 Time2 Time3 Time4 Average time
42 2.8MB 3s 1s 2s 1s 1.75s
53 4.1MB 5s 1s 3s 1s 2.5s
74 6.5MB 3s 2s 7s 1s 3.25s

112 10.2MB 11s 10s 6s 5s 8.0s

Table 5: The performance of encrypting USB profiles.

Figure 22: The elapsed time for encrypting profiles of different sizes.

 From this table, it is worth mentioning that the time varies much from tests to

tests. This is due to the fluctuation of the memory and CPU usage, and the content of

the system cache as well. For small profiles, this variance is more obvious.

 Typically users do not switch between profiles frequently. So some overhead

should be acceptable in most cases. During the usability test, some users suggested that

62

0

1
2

3
4

5

6
7

8

9

2.8 4.1 6.5 10.2

Size (MB)

Ti
me
 (
se
co
nd
)

a progress bar be displayed while doing encryption or decryption with a text explaining

what is being done currently. Another suggestion is to allow users to decide which

files to encrypt. For example, it can be added to the “Preferences” dialog, or a part of

the “Profile Selection” dialog. The user can select to protect only the Mail folder or

both the Mail and the prefs.js file. We can also choose to delete long-lived and

untouched cache files instead of encrypting them.

V. CONCLUSION

 The existing Mozilla profile manager allows users to customize their own settings

of the browser. It provides great user interface and centralized yet flexible profile file

location so that users can easily access, examine, modify the content. However, if a

regular user can do so, so can any unauthorized user, especially when the profiles are

stored on a removable disk. Also, the current profile manager does not achieve

location independence because profiles cannot be loaded to a different workstation.

This means that basically profiles created on one computer can only be used with that

particular computer.

 In this project, we solved these two problems by implementing the USB profile

manager as an extension of the existing profile manager. The USB profile manager can

automatically detect, load, and unload profiles stored on a USB key. Also, encryption,

decryption and user authentication prevent unauthorized users from using or gathering

63

information from protected profiles. So the USB profile achieves both mobility and

security.

 Finally, the USB profile manager is a pure event-driven XPCOM component that

can be easily installed or uninstalled without affecting other components.

 According to our performance experiment, if the size of a profile is not very

large, the actual time for encryption is acceptable given the fact that users do not

switch profiles frequently.

VI. FUTURE WORK

 Some future work has been proposed in earlier sections. Here is a summary. First,

the UpdateMountedUSBKeys() function only works on Linux platforms. Work should

be done to make this function completely platform-independent. Second, we need a

more sophisticated way to determine whether a given directory is a valid Mozilla user

profile, instead of just by checking the name of the directory. One approach is to check

whether certain default files exist. However, this approach will add overhead. The

third task is while loading a USB profile to the registry, also provide the version

information. The last task is the provide a user interface to let the user decide which

profile files to encrypt to further reduce the overhead.

64

ACRONYMS

AES – Advanced Encryption Standard

CBC – Cipher Block Chaining

DES - Data Encryption Standard

DOM – Document Object Model

ECB – Electronic Code Book

IV – Initialization Vector

NSS – Mozilla's Network Security Services

PSM – Mozilla's Personal Security Manager

USB – Universal Serial Bus

XPCOM – Cross Platform Component Object Model

XUL – XML User Interface Language

65

REFERENCES

[BC03] D. P. Bovet, M. Cesati. Understanding the Linux Kernel. O'Reilly. 2003.

[CR04] W. Chang, B. Relyea. "Network Security Services (NSS)". Retrieved on 4/2/04,
from http://www.mozilla.org/projects/security/pki/nss/.

[04] A. Flett. “Guide to the Mozilla string classes”. Retrieved on 8/12/04, from
http://www.mozilla.org/projects/xpcom/string-guide.htm.

[HWW02] P. Le Hégaret, R. Whitmer and L. Wood. “W3C Document Object Model.”
July 17, 2002. Retrieved on 8/2/04 from http://www.w3.org/DOM/.

[KPS02] C. Kaufman, R. Perlman and M. Speciner. Network Security: Private
Communication in a Public World. Prentice Hall. 2002.

[KR02] V. Klíma and T. Rosa. “Strengthened Encryption in the CBC Mode.” May 24,
2002. Retrieved on 9/24/04 from http://eprint.iacr.org/2002/061.pdf.

[LDH04] B. Lord, J. Delgadillo, T. Hayes. "Personal Security Manager (NSS)". Retrieved
on 4/2/04, from http://www.mozilla.org/projects/security/pki/psm/.

[M03] Nigel Mcfarlane. Rapid Application Development with Mozilla. Prentice Hall.
2003.

[M98] The Mozilla Organization. “Embedding API Reference”. Retrieved on 8/2/04,
from http://www.mozilla.org/projects/embedding/embedapiref/embedapiTOC.html.

[M98] The Mozilla Organization. "NSPR Reference". Retrieved on 4/2/04, from
http://www.mozilla.org/projects/nspr/reference/html/index.html.

[M01] The Mozilla Organization. “Posing Gecko dialogs in embedding applications”.
Retrieved on 8/2/04, from http://www.mozilla.org/projects/embedding/windowAPIs.html.
The Mozilla Organization. “Mozilla Cross-Reference”. From
http://lxr.mozilla.org/seamonkey/.

[N98] Netscape Communications. “Gecko DOM Reference”. Retrieved on 8/2/04, from
http://www.mozilla.org/docs/dom/domref/.

[P01] Rick Parrish. "XPCOM". Retrieved on 4/2/04, from http://www-
106.ibm.com/developerworks/webservices/library/co-xpcom.html#h0.

66

[P99] B. Preneel. "State-of-the-art ciphers for commercial applications". Computers &
Security. 1999.

[S95] B. Schneier. Applied Cryptography: Protocols, Algorithms and Source Code in C.
Wiley. 1995.

[S99] W. R. Stanek. Mozilla Source Code Guide. Netscape Press. 1999.

[TO03] D. Turner, I. Oeschger. "Creating XPCOM Components". Retrieved on 1/12/04,
from http://www.mozilla.org/projects/xpcom/book/cxc/.

67

