
USB Key Profile Manager for
Mozilla

by

Yun Zhou

Advisor: Dr. Chris Pollett

Committee Members:
Dr. Melody Moh
Dr. Mark Stamp

Roadmap
1. Introduction

2. Background Information and Related Work

3. Design and Implementation

• Event-driven structure

• USB profile loader

• User authentication

• Bulk encryption

• Sequence of operations

4. Performance

5. Conclusion and Future Work

“Cheat Sheet”
Model: XPCOM, Event-Driven

Profile Loader

Linux mount table

 Mozilla registry

User Authentication

Mozilla Profile Manager

Salted SHA-1 hash

Mozilla’s nsIHash

Mozilla prompt service
Mozilla window watcher

Profile Encryption

AES in CBC mode

Mozilla’s AES implemetation

Mozilla’s DOM window

Chapter I

Introduction

Introduction – Motivations
1. Mozilla is…

• Large open-source software application.

• Combines different advanced SW Dev concepts and
design models (NSPR, XPCOM, DOM, XUL, etc.)

• Provides a rich set of features (Layout engine, browser,
mail/news, ChatZilla, network application and security
protocols, etc.)

• Provides customizable, modularized extensions.

2. Can save user profiles on USB keys.

3. But there are some weaknesses in the current profile manager.

Introduction – Goals
An XPCOM component will be implemented for managing
user profiles stored on USB memory keys.

• Mobility.

• Security (user authentication and privacy protection).

• Easy to install.

• Without excessive performance overhead.

Mozilla’s Architecture

USB Profile
Manager

Rapid Component Development
with XPCOM

• Mozilla's own implementation of COM – Cross Platform
 Component Object Model.
• Cross-Platform
 XPCOM is Mozilla's component architecture and it provides
 a set of core libraries that facilitates software
 development cross different platforms.

• Modularity
 XPCOM structure helps to modularize the code, increase
 flexibility, scalability, maintainability and reusability of
 the code. The components can be implemented
 independently and installed separately according to the
 user's needs.

XPCOM - Interface
• An interface acts as a contractual agreement and it decides
 how other components can access the object that
 implements this interface.

• All interfaces are derived from a base interface nsISupports
 which tackles two major issues of interface-based
 programming: component lifetime and interface querying.

• AddRef
• Release
• QueryInterface

• Each interface can be identified by its Contract ID.

Chapter II

Design and Implementation

Design and Implementation
- Event Driven

• At startup, it subscribes for the events of its
interest, for example “profile-approve-change”.

• When such event is generated, the component that initiates
 this event will notify all the subscribers by calling their
 Observe() function.

• Advantage: no change to the existing Mozilla code base.
 Loosely coupled the component. Better modularity.

• Disadvantage: harder to implement. Hard to find appropriate
 events to subscribe for. Harder to control.

• The USB Profile Manager acts upon events.

When the user switches between
profiles…

Mozilla Profile Manager
Call NotifyObserver(…, “profile
-approve-change”, …)

nsIObserverService

Observer1
USB Profile Manager

Observer2 Observer3

Call Observe(…, “profile
-approve-change”, …)

Feature 1: USB Profile Loader
• Automatically detects mounted USB storage keys upon
 startup.
 Examine the mount table and search for a mounted
 element with the device name "/dev/sda".
 Call the getmntent() function to get the path name.
 On Linux, the device name "/dev/sda" stands for a
 mounted USB drive.
• Search for profiles.
• Load the profile to Mozilla’s
 registry.
• Clean up at shutdown.

Feature 2: User Authentication
• User authentication is needed to prevent unauthorized
 users from gaining access to USB profiles. This protection
 is especially needed for portable devices such as USB
 keys.

• But there is a tradeoff between usability and security.
 We let the user to decide.

User Authentication - UI
• Whenever the user starts an unprotected USB profile, she/
 he will be asked whether protection is needed.

User Authentication - UI
• When the user starts a protected USB profile, she/he is
 prompted for password.

• If unsuccessful, the user either has to select or create
 another profile, or stays with the current profile.

User Authentication
– Salted SHA-1 Hash

• When the user enters a password for the first time, a SHA-1
 hash is created for the password. Then a random integer,
 called “salt” is also generated and appended to the hash to
 generate another SHA-1 hash. Then the second hash is
 saved under the profile directory along with the salt.

• Original plan: use MD5 hash without salt.

SHA-1 Hash
• SHA-1 is a strong hash function, one-way, no collision
 has been found. The result has 20 bytes. The only possible
 attack is brute-force guessing of the plain text.

• SHA-1 works in stages. At each stage, a set of operations
 are applied to the previous message digest on the current
 block.

Dictionary Attack and Salted Hash
• The reason for appending a salt to the password before
 hashing is to make dictionary attack more time and resource
 consuming.

• Dictionary attack is a common attack on passwords.
 An attacker guesses all possible passwords, pre-computes
 their hashes and store them in a “dictionary”. When the
 attacker captures a hash, she/he can compare the hash
 against the dictionary to see if any match exists. Only one
 round of computation is needed for all possible passwords,
 i.e., the dictionary is reusable.

• If the same attacker obtains a salted hash, he has to
 re-compute all the guessed passwords with the salt. And this
 calculation needs to be repeated for every different salt.

Generating the Hash

• Create(mHashType): creates a computation context for a
 particular hash algorithm.
• Begin(): prepare for the hashing.

Generating the Hash (cont’d)

• Update(): updates the input and the hash length.
• End(): Finish hashing.

Feature 3: Encrypting the Profile with
AES

• User authentication needs to go side-by-side with encryption.
• We use the AES (Advanced Encryption Standard)
 algorithm in CBC (Cipher Block Chaining) mode.

• AES is an iterated block cipher with a block size of 128
 bits, allowing keys with variable-length, typically 128 bits,
 192 bits and 256 bits.

• Depending upon the key length, AES runs through 10 to 14
 rounds of encryption, each of which contains four operations :

–S-box;
–ShiftRow;
–MixColumn;
–MixAddRoundKey.

CBC Mode
Encryption Decryption
C0 = E(IVxor
P0,K)

P0 = IVxorD
(C0,K)C1 = E

(C0xorP1,K)
P1 = C0xorD
(C1,K)C2 = E

(C1xorP2,K)
P2 = C1xorD
(C2,K)... ...

Cn = E(Cn-

1xorPn,K)

Pn = Cn-1xorD

(Cn,K)
The biggest advantage of CBC is that the cipher texts are
different even if the plain texts are the same, so it exposes
much fewer hints to attackers than the ECB (Electronic
Code Book) mode.

How to Use Mozilla’s Rijndael
Implementation

• Implemented in the NSS library

• AES_CreateContext(): Creates the context

• AES_Encrypt(): Executes the algorithm and returns the
 cipher text.
• AES_DestroyContext(): destroys the context and frees up
 the space.

Encryption Steps
• Create the key and the IV (Initialization Vector) from
 the password and the salt.

• Pad the input as necessary.

• Encode the cipher text in base64 format.

• AES encryption.

• Performance improvement: only encrypt modified files.

When authentication fails…
• Two situations:

1. At startup
2. During switch

• During switch, we want to roll back the operation
 gracefully.

• Listen to the “profile-approve-change” event generated by
 the Mozilla profile manager before the switch takes place.

• Call VetoChange() of nsIProfileChangeStatus.
 No encryption or decryption will occur.

Sequence of Operations during Switch
• Upon the “profile-approve-change” event, authenticate the
 user.

• If successful, check whether the current profile is a
 protected USB profile. If yes, set the encryption flag.

• Decrypt the target profile.

• At the “profile-initial-state” event, the previous profile is
 updated by Mozilla Profile Manager. If the encryption flag
 is on, encrypt the previous profile.

Scenario 2: At startup…

• The USB Profile Manager finishes authentication and
 decryption before Mozilla Profile Manager does anything.

• If authentication succeeds, tell Mozilla Profile Manager to
 start with the selected profile without showing the dialog.

Sequence of Operations at Startup

Chapter III

Performance

Performance Test
• Security protections add overheads to the existing
 functionality. Those overheads include computational cost
 and I/O costs during encryption and decryption. When the
 profile is large, for example over 10MB, this overhead can
 become significant.

• We assume that users do not switch between profiles
 frequently.

Performance Test (cont’d)

0

1

2

3

4

5

6

7

8

9

2.8 4.1 6.5 10.2

Size (MB)

Ti
me
 (
se
co
nd
)

• Hardware configuration:
 Mobile Intel Celeron CPU 2.40 GHz with 192 MB of RAM

• The elapsed time in the figure includes the time for traversing the
 directory, AES encryption, Base64 encoding, deleting plaintext files.
• Also note the optimization feature mentioned earlier is turned off.

Conclusion
• In this project, we implemented the USB profile manager
 as an extension of the existing profile manager.

• The USB profile manager can automatically detect, load,
 and unload profiles stored on a USB key.

• Encryption, decryption and user authentication prevent
 unauthorized users from using or gathering information
 from protected profiles.

• So the USB profile achieves both mobility and security.

• The performance is acceptable with medium-sized profiles,
 assuming the user do not switch between profiles frequently.

Future Work

• Completely platform-independent by implementing the
 USBProfileLoader interface for each platform.

• A progress bar during encryption and decryption.

• Allow users to decide which part of the profile to encrypt.
 Can be an extension to the existing “Preferences” dialog.

Acknowledgement

I would like to take this opportunity to thank all the
committee members

(Dr. Chris Pollett, Dr. Melody Moh and Dr. Mark Stamp)
for spending their time and effort on this
project and giving me precious advice.

Acronyms
AES – Advanced Encryption Standard
CBC – Cipher Block Chaining
DES - Data Encryption Standard
DOM – Document Object Model
ECB – Electronic Code Book
IV – Initialization Vector
NSS – Mozilla's Network Security Services
PSM – Mozilla's Personal Security Manager
USB – Universal Serial Bus
XPCOM – Cross Platform Component Object Model
XUL – XML User Interface Language

References
[BC03] D. P. Bovet, M. Cesati. Understanding the Linux Kernel. O'Reilly. 2003.
[CR04] W. Chang, B. Relyea. "Network Security Services (NSS)". Retrieved on 4/2/04,
from http://www.mozilla.org/projects/security/pki/nss/.
[04] A. Flett. “Guide to the Mozilla string classes”. Retrieved on 8/12/04,
from http://www.mozilla.org/projects/xpcom/string-guide.htm.
[HWW02] P. Le Hégaret, R. Whitmer and L. Wood. “W3C Document Object Model.”
July 17, 2002. Retrieved on 8/2/04 from http://www.w3.org/DOM/.
[KPS02] C. Kaufman, R. Perlman and M. Speciner. Network Security: Private
Communication in a Public World. Prentice Hall. 2002.
[KR02] V. Klíma and T. Rosa. “Strengthened Encryption in the CBC Mode.” May 24, 2002.
Retrieved on 9/24/04 from http://eprint.iacr.org/2002/061.pdf.
[LDH04] B. Lord, J. Delgadillo, T. Hayes. "Personal Security Manager (NSS)". Retrieved
on 4/2/04, from http://www.mozilla.org/projects/security/pki/psm/.
[M03] Nigel Mcfarlane. Rapid Application Development with Mozilla. Prentice Hall. 2003.
[M98] The Mozilla Organization. “Embedding API Reference”. Retrieved on 8/2/04, from
http://www.mozilla.org/projects/embedding/embedapiref/embedapiTOC.html.

References (cont’d)
[M98] The Mozilla Organization. "NSPR Reference". Retrieved on 4/2/04, from
http://www.mozilla.org/projects/nspr/reference/html/index.html.
[M01] The Mozilla Organization. “Posing Gecko dialogs in embedding applications”.
Retrieved on 8/2/04, from
http://www.mozilla.org/projects/embedding/windowAPIs.html.
The Mozilla Organization. “Mozilla Cross-Reference”. From
http://lxr.mozilla.org/seamonkey/.
[N98] Netscape Communications. “Gecko DOM Reference”. Retrieved on 8/2/04,
from http://www.mozilla.org/docs/dom/domref/.
[P01] Rick Parrish. "XPCOM". Retrieved on 4/2/04, from http://www-
106.ibm.com/developerworks/webservices/library/co-xpcom.html#h0.
[P99] B. Preneel. "State-of-the-art ciphers for commercial applications". Computers
& Security. 1999.
[S95] B. Schneier. Applied Cryptography: Protocols, Algorithms and Source Code in
C. Wiley. 1995.
[S99] W. R. Stanek. Mozilla Source Code Guide. Netscape Press. 1999.
[TO03] D. Turner, I. Oeschger. "Creating XPCOM Components". Retrieved on
1/12/04, from http://www.mozilla.org/projects/xpcom/book/cxc/.

