

Authentication by Mouse Movements

CS 297 Report

by

Shivani Hashia
(shivani_hash@hotmail.com)

Advisor: Dr.Chris Pollett

May 2004

Authentication by Mouse Movements
By Shivani Hashia

Abstract

Security systems help to protect machines or sensitive data from unauthorized
users. The need for better and cheap security systems is growing with the growth
in technologies. Various techniques have been proposed for fulfilling this
purpose. One of the most widely used techniques is to have a password. They
are easy and convenient to use. One of the main problems with passwords is
that they are difficult to remember and easy to steal. In addition, with constant
effort, they can be easily broken down. In this report, an alternate technique for
authentication, biometrics is discussed. Biometrics has emerged as a great
technology for authentication because of their uniqueness properties. In this
report, how the movements or a mouse could be used as a biometric for
authenticating a user is explained. The experiments that were performed in
CS297 to verify if mouse movements could be used as a biometric are described.
Three parameters were used for this purpose: speed, deviation from a straight
line and the angle formed with the straight line. Along with these three
parameters, pattern of the mouse motion is also used to check if the person
using the machine is the same person as is authorized to use that machine. In
addition to all this a brief overview of what will be done in CS298 is also given.

 2

Table of Contents

Introduction 5

Deliverable 1 7

Deliverable 2 9

Deliverable 3 11

Conclusion 18

Future work 18

Bibliography 20

 3

List of Figures

Figure 1: Graph showing speed, deviation and angle with respect to time

 Figure 2: Graph showing speed, deviation and angle with respect to time
Figure 3: Graph showing the mouse motion coordinates
Figure 4: Reduced data points when idle points are removed
Figure 5: Reduced data points when a certain limit is applied to the speed
Figure 6: Data points showing window resize events
Figure 7: Data points with different colors applied after every 20 minutes
Figure 8: Data points where the density of points is more than a certain
threshold count
Figure 9: Graph showing the rectangles formed by finding top-left and
bottom-right points
Figure 10: Graph showing convex polygons within 25 pixel range using gift
wrapping algorithm
Figure 11: Graph showing convex polygons using gift wrapping algorithm
when it is used twice
Figure 12: Graph showing convex polygons using gift wrapping algorithm
when it is used recursively

 4

Introduction
Security systems help to protect machines or sensitive data from unauthorized
users. The need for better and cheap security systems is growing with the growth
of the Internet. Various techniques have been designed to make a secure
system. One of these techniques is biometrics. Biometrics is the science and
technology of measuring and statistically analyzing biological data. In information
technology, biometrics refers to technologies for measuring and analyzing human
body characteristics for various purposes including user authentication. It can
help recognize individuals based on their physiological or biological
characteristics. The use of biometrics can make it possible to overcome the
security threats encountered with traditional security methods like passwords,
which are easy to crack with constant effort. In addition, passwords are easy to
forget and anyone can steal them if they are written on some paper. People
usually use different passwords for different applications. Therefore, it becomes a
hassle for them to remember each password. They choose some bad
passwords, which can be easily guessed. All these problems can be solved by
biometrics. It is not something you have to remember but something you have
that no one else can steal. Some of the biometric methods include fingerprint, iris
scan, palm print, facial recognition, and gait recognition etc. These features are
usually unique for a person and cannot be stolen. Because of the demand for
security, biometrics industry is growing very fast. According to International
Biometric group, the total biometric revenue for 2003 was $719 million, which is
expected to rise to about $4,639 million by 2008. [8]

Research is now being done to verify the authenticity of users with the help of
keyboard strokes and mouse signatures. Researchers at Technion-Israel
Institute of Technology have built software, which can identify the authenticity of
the users with their individual and distinct typing styles. Prof. Ran El-Yaniv of the
institute says that this software is based on universal prediction algorithm, which
gathers the statistics when the user types freely during experimental state and
uses it to identify the typist. [5]

Ross Everitt and Peter McOwan at Queen Mary University of London did other
research where they used mouse signature as the biometric to verify the
authenticity of the users. The software is divided into two stages that are based
on neural networks. The first stage is used to verify the authenticity based on the
keyboard dynamics and the password entered. Second stage is used to verify
the authenticity with the help of already recorded signature patterns that are done
with the mouse. [3]

In our research, we are trying to use the mouse movement as the biometric. The
mouse is not used for writing the signature but for verifying the authenticity by
validating the mouse movements for that person. In the initial stage, various

 5

mouse movement patterns are recorded for different users and then these
recorded statistics are used to verify the users. Authentication by mouse
movements tries to replace the traditional initial login password method. It uses
mouse patterns created by the user as the identification method for that person.
Movements of users are captured beforehand. The user is then asked to
authenticate himself/herself by moving a mouse over few random buttons
positioned on the screen. If his/her mouse movements match the already
recorded mouse movement patterns, then the user is allowed to proceed. The
pattern recognition is based on a Hidden Markov Model (HMM). The main
advantage of using mouse as the biometric is that the method does not require
any special hardware, so it is will be cheaper compared to some other biometrics
like finger printing etc which require special devices/hardware.

In this semester, research was done to find the parameters that are unique for
different users. The parameters were then recorded and stored. Patterns of
mouse clicks were studied by first recording the mouse motion in the background
and then from this data, we tried to find the regions on the screen where the
mouse hovers the most. Three major tasks were done during this semester.
Explanation of each for the deliverables is given this report.

In the next semester, we propose to design software that not only verifies the
authenticity of the user during initial login but also keeps an eye on the
movements of the user during the entire session. If during any point of time, it
detects that the user’s movement patterns do not match the already recorded
patterns, it logs the user out. The system is divided into two phases. Phase 1 will
be the enrollment phase and phase 2 will be the verification phase. During
enrollment, different users will be asked to move the mouse on a set of points on
the screen. The mouse motion will be recorded and different parameters will be
calculated. These parameters will be stored as a template file. Other than these
parameters, pattern of mouse motion will also be recorded. This is done by
running a program in the background that records every mouse motion
coordinate for that user and stores them in a file. From this data, we can
construct a state transition table, which is based on Hidden Markov Model. The
table will be used to predict the motion of the mouse for a particular user. In the
second phase of recognition, the user’s mouse movement is tracked and
compared with the already recorded template for the user. If they match, the user
is authenticated. In addition, if at any point of time, the motion of the mouse does
not match the already recorded data, he is forced to log out.

 6

Deliverable 1: To plot a graph of Speed and Time

Description: The idea of the task was to check if we could find a proper
biometric which could authenticate a user by moving the mouse. The parameters
that were used in this deliverable include variation in speed of different users
while moving the mouse, deviation from the straight line between two points and
the angle formed while the mouse is moving. After all these parameters are
calculated, a graph is drawn which plots these parameters with respect to time.

In order to plot the graph, a program was written to record the mouse coordinates
of the user. In the first week, an applet was created which had two buttons start
and stop. On pressing start, timer was started. After every timeout period, the
current position of the mouse was recorded and stored. These coordinates were
then used to calculate speed.

In the second week, the program was slightly modified. Random motion of the
mouse was restricted and the user was asked to move only on the points, which
would appear on the canvas. The points were drawn with the help of random
function with a constant seed. This was done so that every time the applet is run,
the points are drawn on the same location and all the users follow the same path
of motion. When the user reaches one point, the point is erased and a new point
at some different location is drawn. This process continues until the user has
followed all ten points or pressed stop button. After moving the mouse on all the
points or pressing stop, a graph is shown which plots the parameters with
respect to time.

The mouse coordinates are recorded every time the timer is triggered. There was
also a drop-down box for selecting the time for the timer. We experimented with
10 ms, 50 ms and 100 ms. For 10 ms, it recorded many points that were very
close to each other because the mouse hardly moves in 10 ms. For 100 ms, a
number of data points were lost. 50 ms proved to be the perfect time for this
experiment. It not only noted almost all the points but also the visibility of the
graph was clear. For all the experiments, we used 50 ms as the time out period.
The recorded coordinates were then used to find the various parameters, which
could be used to find uniqueness in mouse motion.

After the coordinates were recorded, various parameters like speed, deviation
and angle were calculated. We computed the speed between two consecutive
points. Using the mouse coordinates that were recorded, the speed of the mouse
motion is calculated by dividing the distance traveled between two points with the
duration of the timer as the time interval between two consecutive points. A
graph was then drawn that plotted speed on Y-axis and time on X-axis.

The second parameter we calculated was deviation. Deviation is the shortest
distance from the user’s mouse coordinates to the straight line between the two

 7

points, which were drawn on the applet and between which the user is moving.
Deviation from a straight line between two points is calculated by finding the
minimum distance of that point from the straight line drawn between the two-
recorded points. Deviation gives us the path of motion between two points, which
the user follows i.e., we will be able to figure out whether the user has a pattern
of deviating a lot from the line or he closely follows a straight path.

Finally, the angle of deviation that gives the location of the mouse coordinates
with respect to a straight-line between two given points was calculated. The
angle is calculated between the two points shown on the applet and the recorded
mouse coordinate. If the user moves above or to the left of a straight line
between two points, it has a positive angle and if the angle is below a line or to
the right of it, it gives a negative angle. Below are some of the graphs, which
show the speed, deviation and angle of different users.

Figure 1 and 2 on the next page show the speed, deviation and angle of mouse
moved by two different users with respect to time.

The examples below show the different measuring parameters that were used.
Each graph is from a different user. Y-axis shows the speed, deviation and angle.
X-axis gives the time interval that is 50 ms for these examples. Green colored
graph shows the speed; blue shows the deviation and black color the angle of
deviation.

Figure 1: Graph showing speed, deviation and angle with respect to time. Green colored graph is
the speed, blue color is the deviation from straight line and black color is the angle

 8

Figure 2: Graph showing speed, deviation and angle with respect to time

Deliverable 2: To write a program that records the
mouse coordinates in background

Description: The idea of this task was to note the movements of the user in
background. This helped to track the path of motion of the user. Wherever the
mouse moved, the coordinates were noted in some file. Later coordinates were
extracted from the file and a graph was plotted to show the coordinates.

To note the coordinates in the background a hook had to be installed. According
to the MSDN library, “a hook is a point in the system message-handling
mechanism where an application can install a subroutine to monitor the message
traffic in the system and process certain types of messages before they reach the
target window procedure”. A system can support various types of hooks for
providing access to different message handling mechanisms. There is a separate
hook chain, a list of pointers to application defined callback functions called hook
procedures. When a message occurs that is associated with a particular type of
hook, the system passes the message to each hook procedure referenced in the
hook chain, one after the other. Our application had to use the WH_MOUSE
Hook to monitor the message traffic for mouse messages.

 9

http://msdn.microsoft.com/

A Windows program was written for this task that recorded the mouse
coordinates on every move the user made. This program had two files: a Win32
application file and a dynamic link library (DLL) file which actually installed the
hook. A DLL file had to be created because a global level hook had to be
installed i.e., we had to record mouse coordinates for each window and not just
for a single Window application. There is an entry point for the Windows
application that calls the function in dll file. The function then installed the mouse
hook. The mouse hook checked for any mouse movement. Whenever the mouse
moved, a message was generated in the queue. If two consecutive points
differed by more than five pixels, then the coordinates were written into a file
otherwise they were rejected to avoid excessive plotting of points. Along with the
mouse coordinates, the current time was also written in the file. A Java program
then read the file and plotted those points where X-axis represented the x-
coordinate and Y-axis the y- coordinate. Figure 3 is a graph of the mouse motion
coordinates for a user. These coordinate positions are gathered for about 4
hours. Each oval shows the pixel where the user's mouse moved.

Figure 3: Graph showing the mouse motion coordinates

The program for doing the task was written in Windows. A function for installing
the mouse hook and removing was called from Win32 file and the function was
itself written in DLL file. The function in dll file then installed the mouse hook
using SetMouseHookEx() command which sends it into a callback function that
posts a message in the queue every time mouse moves.

 10

Deliverable 3: Isolate regions on the graph where mouse
hovers the most

Description: The idea of this task was to separate the regions on the screen
where the mouse hovers the most. For finding this, we first had to clean the data
points we recorded in the Deliverable 2. A number of experiments were done for
doing the clean up. These include:

1) We checked if the mouse remained idle for 1 minute between two
consecutive data points. If so, we deleted all the data points, which were
in five-second interval from either recording point. The idea was to reduce
the concentration of some points that lead to a certain point after which
the mouse goes idle for sometime. A person usually slows down the
speed of the mouse when he has reached his target. If we are able to
delete those points when mouse is slow, we could reduce the number of
points without losing any important data points. The graph formed using
the above technique is given below. Actually, it didn’t make much of a
difference in this case where there were hardly any idle points.

Figure 4: Reduced data points when idle points are removed

2) We saved only those data points, which were below a certain threshold of
velocity. The idea was to remove those points, which were caused by
unnecessary motion of the mouse. It often happens that whenever mouse
moves very fast i.e., above a threshold speed recorded for that person, it

 11

is an unnecessary movement of the mouse. Therefore, why not discard
such points. The graph, I got by following this procedure is given below.

Figure 5: Reduced data points when a certain limit is applied to the speed

3) We plotted only those points with which a resize Window event is
associated. The purpose of this experiment was to link the congestion of
the points with any resize window event so that we could figure out the
portion of the screen where the windows were resized. For doing this
task, I had to install another windows hook apart from mouse hook. This
hook is called WH_CBT hook. According to MSDN library, ”The system
calls a WH_CBT hook procedure before activating, creating, destroying,
minimizing, maximizing, moving, or sizing a window; before completing a
system command; before removing a mouse or keyboard event from the
system message queue; before setting the input focus; or before
synchronizing with the system message queue”. In the main Win32
application file, a function was called in the dll file that installed CBT hook.
The hook recorded every resize event and sent it to the main application.
Whenever any window was resized, a message was generated in the
queue. For each of these messages, a ‘1’ was written into the file
associated with the mouse coordinates at that point of time. If no resize
event was generated i.e., no window was resized, a ‘0’ was written in the
file corresponding to those mouse coordinates. The result of the
experiment is shown in Figure 6 on next page.

 12

http://msdn.microsoft.com/

Figure 6: Data points showing window resize events

4) We plotted points with 20-minute interval with different colors. The aim of
this experiment was to see if could find the pattern of the motion of the
mouse.

Figure 7: Data points with different colors applied after every 20 minutes

 13

5) We picked only those regions where the number of points was more than
a certain threshold count. This was done by selecting a point and then
checking if there were a certain number of points in the region around it. If
so, we recorded those points otherwise they were discarded. The idea
was to select only those regions where there was a dense blob, which
implied that the mouse hovered around that region for more time. After
cleaning the data, the graph looked like given in Figure 8.

Figure 8: Data points where the density of points is more than a certain threshold count

After observing all the graphs that were obtained by performing the above-
mentioned procedures, we concluded that the last experiment, where only those
points, which have a dense region around them, were selected, was the most
effective for cleaning the data and removing any isolated points.

The next task after cleaning the data was to separate the dense regions. The
screen coordinates, where the mouse moved, had to be divided into small dense
regions and enclosed by a bounded figure. This was done to form small-enclosed
figures, which would serve the purpose of transition states. Based on these
states and the transition between them, a transition table will be formed in the
next semester, which records all the transitions from one region to another. This
table will then be used in the recognition phase to predict the motion of mouse for
that user. A couple of algorithms were used for this purpose. In the first
algorithm, we tried to find the top-left and bottom-right points and then drew a
rectangle using those two points. Top-left points were chosen if there were more

 14

number of points below and to the right of the point than above and to the left of
that point respectively. A point was a bottom right point if there were more points
above and to the left of the point than below and to the right of the point. For
each top-left point, we found the corresponding bottom right point. When for each
top-left point, a bottom–right point was found, we drew a rectangle with top-left
being the top-left coordinate for the rectangle and bottom-right point being the
bottom right coordinate for the rectangle. This rectangle represents a dense
region with the concentration of points enclosed within it and has sparse region
surrounding it. The graph we obtained by following this procedure is given in
Figure 9.

Figure 9: Graph showing the rectangles formed by finding top-left and bottom-right points

This experiment was not successful. The problem with the concept was that we
were just considering the points which were in a straight line above, below, left or
right of the point. This gave us only small number of dense regions. We did not
consider a wider area, more like a rectangular region around that point. This
problem was solved by using Gift wrapping algorithm. The idea was to draw a
convex hull around any dense region. The algorithm first computes the point,
min, of minimal horizontal value and all the points, which are within 30-pixel
range of that point. All these points were stored in a vector. Within this vector, we
find the point, max, of maximal horizontal value. Using a vertical line and starting
at min, we calculated the clockwise angle to every point in the vector until one
gets max. We selected the point with which it forms the smallest clockwise angle.
This point is added to the convex polygon. Similarly using a vertical line and
starting at max, we calculated the next point of minimal clockwise angle greater
than 180 until one gets to min. These points are also added to the polygon. [9]

 15

From this point, we selected another point, which formed the greatest angle in
clockwise direction. These points were added to the polygon. These points form
the convex polygon around each dense region. We deleted all these points from
the actual list and continued with the gift-wrapping algorithm, until all regions
were surrounded by a convex polygon. We implemented it in three different
ways. The first one was the simple implementation where a point and all points in
30-pixel range are selected and algorithm is applied to them. The results were as
shown in Figure 10.

Figure 10: Graph showing convex polygons within 25 pixel range using gift wrapping
algorithm

In the second case, we used one point, all points in 30 pixel range of that point
and all points which are in 30 pixel range of the first set of points. This gave us a
bit wider set of dense regions in one polygon. The result is shown in Figure 11.

 16

Figure 11: Graph showing convex polygons using gift wrapping algorithm twice

In the third case, we recursively used the second implementation to get very wide
regions. The problem with this implementation was that some small regions
came inside a large region and the large regions covered a lot of screen area.

Figure 12: Graph showing convex polygons using gift wrapping algorithm recursively

 17

We selected the second implementation whose results looked the most
promising and were very similar to we required.

Conclusion

After performing various experiments on mouse movement and studying the
behavior pattern for different users, in this semester, we think authentication by
mouse movements is possible by using the proper biometric. In deliverable 1, we
used speed, deviation and angle as three measuring parameters. We collected
data from ten different users and studied their mouse movement patterns. This
gave us very promising results. We then proceeded to next task, which was to
record the mouse coordinates in background. The task was very challenging
because I had no knowledge of Windows programming and creating dll files.
Most of the time was spent on searching on the Internet. Finally, I came across
the hook concept. The program that I wrote for this task enabled us to capture all
the mouse coordinates of any user. This helped us to study the mouse motion
patterns of users visually and we got an idea where on the screen does the user
move the most. The last deliverable took most of the time. We had to figure out
how to clean the data points that we produced from the second deliverable. We
performed about five experiments for this task. None of them gave any
conclusive results. Then we decided to select only those points around which
there is high concentration of points. This reduced a number of unnecessary
points. The next task was to surround the dense regions with an enclosed figure
so that we could separate different dense regions. The idea was to use these
dense regions as separate states and build a transition table for them. Couple of
experiments was done for this. After the results from these experiments, we
decided to go with the gift wrapping algorithm. Thus, by the end of this semester,
we are able to decide on the parameters for using the mouse movement as the
biometric, record the mouse coordinates in background and divide those
coordinates into different concentrated regions.

Future Work

The next task will be to make a state transition table based on the results of the
Deliverable 3. We plan to find the probability of the transitions from one state to
another. This data will be stored in a template file for that user. The software we
propose to build in the next semester will have different ways of verifying the
users authenticity. For the initial login, user will be asked to move the mouse on
some defined points. The software will calculate the speed, angle and deviation
of the mouse. It will compare this data with the already recorded threshold value
of speed, angle and threshold for that user. If they match, he will be allowed to
proceed. After that, there will be constant monitoring of his mouse movements.
Based on the transition table built for that user and with the help of HMM, we will
predict the next state of the users mouse before he has moved the mouse. If that
state matches the predicted state, he will be allowed to continue. However, if at
any point of time his speed, angle, deviation and state do not match the

 18

parameters in the template file, he will be forced to log out. At present, we know
neither the false acceptance rate nor the true rejection rate of this system. This
will be calculated in next semester when the prepared software will be tested.

 19

 20

Bibliography

1) Statistical Language Learning. Eugene Charniak. MIT. 1993.

2) Circuit complexity and Neural Networks. Ian Parberry. MIT 1994

3) Java-Based Internet Biometric Authentication System. Ross A.J & Peter W.
McOwan. IEEE Transactions on Pattern and Machine Intelligence. 25(9). Page
1166-1172. 2003.

4) Computational Geometry in C. Joseph O’Rourke. Cambridge University Press.
1998

5) Who types there? Communications of the ACM. 46(12) December 2003.

Web References:

6) http://www.whatis.com/

7) http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/winui/winui/windowsuserinterface/windowing/hooks/hookreference/hookfuncti
ons/setwindowshookex.asp

8) International Biometric Group. “Biometrics Market and Industry Report 2004-
2008”.
http://www.biometricgroup.com/reports/public/market_report.html

9) http://www.cs.sjsu.edu/faculty/pollett/20.1.00w/hw3.html

http://www.whatis.com/
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/winui/winui/windowsuserinterface/windowing/hooks/hookreference/hookfunctions/setwindowshookex.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/winui/winui/windowsuserinterface/windowing/hooks/hookreference/hookfunctions/setwindowshookex.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/winui/winui/windowsuserinterface/windowing/hooks/hookreference/hookfunctions/setwindowshookex.asp
http://www.biometricgroup.com/reports/public/market_report.html
http://www.cs.sjsu.edu/faculty/pollett/20.1.00w/hw3.html

	Abstract
	List of Figures
	Introduction
	Deliverable 1: To plot a graph of Speed and Time
	Deliverable 2: To write a program that records the mouse coordinates in background
	Deliverable 3: Isolate regions on the graph where mouse hovers the most
	Conclusion
	Future Work
	Bibliography

