
CS298 Report

 Schemes to make Aries and XML
work in harmony

 Thien An Nguyen

 Advisor: Dr. Chris Pollett
Committee Members: Dr. Melody Moh
 Dr. Tsau Young Lin

Agenda

• Our project goals

• ARIES Overview

• Natix Overview

• Our Project Design and Implementations

• Performance Matrixes

• Conclusion

Project Goals

• Develop an XML toy database.
• Implement ARIES and Natix’s recovery

mechanism.
• Support basic operations: insert, load, update,

delete, commit, and rollback.
• Allow some basic commands such as printTree,

and archive.
• Let user to vary the data page’s size and the buffer

pool’s size (for page swapping experiments).
• Set up a test environment for user to experiments

Introduction

• In general, there are three phases:
– Analysis:

• read the log records from the last system checkpoint
• analyze them
• build a list of actions for the redo and undo phases

– Redo
• Use log records to bring the dirty data pages updated by

all transactions to a point in time (consistency point –
no update operations allow)

– Undo
• Use log records to undo updates made by un-committed

transactions

ARIES Overview
• Buffer management uses steal/no-force policy:

– Steal: flush dirty page(s) by a transaction onto disk before the
transaction commit.

– No-force: page(s) modified by a transaction does not have to
be flushed onto disk when the transaction commits

• All update operations must be logged using log records.
• Use write-ahead logging protocol:

– A log record must be created on storage before the update
operation can be completed.

• Undo operations are also recorded using compensation
log records (CLR):
– Log record written for rollback operation to say what has been

rolled back. (no need to recover what has been rolled back.)

Figure 1 - CLR

Figure 2 – Subsidiary Logging

Natix Overview
• Same as ARIES but modify the way log records written

during forward phase.
• Subsidiary Logging:

– Page interpreter keeps a private log for updates to the same
transaction, onto the same page.

– The log content is locally modified to reduce the number of log
records.

– Subsidiary log’s content is published to log manager right
before a page is flushed to disk (according to WAL) or the
transaction commit.

• Undo operations also be recorded using compensation
log records.

• Selective Redo:
– Use log records to bring dirty pages (updated by committed

transactions) to a point in time from the last image copy.

Annihilator Undo

• Updates to a record that created by the same transaction need not to be
undone when the transaction is aborted as the record will be deleted
anyway.

• Instead of undo 5, 4, 3, 2, 1, undo 4, 1 would be enough.

Recovery Management

Design of the toy Database (p. 16)

XML Documents Example

<XML ID="00000001">
<G name="CS297">
 <G id="123-45-6789">

 <L>Jane Eyre</L>
</G>

 <G id="234-56-7890">
 <L>Irene Hugh</L>
 <L>3.0</L>

 </G>
</G>

….
</XML>

Logical Tree Structure (p. 19)

Query Engine (p. 17)
• Includes:

– query compiler, query parser, query
preprocessor, and query optimizer.

• We support:
– query parser

• Parses tags: <XML>, </XML>, <G>, </G>, <L>,
</L>. (=> language is simple but can have an
arbitrary tree structure)

• Parses grammar: <G>, and <L> tags can be nested
inside <G> tags. <L> tags can’t be nested.

• Parses queries: insert, update, delete, rollback,…
• Parses commands: printTree, archive,…

Some DDL/DML statements

• Data Definition Language
– Statements that are used to define objects.

Example of a DDL statement
T1 CREATE DATABASE DB1DB;
T1 CREATE XMLDOC XML1DOC IN DB1DB;

• Data Manipulation Language
– Statements that are used to modify, manipulate objects.

Example of a DML statement
T1 INSERT INTO XML1DOC PATH("/G/G[1]/L") VALUES("<L>Jane
Eyre</L>",

 "<L>3.8</L>");
T1 COMMIT;
T2 UPDATE XML1DOC SET VALUE("<L>392 Lulu Ahh Dr., San Jose CA

95123</L>") WHERE
PATH("/G/G[1]/L[3]");

Execution Engine

• Has input which are either queries, and/or
commands.

• Drives the execution for each
query/command.

• Returns the result back to user application
(printTree).

Buffer Manager (p. 18)

• Allocates, manages, and de-allocates pages in the
buffer pool.

The ThPage and ThPageInterpreter
Relationship (p. 18)

ThPage and ThPageInterpreter space
management (p. 23)

ThPage and ThPageInterpreter space
management

• Data Structure:
– 2 bytes page number
– Half byte dirty bit
– 2 bytes number of nodes in a page (maximun nodes in a

page is 255)
– ArrayList of nodes

• Functions support: decode/encode for read/write
operations.

• The only different between ThPage and
ThPageInterpreter is ThPageInterpreter does
subsidiary logging.

ThStructMapPage (p. 21)

Tree Storage Manager

• Construct and manipulate tree structure object at
the logical and physical level

• Implemented in class ThXMLDoc
– Keeps track of a set of pages that contain the tree

structure document (called pageSet)

– Has pointer to the root node

Page Split (p. 22)

Before Split

After Split

Transaction Management
• Contains a Hashtable of transaction

– A transaction
• Transaction ID

• Its current state (committed or not)

• List of LSNs

Log Management

Reads and writes log records

UML for Object/Classes (p. 16)

The dbsystem.properties file

• Used to specify system initial values
• For example:

pageSize = 500
recoverMethode = ARIES
The following section is random test generator parameters
numberOfNodes = 500
randomOutFile = c://an//cs297/xmldb//src//sm//input//randomTest.txt
insertWeight = 7
updateWeight = 3
deleteCount = 4
paragraph = alsk
djflsaksjfjfMXc.,.,xzMCz.,mczx.,lklksdfgfds?.,mczxmcC`12222345z.mcxzMCal
ksd832~!@##$%^&*_+=-][po}{asdfghjkl][poiuytrewq1234567890-
=,mnbvcxz>?:+_*&^%$#@!`.,
paragraph = t est

Performance Experiments (p. 56)

 Small Structure, Large Data vs. Page Size

0

2

4

6

8

10

12

14

16

0 500 1000 1500 2000 2500

Page Size (Bytes)

T
im

e
(s

)

Natix

ARIES

Performance Experiments (p. 58)

Large Structure, Small Data vs. Page Size

0

2

4

6

8

10

12

14

0 500 1000 1500 2000 2500

Page Size (Bytes)

T
im

e
 (

s
)

Natix

ARIES

Challenges

• Some of the challenges:
– Natix and ARIES’s design and implementation

– Space storage management

– Buffer manager design and implementation

– Tree manager design and implementation

Future development

• Some of the area the can be added, improve
in the future:
– Lock management

– Can be extended to model client-server
environment

– Fast Log applies for recovery management.

– Defer recovery.

Conclusion (p. 59)

• We developed a toy XML database management system
(DBMS) useful for studying recovery and buffer
management issues.

• Our system is capable of storing XML document that span
over pages

• Our DBMS supports operations and commands such as
create, insert, update, delete, rollback, commit, load, and
printTree

• It supports both ARIES and Natix recovery methods.
• We also established an experimental environment and

experimented with page sizes, and recovery methods.

