CS298 Report
Schemes to make Aries and XML

work in harmony

Thien An Nguyen

Advisor: Dr. Chris Pollett
Committee Members: Dr. Melody Moh
Dr. Tsau Young Lin

Agenda

Our project goals

ARIES Overview

Natix Overview

Our Project Design and Implementations
Performance Matrixes

Conclusion

Project Goals

Develop an XML toy database.

Implement ARIES and Natix’s recovery
mechanism.

Support basic operations: insert, load, update,
delete, commit, and rollback.

Allow some basic commands such as printTree,
and archive.

Let user to vary the data page’s size and the buffer
pool’s size (for page swapping experiments).
Set up a test environment for user to experiments

Introduction

* In general, there are three phases:
— Analysis:
* read the log records from the last system checkpoint

 analyze them
 build a list of actions for the redo and undo phases

— Redo

« Use log records to bring the dirty data pages updated by
all transactions to a point in time (consistency point —
no update operations allow)

— Undo

e Use log records to undo updates made by un-committed
transactions

ARIES Overview

Buffer management uses steal/no-force policy:

— Steal: flush dirty page(s) by a transaction onto disk before the
transaction commit.

— No-force: page(s) modified by a transaction does not have to
be flushed onto disk when the transaction commits

All update operations must be logged using log records.

Use write-ahead logging protocol:

— A log record must be created on storage before the update
operation can be completed.

Undo operations are also recorded using compensation
log records (CLR):

— Log record written for rollback operation to say what has been
rolled back. (no need to recover what has been rolled back.)

Before Failure
1 2 3 3 2
Log —q= = *—9—9

e]

During Restart 1
ST e e e e — >

Creale
sublreg R1

I’ is the Compensation Log Record for I
I" points to the predecessor, if any. of |

Figure 1 - CLR

//—\\. Add node 10)‘/—\\ Modify node /—\\ Modify node

subliee R i1 subliee R in sublree R2

|]
i
.

Transaction control block

undolSN; —

Figure 2 — Subsidiary Logging

N

Add node o

sublree R

L¥l |

Natix Overview

Same as ARIES but modify the way log records written
during forward phase.
Subsidiary Logging:
— Page interpreter keeps a private log for updates to the same
transaction, onto the same page.

— The log content is locally modified to reduce the number of log
records.

— Subsidiary log’s content 1s published to log manager right
before a page 1s flushed to disk (according to WAL) or the
transaction commit.

Undo operations also be recorded using compensation
log records.

Selective Redo:

— Use log records to bring dirty pages (updated by committed
transactions) to a point in time from the last image copy.

Annihilator Undo

« Updates to a record that created by the same transaction need not to be
undone when the transaction 1s aborted as the record will be deleted
anyway.

e Instead of undo 5, 4, 3, 2, 1, undo 4, 1 would be enough.

,p/—\\ Addd node o Muodify node FN] Add node o

sublres R glblres R in subiree R1 in subires B2 zibires R

Create Modify node

1 2 3 i 5
Transacton control block

undol.SN- —

Leg

MNATIX

Recovery Management

@

@ Checkpoint / Fallure

Analysis

Redo Nonlcaars

Unds Lomars

Design of the toy Database (p. 16)

Uzer Application J

Gery Engine J
Parser

Execution Engine J

Buffer ‘ " Tree Storage ‘ o Tran=action J Log Manager!
Manager Manager Mlanager Fecovery Manager

=torage Manager!
Fage/Record

v

storage J

XML Documents Example

<XML ID="00000001">
<G name="CS297">
<G 1d="123-45-6789">
<L>Jane Eyre</L>

</G>
<G 1d="234-56-7890">
<L>Irene Hugh</L>
<L>3.0</L>
</G>
</G>

</XML>

Logical Tree Structure (p. 19)

T
D
(o L= 3
RET
5ol
(1] I &
123455?” EAsETR 34&57 01 o 'o 901234587 o o
“-"l-__,_o-""ﬁ-.

Figure 9 — Logical Tree Associate with [ts XML Document

Query Engine (p. 17)

e Includes:

— query compiler, query parser, query
preprocessor, and query optimizer.

* We support:

— query parser

e Parses tags: <XML>, </XML>, <G>, </G>, <L>,
</L>. (=> language 1s simple but can have an
arbitrary tree structure)

* Parses grammar: <G>, and <L> tags can be nested
inside <G> tags. <LL> tags can’t be nested.

« Parses queries: insert, update, delete, rollback,...
e Parses commands: printTree, archive,...

Some DDL/DML statements

e Data Definition Language

— Statements that are used to define objects.

Example of a DDL statement
T1 CREATE DATABASE DB1DB;
T'T CREATE XMLDOC XML 1DOC IN DB1DB;

« Data Manipulation Language

— Statements that are used to modify, manipulate objects.

Example of a DML statement
TT INSERT INTO XML1DOC PATH("/G/G[1]/L") VALUES("<L>Jane
Eyre</L>",

"<[>3.8</1L>");
T'1T COMMIT;

T2 UPDATE XML1DOC SET VALUE("<L>392 Lulu Ahh Dr., San Jose CA
95123</L>") WHERE

Execution Engine

« Has input which are either queries, and/or
commands.

e Drives the execution for each
query/command.

« Returns the result back to user application
(printTree).

Buffer Manager (p. 18)

« Allocates, manages, and de-allocates pages in the
buffer pool.

ThButterM Hashtak1e

P BufferPool —¥

—> Freelist -
. LeastUseList l \

int poolsize ThFage ThPage

or ThPagelnterpreter

The ThPage and ThPagelnterpreter
Relationship (p. 18)

ThFage implements IThFage

T

ThPage Interpreter extend ThPage implement [ThPage

ThPage and ThPagelnterpreter space
management (p. 23)

Dty bat
Fage Heade F//Hu.m]:uer of node
. ’*‘1
_[lhEEI 1 Len 1 |Datanodel|Len2 |Data nodel

Len3 |Data nodes| ===

Offset 1 [dl Offset 2 [[dd [Oifset 1 [[d]

ThPage and ThPagelnterpreter space
management

* Data Structure:
— 2 bytes page number
— Half byte dirty bit
— 2 bytes number of nodes 1n a page (maximun nodes in a
page 1s 255)
— ArrayList of nodes

* Functions support: decode/encode for read/write
operations.

* The only different between ThPage and
I'hPagelnterpreter 1s ThPagelnterpreter does
subsidiary logging.

Page Header

Node data

ThStructMapPage (p. 21)

%#—-_._
= -
-
-

% children

L4

NID2

~

NIDS

NIDd

NIDd

NID3

NID2

NID1

Tree Storage Manager

» Construct and manipulate tree structure object at
the logical and physical level

* Implemented in class ThXMLDoc

— Keeps track of a set of pages that contain the tree
structure document (called pageSet)

— Has pointer to the root node

Page Split (p. 22)

Pagel

NN ORONORG

Before Split

After Split

Transaction Management

 (Contains a Hashtable of transaction

— A transaction
* Transaction ID

* Its current state (committed or not)
e List of LSNs

Log Management

Reads and writes log records

UML for Object/Classes (p. 16)

documents: ThE il Doc

sy Thisrstem

catal oz Hashtable

-t
EM: ThBuffer Moy bufferFPool: Hashtahle
ThPage
. - F Y

Thi:-ThTransactionhd=r

LM : ThLa atager

ThPazelnterpeter

ELI ThEecoveryhlgr

Sl Thitoragellor

The dbsystem.properties file

* Used to specify system initial values

* For example:
pageSize = 500
recoverMethode = ARIES
The following section is random test generator parameters
numberOfNodes = 500
randomQutFile = c://an//cs297/xmldb//src//sm//input//randomTest. txt
insertWeight = 7
updateWeight = 3
deleteCount = 4
paragraph = alsk
diflsaksjfifMXc.,.,.xzMCz.,mczx.,lklksdfgfds?.,mczxmcC "12222345z.mcxzMCal
ksd832~|@##3%"&* +=-][po}{asdfghjkl][poiuytrewql234567890-
=,mnbvcxz>?:+ *& %$#Hw!".,

paragraph =t est

Performance Experiments (p. 56)

Small Structure, Large Data vs. Page Size
16 -
14
12
% 12 . —e— Natix
£ o — ARIES
 © B —
4
2
0 | ‘ ‘ | |
0 500 1000 1500 2000 2500
Page Size (Bytes)

Performance Experiments (p. 58)

Large Structure, Small Data vs. Page Size

14 -
12
10
> 8 — e Natix
E 6 —_— ARIES
4 .
2
0 ‘ ‘ ‘ ‘ |

0 500 1000 1500 2000 2500
Page Size (Bytes)

Challenges

e Some of the challenges:
— Natix and ARIES’s design and implementation
— Space storage management
— Buffer manager design and implementation

— Tree manager design and implementation

Future development

* Some of the area the can be added, improve
in the future:

— Lock management

— Can be extended to model client-server
environment

— Fast Log applies for recovery management.
— Defer recovery.

Conclusion (p. 59)

We developed a toy XML database management system
(DBMYS) useful for studying recovery and buffer
management 1Ssues.

Our system 1s capable of storing XML document that span
Over pages

Our DBMS supports operations and commands such as
create, insert, update, delete, rollback, commit, load, and
printTree

It supports both ARIES and Natix recovery methods.

We also established an experimental environment and
experimented with page sizes, and recovery methods.

