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Project Goals

Develop an XML toy database.

Implement ARIES and Natix’s recovery
mechanism.

Support basic operations: insert, load, update,
delete, commit, and rollback.

Allow some basic commands such as printTree,
and archive.

Let user to vary the data page’s size and the buffer
pool’s size (for page swapping experiments).
Set up a test environment for user to experiments



Introduction

* In general, there are three phases:
— Analysis:
* read the log records from the last system checkpoint

 analyze them
 build a list of actions for the redo and undo phases

— Redo

« Use log records to bring the dirty data pages updated by
all transactions to a point in time (consistency point —
no update operations allow)

— Undo

e Use log records to undo updates made by un-committed
transactions



ARIES Overview

Buffer management uses steal/no-force policy:

— Steal: flush dirty page(s) by a transaction onto disk before the
transaction commit.

— No-force: page(s) modified by a transaction does not have to
be flushed onto disk when the transaction commits

All update operations must be logged using log records.

Use write-ahead logging protocol:

— A log record must be created on storage before the update
operation can be completed.

Undo operations are also recorded using compensation
log records (CLR):

— Log record written for rollback operation to say what has been
rolled back. (no need to recover what has been rolled back.)
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Natix Overview

Same as ARIES but modify the way log records written
during forward phase.
Subsidiary Logging:
— Page interpreter keeps a private log for updates to the same
transaction, onto the same page.

— The log content is locally modified to reduce the number of log
records.

— Subsidiary log’s content 1s published to log manager right
before a page 1s flushed to disk (according to WAL) or the
transaction commit.

Undo operations also be recorded using compensation
log records.

Selective Redo:

— Use log records to bring dirty pages (updated by committed
transactions) to a point in time from the last image copy.



Annihilator Undo

« Updates to a record that created by the same transaction need not to be
undone when the transaction 1s aborted as the record will be deleted
anyway.

e Instead of undo 5, 4, 3, 2, 1, undo 4, 1 would be enough.
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Design of the toy Database (p. 16)
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XML Documents Example

<XML ID="00000001">
<G name="CS297">
<G 1d="123-45-6789">
<L>Jane Eyre</L>

</G>
<G 1d="234-56-7890">
<L>Irene Hugh</L>
<L>3.0</L>
</G>
</G>

</XML>



Logical Tree Structure (p. 19)
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Query Engine (p. 17)

e Includes:

— query compiler, query parser, query
preprocessor, and query optimizer.

* We support:

— query parser

e Parses tags: <XML>, </XML>, <G>, </G>, <L>,
</L>. (=> language 1s simple but can have an
arbitrary tree structure)

* Parses grammar: <G>, and <L> tags can be nested
inside <G> tags. <LL> tags can’t be nested.

« Parses queries: insert, update, delete, rollback,...
e Parses commands: printTree, archive,...



Some DDL/DML statements

e Data Definition Language

— Statements that are used to define objects.

Example of a DDL statement
T1 CREATE DATABASE DB1DB;
T'T CREATE XMLDOC XML 1DOC IN DB1DB;

« Data Manipulation Language

— Statements that are used to modify, manipulate objects.

Example of a DML statement
TT INSERT INTO XML1DOC PATH("/G/G[1]/L") VALUES("<L>Jane
Eyre</L>",

"<[>3.8</1L>");
T'1T COMMIT;

T2 UPDATE XML1DOC SET VALUE("<L>392 Lulu Ahh Dr., San Jose CA
95123</L>") WHERE



Execution Engine

« Has input which are either queries, and/or
commands.

e Drives the execution for each
query/command.

« Returns the result back to user application
(printTree).



Buffer Manager (p. 18)

« Allocates, manages, and de-allocates pages in the
buffer pool.
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The ThPage and ThPagelnterpreter
Relationship (p. 18)

ThFage implements IThFage

T
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ThPage and ThPagelnterpreter space
management (p. 23)
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ThPage and ThPagelnterpreter space
management

* Data Structure:
— 2 bytes page number
— Half byte dirty bit
— 2 bytes number of nodes 1n a page (maximun nodes in a
page 1s 255)
— ArrayList of nodes

* Functions support: decode/encode for read/write
operations.

* The only different between ThPage and
I'hPagelnterpreter 1s ThPagelnterpreter does
subsidiary logging.




Page Header

Node data

ThStructMapPage (p. 21)
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Tree Storage Manager

» Construct and manipulate tree structure object at
the logical and physical level

* Implemented in class ThXMLDoc

— Keeps track of a set of pages that contain the tree
structure document (called pageSet)

— Has pointer to the root node



Page Split (p. 22)
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Transaction Management

 (Contains a Hashtable of transaction

— A transaction
* Transaction ID

* Its current state (committed or not)
e List of LSNs

Log Management

Reads and writes log records



UML for Object/Classes (p. 16)
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The dbsystem.properties file

* Used to specify system initial values

* For example:
pageSize = 500
recoverMethode = ARIES
# The following section is random test generator parameters
numberOfNodes = 500
randomQutFile = c://an//cs297/xmldb//src//sm//input//randomTest. txt
insertWeight = 7
updateWeight = 3
deleteCount = 4
# paragraph = alsk
diflsaksjfifMXc.,.,.xzMCz.,mczx.,lklksdfgfds?.,mczxmcC "12222345z.mcxzMCal
ksd832~|@##3%"&* +=-][po}{asdfghjkl][poiuytrewql234567890-
=,mnbvcxz>?:+ *& %$#Hw!".,

paragraph =t est



Performance Experiments (p. 56)
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Performance Experiments (p. 58)

Large Structure, Small Data vs. Page Size
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Challenges

e Some of the challenges:
— Natix and ARIES’s design and implementation
— Space storage management
— Buffer manager design and implementation

— Tree manager design and implementation



Future development

* Some of the area the can be added, improve
in the future:

— Lock management

— Can be extended to model client-server
environment

— Fast Log applies for recovery management.
— Defer recovery.



Conclusion (p. 59)

We developed a toy XML database management system
(DBMYS) useful for studying recovery and buffer
management 1Ssues.

Our system 1s capable of storing XML document that span
Over pages

Our DBMS supports operations and commands such as
create, insert, update, delete, rollback, commit, load, and
printTree

It supports both ARIES and Natix recovery methods.

We also established an experimental environment and
experimented with page sizes, and recovery methods.



