

Distributed Gaming using XML

A Writing Project

Presented to

The Faculty of the Department of Computer Science

San Jose State University

In Partial Fulfillment of the Requirement for the Degree

Master of Science

By

Padmini Paladugu

June 2004

 1

© June 2004

Padmini Paladugu

paddusyam@yahoo.com

ALL RIGHTS RESERVED

APPROVED FOR THE DEPARTMENT OF COMPUTER SCIENCE

 2

Abstract

Advancements in wireless technology have led to the emergence of a wide variety of

wireless devices like Personal Digital Assistants (PDAs) and cell phones. A number of

applications like word processors have been developed to run on these devices and the

most popular among these are gaming applications. In this project, we have developed a

Pokemon-style game, Palm Maya, played on wireless devices. Palm Maya uses a

stripped down XML language that we had created to communicate with a centralized

Oracle Database. Various properties of our XML language and game set-up have been

tested for efficiency and playability.

The basic set up of Palm Maya is that we have a number of wireless users on one hand

and a centralized Oracle database on the other. Each player starts the Pokemon-style

game and chooses a level of difficulty – Beginner, Intermediate, or Expert (an option

about what kind of player he/she will be in the game). The player’s choice will then be

recorded into the centralized Oracle database. If two persons decide to play each other,

the system decides who begins the game. The players can point their devices at each

other and beam their transactions to each other. Also, players can synchronize their

devices with the centralized Oracle database to update their scores. The centralized

database has a high score list which can be synchronized with the palm devices. The

centralized Oracle database keeps track of all XML based messages that have passed

between the devices. Communication between players was achieved using Infrared (IR)

beaming and Bluetooth technologies.

 3

TABLE OF CONTENTS

1. INTRODUCTION ………………………………………………..1

2. BACKGROUND AND RELATED WORK …………………….4

2.1 Palm OS Concepts …………………………………………4
2.2 XML ……………………………………………………….6
2.3 SAX Parser ………………………………………………...7
2.4 Oracle XML Database ……………………………………..7

3. REQUIREMENT ANALYSIS ……………………………………9
3.1 Purpose …………………………………………………….9
3.2 Scope ………………………………………………………9
3.3 Benefits and Objectives ……………………………………11
3.4 Product Perspective ………………………………………..11
3.5 User Classes and Characteristics …………………………..13
3.6 Operating Environment ……………………………………13
3.7 External Interface Requirements …………………………..13
3.8 Functional Requirements …………………………………..14

4. DESIGN AND IMPLEMENTATION ………………………….. 19
 4.1 System Architecture ……………………………………… 19
 4.2 Design ……………………………………………………. 22

4.3 Implementation ………………………………………….. 35

5. USABILITY TESTING

5.1 Usability Testing ………………………………………… 60
5.2 Results …………………………………………………… 61

6. CONCLUSION AND FUTURE WORK ……………………… 64

7. REFERENCES …………………………………………………. 66

 4

LIST OF FIGURES

Figure 1: Distributed Game System ……………………………………….12
Figure 2: Three-tier Distribution Architectural Pattern ……………………20
Figure 3: System Architecture ……………………………………………..21
Figure 4: Game Server ……………………………………………………..23
Figure 5: Initial Form ………………………………………………………27
Figure 6: Class diagram for Server …………………………………………39
Figure 7: TossForm and MainForms in the Game ………………………….42
Figure 8: State diagram representing the game ……………………………..43
Figure 9: Previous Play state ………………………………………………..47
Figure 10: Current Draw state ………………………………………………47
Figure 11: Attacking state …………………………………………………..49
Figure 12: Attacking state …………………………………………………..50
Figure 13: Application Preference …………………………………………..54
Figure 14: Quit the Game …………………………………………………...55
Figure 15: Game Rules ……………………………………………………...55

LIST OF TABLES

Table 1: Operating Environment …………………………………………….13
Table2: Trading Conditions ………………………………………………….30
Table 3: Structs for Deck and Player’s Details ………………………………56
Table 4: Usability Testing Results ……………………………………………63

 5

Chapter 1

Introduction

New classes of devices like wireless–enabled PDAs and mobile phones are emerging.

Mobile and multi-player gaming applications on these wireless-enabled devices are

becoming increasingly popular. Initially, the gaming market has been dominated by

single player and multi-player games that are played on PC and Game Boy families.

Currently, mobile games can be unlike any of them as the devices are limited in terms of

media, but networked and multiplayer compatible. The advent of distributed games has

opened up new avenues of entertainment for users.

The general problems associated with designing distributed games on PDAs are

providing communication between game players, maintaining consistent state between

players and central database, and managing all players’ data in the database

simultaneously. To facilitate distributed gaming, technologies like Palm OS, Bluetooth,

eXtensible Markup Language (XML), and Oracle are widely used.

The Palm OS is the most common OS for PDAs. It provides both simple applications like

date book, calendar, and notepad, and more advanced applications like games to

handheld users. Users can add more advanced features to existing applications or they

can write their own applications using the features of Palm OS. The Palm OS allows

sharing of data between the Palm devices using Infrared and Bluetooth communication.

 6

Palm networking allows the users to connect to the remote database using Palm OS Net

library. Palm OS supports communication between handheld and desktop computer

through Palm cradle. The Hotsync manager allows the user to make backup copies of

his/her handheld information. Palm Conduits allow the actual synchronization between

the applications on the Palm device and the Palm desktop. Data interchange between the

Palm devices and the Palm desktop on a host computer is best handled by XML

messages.

The eXtensible Markup Language (XML) is designed for describing the structure of

information, which makes it easier to transfer ordered information from one place to

another place, or from one program to another program. It provides the syntax for

defining the structured information using XML Schemas or Document Type Definitions

(DTDs). The XPath and XQuery features of XML can be used to store and retrieve XML

messages from a relational database system like an Oracle Database.

Oracle9i provides support for handling XML data and documents. Oracle 9i provides a

data type called XMLType that can be used in defining tables, columns in tables and

views. Oracle9i allows XPath expressions to navigate through an XMLType instance and

allows searching across multiple instances of XMLType.

This project develops a distributed gaming system where multiple players with Palm

PDAs can play an interactive Pokemon-style game. Palm OS graphics and other user

interface elements are used for creating an interactive game interface. Palm Databases

 7

and Preferences are used for storing player’s details and game components. Palm OS

Memory Manager is used to handle the memory handling operations. Palm OS Net

Library is used for communication between Palm PDA and remote database at the remote

Server. Bluetooth and Infrared technologies are used for providing communication

between wireless devices, and the devices communicate with the centralized Oracle

database using XML messages.

This report is organized as follows. Chapter 2 provides the background and related work

on Palm OS, Bluetooth, Conduit Development, XML, XML Parsers, and Oracle XML

Database. Chapter 3 explains the requirements analysis for the project. Chapter 4

describes the Design and Implementation details of the project. Chapter 5 discusses the

usability testing that was conducted to test the validity of the game and the results.

Chapter 6 concludes this report and gives directions for future research.

 8

Chapter 2

Background and Related Work

This chapter discusses the technologies used in this project to implement a distributed

gaming system. The concepts of Palm OS, Conduit Development, XML, XML Parsers,

and Oracle XML Database are discussed below.

2.1 Palm OS Concepts

Personal Digital Assistants (PDAs) are compact and portable. They do not have a hard

disk to store programs and applications and have only a small amount of Random Access

Memory (RAM). These limitations of handheld devices require a special operating

system such as Palm OS. Palm OS is the predominantly used technology in the field of

handheld devices and is developed by PalmSource, Inc. Palm OS technology broadly

includes communication technologies used in the devices such as PDAs, Cell Phones, and

Pagers. Since the initial release of Palm devices, PDAs have been a part of the gaming

industry.

2.1.1 Palm OS Concepts used in our Project

The important Palm OS concepts used in game application are the following: User

Interface elements like Forms, Lists, Text fields, Buttons, Menus; Palm OS databases;

Bluetooth and IR Beaming technologies; Palm OS Networking; Application Preferences;

and Palm Conduit.

 9

Palm User Interface: The Palm user interface is different from the other user interfaces

due to its small size and behavior. Users can view only one application at a time and the

application’s forms cannot be resized or moved. The main user interface resources we

used in the project are Forms, Lists, Buttons, Fields, Labels, Alerts, and Menus.

Palm Databases: Palm database is basically a list of memory chunks in the Palm’s

storage RAM, along with some header information that describes the database itself.

Databases are opened, closed, created, and deleted just as files on the other traditional file

systems. The Palm Data Manager organizes all the records associated with a Palm

database and provides functions that allow users to create, query, update and delete those

records. In this project, the Palm database is used to store a deck of thirty cards required

for the game, and the player’s details.

Palm Memory Handling: The Memory allocation on a Palm is limited to slightly less

than 64KB for each allocation and these memory allocations are called chunks. The

Memory Manager returns either a memory handle or a memory pointer for each memory

allocation. A memory handle is a reference to a movable block of memory. A memory

pointer is a reference to a non-movable block of memory.

Palm Application Preferences: The Palm OS does not support the execution of multiple

applications simultaneously. The application shuts down when a user switches to another

application. The Application will not save the most recent state where the user had last

worked. Losing state causes problems with many applications. To avoid this ambiguity in

 10

the state of the applications, Palm OS provides application preferences. The application’s

state is stored in the Preferences database when a user exits the application and it is

retrieved when the application is re-launched. In this project, application preferences are

used to maintain the game state.

Palm OS Exchange Manager: The Exchange Manager provides communication

between palm devices via Object Exchange (OBEX) protocol. Although mostly

associated with infrared, the OBEX protocol can also run over Bluetooth, TCP/IP or even

serial communication. OBEX transmits objects as streams of octets. The content of the

transfer might contain a single record, multiple records or even a complete database. In

this project, Bluetooth and Infrared beaming technologies are used for communication

between players.

Palm Conduits: To synchronize the data on the Palm device with a host computer, a

software interface must be provided to handle the synchronization from the desktop

computer’s perspective. This software interface is called a conduit because it manages the

flow of data through a pipe between a desktop application and a handheld application.

In this project, the Palm conduit is used to synchronize the deck of cards to the Palm

database and player’s score to the centralized database. Conduits work in tandem with

the HotSync Manager to perform the following tasks:

• Mirroring and synchronizing with data on the other systems

• Backing up the data residing on the Palm

• Downloading and installing Palm OS applications

 11

• Importing and Exporting data

2.2 eXtensible Markup Language (XML)

XML belongs to the family of markup languages. It is similar to Hyper Text Markup

Language (HTML). XML provides features for user-defined tags. It also provides

features for checking the wellformedness and validity of the data described. Validity

check of XML documents is required to make sure that a given XML document follows

the defined rules. Each XML document is validated against its corresponding XML

Schema. If the document satisfies all the constraints specified by the schema, it is

considered to be schema-valid.

2.3 SAX Parser

Parsing involves reading an XML document and retrieving its content while checking for

the document’s wellformedness. SAX is an event based API used for reading XML

documents. SAX parser is used to create an XML-to-Java mapping for both simple and

complex XML structures. SAX is a collection of interfaces in the org.xml.sax package.

As SAX is an API, the code is standard across all XML parsers. To run Java applications

using SAX, we first need to access an XML parser that supports SAXv2. We have used

Apache's Xerces parser to support SAX and DOM.

2.4 Oracle XML Database

The XML features of the Oracle9i Database Management System (Oracle XML) provide

tools for building XML applications. Oracle XML can be used to store, query, update,

 12

transform, and process XML documents, while providing Structured Query Language

(SQL) access to the XML data. The key Features in Oracle XML are XML Types, XML

schema, XML Schema validation, and XPath search. XMLType datatype can be used to

store and retrieve XML data from the Oracle database. XML Schema validation in Oracle

XML allows validation of XML documents stored in Oracle database against their

schema. XPath search uses XPath syntax to query XML content in the database.

2.4.1 Store XML data

XML documents are stored in the Oracle database either by using an XMLType column

or an XMLType table. To store an XML document in an XMLType table or column, the

XML document must first be converted to an XMLType instance. This is done using the

getDocument () PL/SQL function. After the conversion, the XML document will be

stored in the XMLType table using the SQL INSERT statement.

2.4.2 Retrieve XML data

After storing the collection of XML documents into an XMLType table or column, the

next step is retrieving the XML documents. Oracle 9i database uses the concept of XPath

to traverse through all the sub elements from the root element. Oracle XML uses the

XPath in conjunction with the extract (), extractValue (), and existsNode () functions. The

existsNode () function verifies the presence of a node in the XML document. The

extractValue () function is used to retrieve the value of a text node or an attribute

associated with an XPath Expression. The extract () function is used to retrieve all the

nodes in an element node specified in the XPath expression.

 13

2.4.3 Update XML data

XML documents in the database can be updated using the updateXML () function. The

updateXML () function can update the value of an attribute, node, text node, or node tree.

The target for the update operation is identified using an XPath expression.

 14

Chapter 3

Requirement Analysis

This chapter discusses the requirements for this project.

3.1 Purpose

The purpose of this project is to provide a distributed, multiplayer gaming application for

Palm OS enabled wireless PDAs. The main idea behind this project is implementing a

distributed game that connects to the centralized database by integrating diverse

platforms and technologies.

3.2 Scope

The scope of this project is implementing a more sophisticated game, Palm Maya, on

wireless devices using Palm OS, Bluetooth, XML and Oracle 9i XML Database. Palm

Maya is a modern remake of the classic card board game Magic: The Gathering. It is a

simple card trading game, scaleable to varying levels of difficulty. The following section

describes the overview of the game and the different phases being implemented in the

game.

Game Overview

The Palm Maya play takes place between at least two players on two different Palm

devices. There are two types of cards: Lands and Animals. Land cards are used to pay

for the Animal cards. The cost of a Land card is always one unit. Each Animal card has

an image with three properties: cost, power, and toughness.

 15

• Cost: The cost of the Animal card will decide how many Land cards we need to

pay for playing the Animal card.

• Power: Power is the how much damage the players deal in combat.

• Toughness: Toughness is how much damage a player takes to destroy the Animal.

Rules of the Game

Each player has a deck of thirty cards in his/her Palm database. The player

launches the application with an initial set of seven cards in his/her hand and plays the

game according to the following predefined rules.

1. Each turn the player needs to draw a card from the deck.

2. The player may play one land card during a turn.

3. The player can play more than one animal card as long as he has sufficient

number of land cards to pay for them.

4. The player need not pay again for the animal card, which has already been played

in the previous turn.

Game Play

There are four different phases in the game: Draw, Play, Combat and Update

score. First, each player draws a card form the deck, and then plays either a Land card or

Animal card from the hand list. If the player is qualified to attack the opponent, then the

combat phase of the game starts. Depending on the characteristics of the player’s

attacking Animal, the opponent takes the decision whether to block the attacking Animal

or not. If the opponent blocks the attacking Animal, then a trade will occur between the

players depending on the characteristics of both the attacking and blocking cards. If the

opponent does not block the attacking Animal, then the player’s score will be updated

 16

according to his Animal’s power. The main objective of every player is to be the top

scorer among all the players currently playing the game. The game application should

always maintain the scores of game players in the centralized Oracle database. Players

can always have the choice of viewing top five scores from the Oracle database.

3.4 Product Perspective

The end product of this project is integration of Palm devices, Conduit application, Game

Server, and Database. Game Server deals with generating decks and updating scores of

the players. Conduit provides communication between the Palm PDA and game server on

the desktop. Oracle Database stores all the versions of the decks used by the players in

the game. Palm device is the place where the player can play the actual game. The

following Figure 1 depicts the processes contained in the Distributed Game system.

 17

 Distributed Game System
1. Game on Palm
device

2. Conduit 3.Game Server 4.Oracle XML
Database

1.1 Launch the game
application

2.1 Retrieves the
data from the
desktop file.

3.1 Receives the
request from the
client/player.

4.1 Maintain
decks and
scores of all the
players with the
Time stamp

1.2 Decide who goes
first

2.2 Convert it to
Palm Record
format.

3.2 Decides the type of
player.

1.3 Start the game
with Draw state

2.3 Store it to the
Palm database via
hotsync.

3.3 check in the
database for existing
player.

1.4 Play Land cards
or Animal cards.

2.4 Retrieve the
data from the Palm
Database

3.4 Create new deck
with version update for
existing player

1.5 Attack or block
the opponent.

2.5 Convert the
data to the Desktop
record format.

3.5 Create a new deck
with new version for a
new player.

1.6 update the scores
1.7 Quit the game.
1.8 update scores to
central database
through Hotsync and
conduit.

2.6 Write to the
Desktop file.

3.6 update the score for
existing player.

Figure 1: Distributed Game System

3.5 User classes and characteristics

While designing the game it is assumed that the users will have varying levels of

education and technical expertise with Palm PDAs. Users should also become familiar

with how to use a built-in keyboard and Graffiti area for providing input to a Palm

device, and how to read the Palm PDA’s screen to analyze the output. Users should also

know how to install a program on Palm device, and how to launch a program on a system

that uses a Graphics User Interface.

 18

3.6 Operating Environment

The distributed game is required to operate on Palm devices with a centralized Oracle

database. The hardware platform, operating system, and other software components are

described in Table 1.

Table 1: Operating Environment
Application Operating Environment
Game Cygwin, Palm SDK and PRC tools on MS

Windows. (Palm OS)
Conduit Visual Studio, Conduit Development

Kit (CDK) , Palm Desktop, and Hotsync
Manager on MS Windows.

Game Server Java 1.4.1 or higher installed on Windows.
Database Oracle 9i
Source: Author

3.7 External Interface Requirements

3.7.1 User Interfaces

Players will take an average of five minutes to become familiar with the user interface

and Palm device functions. For experienced Palm users, the average time will be one

minute to learn the user interface. Experienced users are those who have previously

interacted with a Palm application.

3.7.2 Hardware interfaces

The hardware interface for the Distributed Gaming System will be a Palm device, Palm

Cradle, standard keyboard, mouse and monitor. The system will also require a mobile

phone as a modem to interact with the Game Server database over the Internet.

 19

3.7.3 Software interfaces

• Game: The operating system must have cygwin, Palm SDK, PilRC, Palm

Desktop, and Hotsync Manager installed.

• Game Server: The operating system must have the Java Virtual Machine (JVM)

version 1.4.1 or greater installed.

• Database: XML supported Oracle database must have been installed on top of the

 operating system.

3.7.4 Communication interfaces

• Communication between the Palm application and the central database will use

Palm Network Library.

• Communication between two Palm devices will use Bluetooth and/or Infrared

beaming technologies.

3.8 Functional Requirements

The functional requirements of the Game, Game Server, Conduit, and Centralized

database are explained in this section.

3.8.1 Functional Requirements for Game

Palm Maya game should be able to perform the following functions.

Toss: This function occurs by default when the game application is launched. This

function decides which player will start the game first.

Input: The input for this function will be the random number generated by the server.

 20

Output: When the game application is first launched, the first form that will appear on the

application window is the Toss Form.

Deck: This function occurs by default when the game application is first synchronized

with the handheld. A deck of thirty cards will be required for playing the game. The deck

of thirty cards will be available in the Palm Database.

Input: The input for this function will be the deck created by the game server.

Output: The deck of thirty cards stored in the Palm database.

Handset: This function occurs by default when the Main form is first launched after the

Toss form was launched. Initially, handset is the set of seven cards for each player. The

player can add cards to the handset in the draw state and remove cards from the handset

in the play state.

Input: The input for this function will be the deck in the palm database.

Output: The output is first seven cards from the database displayed in the List in the Main

form.

Draw: This function occurs when the user draws a card from the database. During the

draw stage, either Animal or Land card will be retrieved from the database.

Input: The input for this function will be the deck in the Palm database.

Output: The output is new card added to the handset.

Play: This function occurs when the user plays a card from the Handset.

Input: The input for this function will be Handset.

Output: Played cards will be displayed on the screen.

 21

Beam: This function occurs when the user is ready to transfer his turn to the opponent

player.

Input: The input for this function will be player’s response or player’s data.

Output: The output will be sending data to the opponent player.

Attack: This occurs when the player attacks the opponent player.

Input: The input for this function will be attackable Animal cards.

Output: The output for this function will be sending attackable cards to the opponent

player.

Block: This function occurs when the opponent tries to block the attacking card.

Input: The input for this function will be blockable cards for the player.

Output: The output for this function will be sending a blocked response to the player.

Help: This function occurs when the user requests for the help manual. The help

function will load the manual in a new form.

Input: The input for this function will be the Game rules. Help manual will be available

as a menu item in the Form.

Output: The output for this function will be game rules displayed on the new Form.

Quit: This function occurs when the users quit the application.

Input: The input for this function will be the decision of the player.

Output: The output will be quitting the current application and updating scores to the

database.

High Score List: This function occurs when the user requests top five scores in the

database.

 22

Input: The input for this function will be database records.

Output: The output for this function will be top five score’s records displayed on the

screen.

3.8.2 Functional Requirements for the Conduit

The conduit should be able to perform the following functions.

Store Data into the Palm Database: This function occurs when the Hotsync

manager synchronizes the desktop data with the Palm database.

Input: The input for this function will be the data in the desktop file.

Output: The output for this application will be the desktop data converted into the Palm

data format.

Store data into the desktop file: This function occurs when the hotsync manager

synchronizes the Palm database with the desktop file.

Input: The input for this function will be the data in the Palm Database.

Output: The output for this function will be the data in the Palm database converted to the

desktop format.

3.8.3 Functional Requirements for the Game Server

The Game Server should handle the following functions.

Create Deck: This function occurs when the user requests for a new deck.

Input: The input for this function will be type of request, type of player and user name.

Output: The output for this function will be a new deck of thirty cards.

 23

Update Scores: This function occurs when the user requests for updating his/her

score.

Input: The input for this function will be new score, type of request, and user name.

Output: The output for this function will be the updated score list.

Retrieve Top Five Scores: This function occurs when the player requests the top

five scores in the database.

Input: The input for this function will be the user’s request.

Output: The output for this function will be the top five scores retrieved from the

database.

3.8.4 Functional Requirements for the Database

The Centralized database should perform the following functions.

Store Records: This function occurs when the server requests for storing of new

records.

Input: The input for this function will be server request.

Output: The output for this function will be the storing of new records to the database.

Update Records: This function occurs when the server requests for updating existing

records.

Input: The input for this function will be a server request.

Output: The output for this function will be updating records in the database.

 24

Chapter 4

Design and Implementation

This chapter discusses the design and implementation phases of this project. The

overview of the system architecture is explained first, followed by the design details of

the individual components, and implementation details.

4.1 System Architecture

The main objective of this project is implementing a Pokemon-style card trading game,

Palm Maya, in a distributed environment. Architectural Pattern allows us to design a

distributed system using components that are independent of each other. We have to

decide how to distribute the functionality among the components in order to optimize the

usage of components and the resources involved. In this project, we have implemented a

Three-tier Distribution Architectural Pattern [ADGKR] using Palm PDAs as clients, a

Game Server, and a centralized Oracle database. This pattern will be discussed in the

following sections.

4.1.1 Three-tier Distribution Architectural Pattern

The Three-tier Distribution Architectural pattern is shown in the Figure 2. This pattern

deals with partitioning application functionality into three tiers: front-end client, server,

and Database. The server communicates with both the client and the central database.

 25

 Figure 2: Three-tier Distribution Architectural Pattern
 Source: [ADGKR]

4.1.2 Use of Three-tier Distribution Architecture Pattern in our
Project

The three-tier distributed system implemented in this project is shown in the Figure 3.

The core components of the distributed system shown in the figure are:

• Front-end clients tier: “Palm Maya” Game, Conduit.

• Server tier: Game Server

• Database-tier: Central Database.

The Palm Maya game is the actual game played on Palm devices. The main objective of

the game is to always maintain the highest score among the players who played the game.

To play the game, each player should have a deck of thirty cards stored in their Palm

database. The Game Server will create a deck for each player. Once the decks are ready

for the players, they will go for a toss - to decide who is going to start the game first - and

start the game. The player can quit the game at any stage of the game. Once the player

 26

quits the game, his score will be recorded in the Central Database through the Game

Server.

 Game
 Player 1
(Palm Device)

 Game
 Player 2
(Palm Device)

XML

Oracle 9i
Database

Game
Server

XML

co
n
d
ui
t

co
n
d
ui
t

XML

XML

XML

Figure 3: System Architecture

The Game Server is the essential logical component required in the distributed system. It

accepts requests from the players and responds to their requests. The most important

tasks of the Game Server are generating a deck for the current players, updating the score

the current players, and retrieving the top five scores from the Central Database. It saves

all the versions of the players’ decks in the Central Database. The deck generated will be

sent to the player through the Conduit. The deck is generated in XML file format. The

Central Database is the Oracle database used for storing and retrieving XML data.

 27

In our system, the Game Server resides on a desktop computer and the game is launched

on a handheld computer running on Palm OS. The Conduit is used to exchange and

synchronize data between these two devices during the hotsync operation. The Conduit

will convert the data in the desktop computer to a Palm record format and store it in the

Palm database. It will also convert the data in the Palm database to the desktop format

and stores it in the desktop file.

4.2 Design

This section of the report discusses the design of the distributed gaming system. The

design of the individual components – the Palm Maya game, the Game Server, Conduit,

and the database schema – are presented in the sections that follow.

4.2.1 Game Server

The Game Server can handle requests from multiple players simultaneously. The main

responsibility of the Game Server is handling all the data required for the game. The chief

operations done by the game server are generating a new deck, updating the current

player’s score securely, and retrieving top five scores from the database. The operations

handled by the Game Server are shown in the Figure 4. The individual operations are

explained below.

 28

Figure 23: Server Architecture

 Parse the request into strings
(Request Type, player type, user name)

Request
Type?

Player’s Request Player’s Request

Server

Player’s Request

Existing
user?

Yes

Retrieve
player id,
Version no.

Increment Version no.,
Determine Player type

Construct XML doc. with
new version, old
player Id, and Deck for
Player type

No

New player id,
Version no

Player Type
Deck

Construct
XML doc.

Send
back to
player
through
conduit

Retrieve
Player id,
 score from
 xml doc.

Update the
database
record with
highest
version
number

Top 5 scores

Prepare SQL
Query

Retrieve
Top 5
Scores from
Database

Send back to
player
through
Internet

Save
 it in
database

Save it in
Database

Send
back to
player
through
conduit

New Deck Update Score

Figure 4: Game Server

 29

4.2.1.1 Create Deck

Each player should have his/her own deck of cards for playing the game. The deck should

contain fourteen Land cards and sixteen Animal cards. The server will generate a deck

containing both Land and Animal cards. The server receives the request from the user.

The request includes request type, type of player, and user name. The user name should

be an authorized user name. The server first checks for the request type. If the request

type is create deck, the server will verify the existence of user in the central database.

Existing user: If the user already exists in the database, the server will retrieve the client

ID and the deck version number from the database and increment the version number for

that user. Depending on the player type, the server will generate a corresponding deck for

the player. The deck will be constructed from the available cards in the text file. Each

card in the text file is associated with a frequency ranging from 0 to 8500. The server

generates a random number between 0 and 8500 to pick up a card associated with the

frequency. This frequency is called required frequency. The server reads each card in the

text file and adds up the frequency until it reaches the required frequency. Once the total

frequency reaches the required frequency, the card with the required frequency is added

to the deck. The same process will be repeated until thirty cards are added to the deck

consisting of sixteen Animal cards and fourteen Animal cards. Then, the server will

construct an XML document composed of client ID, version number, and the deck. The

server will send the XML document back to the client through conduit and save it to the

central database.

 30

New user: If the user does not exist in the database, the server will generate a new client

ID, version number, public key, and private key for that player. Depending on the player

type, the server will generate the corresponding deck for the requested player. The same

process for creating the deck for Existing User will be repeated here.

4.2.1.2 Update Score

If the players synchronize the game on the Palm device with the desktop through conduit,

the score will be updated to the Central Database through the Game Server. The conduit

writes the XML file containing the updated score and signature to the desktop. If the

request type for the Game Server is Update Score, the Game Server will retrieve the

client ID, score, and signature from the schema validated XML file using the XML

Parser. The Game Server will check for the validity of the signature to ensure that the

game played by the players is legitimate. Then the SQL query for updating the score will

be constructed for a record with the given username and client ID. Each user has different

versions of records in the Central Database. Always the player uses the latest version of

the record. The score will be updated in the Central Database for the given player’s latest

record.

4.2.1.3 Retrieve Top Five Scores

Whenever the player wants to see the top five players’ scores, he will request the server

to retrieve the scores from the database. Each player has different versions of records in

the database. Each version of the record is associated with a score the player achieved

while playing that version of the deck. The server will send a SQL query to retrieve top

 31

five scores from the database. The SQL query should be capable of doing following

operations: sum up scores in all the versions of records for each player, sort the scores in

descending order, retrieve top five scores in the sorted order. The retrieved scores will

sent back to the player through Internet in XML file format.

4.2.2 “Palm Maya” Game

Palm Maya is a multi-player game played on handheld devices running on Palm

operating system. The main objective of the game is to always maintain the highest score

among the players (who are playing the game). The basic requirement for starting the

game is a deck of thirty cards stored in the Palm database. Along with the deck, the

player’s details are also stored in the Palm database. The first record in the Palm database

consists of player’s details – clientID, score, and version number - and the remaining

thirty records are the Deck. Once the deck is available, the player will start the game by

launching the game application on the Palm device.

The design of this game is further divided into two sections:

1. User Interface Design

2. Game Design

User Interface Design

The main challenge in implementing the game on Palm devices arises due to small screen

size. Form is the main user interface component used in the Palm OS applications. Form

is the only way the user can interact with the application. Every Palm application must

consist of at least one form. The Palm Maya application consists of six forms: Toss Form,

 32

Initial Form, Server Form, Scores Form, Game Rules Form, and Reset Game Form. The

Initial Form handles the entire user interface components required for the Palm Maya

game. The Initial Form of the Palm Maya game application is shown in the Figure 5.

Server Menu Options Menu Menu BarMain Screen

Figure 5: Initial Form

The Initial Form occupies the entire screen area of 160×160. The form contains three user

interface components: List Interface, Buttons, and Menu Bar. The List Interface is used

for displaying Handset of cards. Draw and Play buttons will do the operations

corresponding to the Draw state and Play state in the game. Menu Bar displays two

Menus: Options and Server. The Options menu has Game Rules and Reset Game menu

items. The Game Rules menu item displays the Form containing the game rules. The

Reset Game menu item displays the form that can handle both reset and quit operations.

The Server menu has Sync Scores and Set Server menu items. The Sync Scores menu

item displays the form containing top five players’ scores. The Set Server menu item

displays the form that can handle basic set up of the server.

 33

Game Design

The first step in playing the game will be to decide who is going to initiate the game. The

player who wins the toss will start the game first. Each player’s application will start with

an initial set of seven cards known as Handset. The cards in the Handset are the first

seven cards from the deck in the Palm database. The player will play the game using the

cards in the Handset. The Handset may consist of both Land and Animal cards. If the

player selects a card in the Handset, the player can see the type of card and characteristics

of the card. There are four phases in the game: Draw, Play, Attack and Block, Update

Score. To complete the game, the players’ should go through all four phases in the game

according to the rules specified in Chapter 4.

Draw: The draw state is the first state for every player playing the game. During each

turn, the player must draw a card from the deck. The first seven cards from the deck are

already drawn to the Handset. An index value is maintained to keep track of the cards in

the deck. So, the card with current index from the deck is drawn and added to the

Handset. Once the card is drawn from the deck, the index of the deck and Handset size

are incremented to maintain the current status of the deck and Handset. The next state in

the game will be decided based on the current state of the game.

If Land cards are available in the Handset, the player will be prompted for playing the

Land card and go to the play state. If there is no Land card in the Handset and an Animal

card is eligible for playing, the player will be prompted for playing the Animal card and

go to the play state. If there are no Land cards and no eligible Animal cards in the

 34

Handset for playing, and the Animal card is eligible for attacking the opponent, then the

player will be prompted for attacking opponent and go to the combat state. If there are no

Land cards, no eligible Animal cards, and no eligible attacking cards, the player’s turn

will be forwarded to the other player.

Play: During each turn, the player can play only one Land card from the Handset.

If the player’s response is “yes” for playing a Land card, the player will play the Land

card from the Handset and will add it to the Landlist. Then the Handset size is

decremented and the Land list size is incremented to reflect the changes in the Handset. If

the player’s response is “no”, the player’s turn will be passed to the other player.

Land cards are used to pay for the Animal cards. If there are enough Land cards to pay

for an Animal card, the player will be prompted for playing an Animal card. If the

player’s response is “yes” for playing an Animal card, the player plays the Animal card

from the Handset and will add it to the Animal list. Then the Handset size is decremented

and the Animal list size is incremented to reflect the changes in the Handset. The player

can play any number of Animal cards, if he or she has enough number of Land cards to

pay for them. For example, the player has five Land cards available in the Land list and

he has two Animal cards with cost two and three respectively. In this case, the player can

play both Animal cards in a single turn. If the players’ response is “no” for playing an

Animal card or the player does not have any attackable cards, the player’s turn will be

passed to the other player. If the player has attackable cards then the next state will be the

Attack state.

 35

Attack and Block: The player cannot attack with the Animal card that he had just played

in the current turn. He can only attack with the Animal cards that he had played in the

previous turn. If the player has attackable Animal cards, then he will be prompted for

attacking an Animal card. The player can attack with a single Animal card or multiple

Animal cards. If the player does not want to attack the opponent, then his turn will be

passed to the other player.

Single Card Attack: If the player wants to attack the other player with a single Animal

card, he will send his attacking card, along with the card’s characteristics power and

toughness, to the other player.

To block the attacking Animal card, the opponent should have blockable Animal cards.

Any Animal card that is available in the opponent’s Animal list is eligible for blocking

the attacking Animal card. If the opponent has a blockable card, he will decide whether to

block the attacking Animal or not. If the opponent is not willing to block the Animal

card, then the turn will be sent back to the attacking player and his score will be

incremented. If the opponent is willing to block the attacking card, then the trade will

occur. The trading is based on the power and toughness of both the players. All possible

cases for trading a card and results are shown in the Table 2. There are three possible

results for trading a card:

1. Both players Animal cards will be dead

2. Attacking player’s Animal card will be dead

3. Blocking players Animal card will be dead.

 36

The notations used in Table 2 are explained below:

P1: Attacking Player’s Power

T1: Attacking Player’s Toughness

P2: Blocking Player’s Power

T2: Blocking Player’s Toughness

Table2: Trading Conditions

Trading Condition Result

1. (P1>T2) and (P2>T1)

2. (P1==T2) and (P2==T1)

3. (P1<T2) and (P2<T1)

Both Players cards will be dead

1. (P1>T2) and (P2<=T1)

2. (P1>=T2) and (P2<T1)

Blocking Player’s card will be dead

1. (P1<=T2) and (P2>T1)

2. (P1<T2) and (P2>=T1)

Attacking Player’s card will be dead

Source: Author

If both the players are dead, the blocking player’s Animal card will be deleted from the

Animal list first and then the control is transferred to the attacking player. The attacking

player’s Animal card will also be deleted from the Animal list. The attacking player’s

turn is over now, and the turn will be transferred to the opponent player.

If only the blocking player is dead, the blocking player’s Animal card is deleted from the

Animal list and a message is sent to the attacking player indicating that opponent’s

 37

Animal card is dead for this turn. The attacking player’s turn is over now, and the turn

will be transferred to the opponent player.

If only the attacking player is dead, a message is sent to the attacking player indicating

that his or her Animal card is dead for this turn. The attacking player’s Animal card will

be deleted from the Animal list. Now, the attacking player’s turn is over, and the turn will

be transferred to the opponent player.

Multi Card Attack: If the player wants to attack the other player with multiple Animal

cards, he will send his attacking cards, along with their characteristics, power and

toughness, to the other player.

The opponent can block one attacking Animal or all attacking animals based on his

choice and availability of blockable cards. The opponent should always block multiple

attacking cards with multiple blocking cards only. The opponent cannot block multiple

attacking cards with single blocking card. If the opponent does not wish to block any of

the attacking cards, then the attacking player will get highest score that is calculated

based on the power of the attacking cards. The score here is sum of all cards power

multiplied by ten. For example, there are two attacking cards and the opponent wishes to

block only one card among the two attacking cards. Then the blocking card and attacking

card will go for trading, and the other attacking Animal card that was not blocked will

increase the attacking player’s score. The trading process is similar to the process

explained for Single Card Attack earlier.

 38

Beam and Receive: A player communicates with the other player through Bluetooth or

Infrared communication. The player can choose the way of communication he wants in

the game. Each player sends his or her messages along with a signature to maintain the

game security. The message and the signature are then verified using the public key

provided. The player needs to communicate with the other player in the following

situations:

1. To indicate that it is the receiving player’s turn.

2. To send Animal cards and messages in the Attack and Block phase.

The player will send his/her opponent a record containing the mode, the Animal

card’s name, power and toughness. Depending on the receiving mode, the opponent’s

action will be decided.

There are five modes in this game:

N - To indicate that it is the receiving player’s turn

A - To indicate that other player is attacking

CB - To indicate that opponent cannot block the attacking Animal

OD - To indicate that opponent is dead

D - To indicate that Attacking player is dead.

Once the player has decided the way of communication, he can send a single

record or multiple records depending on the situation. In case of attacking with multiple

cards only, the player will send multiple records.

Update Score: If trading does not occur during the Attack and Block phase, the attacking

player will get the score according to attacking player’s Animal card power. The score is

 39

calculated as the power multiplied by ten. The score from the current turn will be added

to the total score for the game.

Help Menu: The players should play the game according to the rules provided in the

help menu. The Game rules are described in Section 3.1.

Quit: The player can quit the game at any stage of the game. When the player quits the

game, the player’s record is retrieved from the Palm database. The score in the database

record is modified with the current score and saved back to the database. Once the record

is stored in the Palm database, the game application will close. When the Hotsync

manager synchronizes the game application with the desktop, the Game Server will

update the score in the Centralized database.

Top Five Scores: Whenever the player wants to view the top five scores in the

Centralized database, he or she will request the Game Server for the top five scores. The

Game Server will retrieve the top five scores from the database and then sends it back to

the player in XML data format through Internet. The data sent by the server is parsed and

displayed on the Palm’s form. The connection between the Game Server and the Palm

device is established through Palm Networking and Internet.

4.2.3 Game Conduit

Game Conduit is the Palm conduit implemented to synchronize data between desktop and

Palm database. The important operations done by the Game Conduit are synchronizing

 40

the data on the desktop file with and Palm database and vice-versa. The operations done

by the Game Conduit are explained in the following sections.

4.2.3.1 Store Data into the Palm database

The Game Server generates a deck for each player and stores it on the desktop in the

XML file format. The XML file contains player’s details like client ID, score, and

version number; and the deck of cards. Each deck element in the XML file has four

properties: name of the card, power of the card, toughness of the card, and a bitmap

image representing the card. Each record in the XML file also has four properties

indicating whether it is new, updated, archived, or deleted record. Only the record with

new tag will be stored into the Palm database. The conduit will read each element in the

XML file and store the data into temporary records. The bitmap image is also converted

from Hex to Bytes and stored in the temporary record. All the data stored in the

temporary records is converted into the Palm record format. Records with new tag value

of true are transferred to the Palm database when the Hotsync manager synchronizes the

application.

4.2.3.2 Store Data into the Desktop file

Whenever the player quits the game, his or her score will be updated in the Palm

database. The modified score in the Palm database is updated into the Centralized

database through the Game Server when the Hotsync manager synchronizes the

application with the desktop. Each record in the Palm database will have four tags

indicating whether it is new, updated, deleted, or archived.

 41

The Game Conduit will read the raw data in the Palm database and stores it into

temporary records. The dirty bit for the record in the Palm database is set to true to

represent the modified data in the Palm database. The data in the temporary record with

modified or new tag value of true is copied into the desktop file, when the Hotsync

Manager synchronizes the application.

4.3 Implementation

This section of the report discusses the implementation details of the project. The main

components of the Distributed Gaming system are the following:

1. Game implemented on Palm device,

2. Game Conduit,

3. Game Server, and

4. Centralized Oracle database.

Implementation of the Distributed Gaming System and Design Patterns used in

implementing the project are explained in following subsections.

4.3.1 Design Patterns Used

We have implemented object-oriented design patterns, game design patterns, and

usability patterns to maintain the quality of the project. The object-oriented pattern,

Observer pattern, is used for implementing the Game Server. Game design patterns -

State-based pattern and Trading pattern - are used in implementing the game. The

usability pattern, Multi-channeling, is used in providing communication between Game

Server and Palm device.

 42

4.3.1.1 Observer Pattern

This pattern defines a one-to-many dependency between objects so that when one object

changes state, all its dependents are notified and updated automatically. [ERRJ02]

This pattern is implemented in this project in the Game Server. We used delegation in

place of inheritance and regained our ability to extend another class. This pattern allows low

coupling between GameServerThread and the GameServer class. The GameServer class

start() method instantiates the GameServerThread. This class extends the Thread class

and its run method listens to all incoming connections.

4.3.1.2 State-based Pattern

The state-based pattern is similar to object-oriented state pattern. This pattern is useful in

implementing applications that can handle different logically dependent states. For

example, the different states handled by a Graphics editor program are Move, copy, and

draw shape.

In this project, this pattern is implemented in the Palm Maya Game. The different states

in a game are implemented using state-based pattern. The state-based pattern determines

the current state of the game and the next states (moves) in the game depending on the

current state. Implementing this pattern would be helpful to the players because the

players would be prompted for playing the next state.

 43

4.3.1.3 Trading Pattern

Interactive games need a mechanism to simulate social interaction between players. To

trade with each other, players need to communicate with each other. This type of pattern

can be seen in Pokemon-style and other card games.

This pattern is implemented in this project in the “Attack Phase” of the Palm Maya

Game. The Trading Pattern implements the rules of the game for attacking/blocking the

opponent. When the player decides to attack, the player sends a message to the opponent.

If the opponent has eligible blocking cards and decides to block, then trading activity

begins.

4.3.1.4 Multi-channeling

It would be helpful to provide users a mechanism to access a system using different types

of input/output devices. For example, one can access auction sites like eBay.com from a

desktop computer, a mobile phone, a PDA, or using interactive TV. This pattern is

implemented in this project in the Game Conduit and the Game modules to provide

communication between the Game Server and the Palm device. The Game Conduit

provides communication through the Palm Cradle and the Game Module provides the

same through a mobile phone (and Palm OS network library). The Game Conduit is used

to get the deck generated by the Game Server to the PDA and to update the player’s score

in the central database. The Game module uses this pattern while retrieving the top five

scores from the centralized database.

 44

This type of pattern is implemented in the project because it would be very helpful for the

user to have multiple data access mechanisms. For example, the user can efficiently

transfer large amounts of data through the Palm Cradle, during the initial setup of the

game. Later, the user can use a mobile phone to dynamically access small amounts of

data, like the top five scores, while playing.

4.3.2 Game Server

The Game Server is implemented using the Observer Pattern. The Game Server needs to

handle requests from multiple clients simultaneously. The main responsibilities of the

Game Server are generating a deck of cards, updating and retrieving scores for players.

The Game Server is implemented using Java Network Programming. The powerful

network and multi-tasking (threads) capabilities of java make it an ideal language for

developing servers that can handle multiple clients simultaneously while providing

platform independence. Java Database Connectivity is used for communication between

the Game Server and the centralized Oracle database. The Class diagram for Game

Server is shown in the Figure 6.

The GameServer listens for new clients, gets their socket objects, and passes the

information to separate threads; in our case, it is called GameServerThread. The

GameServerThread class extends the Thread class and implements the runnable

interface. Each GameServerThread will handle a separate client; its run() method creates

a loop for listening to messages from the client. All the logic of the server is implemented

in the GameServerThread class. The core of the GameServerThread class is its run ()

 45

method, which invokes a loop for getting input from the client. The input from the client

is handled by the handleNewInput() function.

`

Observable

GameServerThread

-clientSocket: Socket
-input: BufferedReader
-output: PrintWriter
-socketOutput: BufferedReader
-sd: StringDecoder
-card1: Card
-xdp: XMLDataParser

+handleNewInput: void
+generateNewUserDeck: String
+generateExistingUserDeck: String
+createBeginerDeck: void
+createIntermediateDeck: void
+createExpertDeck: void
+checkExistingUser: Boolean
+retrieveExistingUser: String
+generateRandom: int
+generateUserID: int
+getCLOB: CLOB
+insertXML: void
+updateXML: void
+retrieveXML: String[]
+outputString: void

Observer

GameServer

-gsSocket: ServerSocket
-gameSocket: Socket
-gs: GameServerThread

 start();

-port :int

initiates

Figure 6: Class diagram for Server

The client can send three different types of requests: NewDeck, UpdateScores,

GetScores. Along with the request type, the client will also send authorized username,

and Player type. The StringDecoder class parses the input string from the client and finds

the request type. Based on the request type, the handleNewInput() function will delegate

the responsibity to other functions.

 46

New Deck

If the request type is NewDeck, the function checkExistingUser () is called to check

whether the user is a new user or an existing user. If the user is a new user, the

generateNewUserDeck() function is called to generate a new record for the user. The

user’s record consists of clientID, username, score, version number, and deck of thirty

cards. The clientID of the user is generated randomly using generateUserID () function.

The version number starts with number one and is incremented for each version of the

record for the same user. The deck of thirty cards is created based on the Player type. If

the player type is Beginner, the createBeginerDeck () function creates the beginner deck.

If the player type is Intermediate, the createIntermediateDeck () function creates the

intermediate deck. Finally, if the player type is Expert, the createExpertDeck () function

creates the Expert deck for the player.

If the user is an existing user, the clientID and version number of the record are retrieved

from the database using retrieveExistingUser () function. The generateExistingUserDeck

() function is called to generate a new version of the record for the existing user. The

deck is generated for each player depending on the player type.

Whether the player is an existing or a new user, the record is generated in the XML file

format. The XML Parser is used to generate the record in the XML file format. Once the

deck is generated for the players, the deck needs to be sent back to the player and also

needs to be stored it in the database. The outputString () function handles the sending of

 47

the data back to the client. The insertXML () function handles the storing of XML data

into the database.

The generated XML file contains more than 4000 characters. In order to store this large

amount of data into the centralized database, the getCLOB () function creates a CLOB

object and stores it into the database. The XML document is validated against the XML

schema, both in the database and at the client.

Update Scores

If the request type is UpdateScore, the XMLDataParser class is instantiated. The

XMLDataParser class validates the player’s XML document against its schema, parses

the XML document, and retrieves the player’s score, clientID, message, and signature

from the XML document.

The updateXML() function handles updating of the score in the centralized database

securely. The updateXML() function also handles verification of messages and signatures

using private key provided in the database. Then the SQL statement to update XML data

in the database is constructed in the updateXML() function to store player’s score in the

centralized database. The XML feature XPath is used to traverse the XML document in

the database.

 Retrieve Scores

If the request type is RetrieveScores, the retrieveXML() function is called to retrieve the

top five scores from the database. The SQL statement to retrieve the data from the XML

 48

document is constructed in the retrieveXML() function. The XQuery and XPath features

of XML are used to retrieve the data from the database.

4.3.3 Palm Maya Game

The Palm Maya game is implemented as a State-based pattern to represent moves from

one state to other state. Trading Pattern is implemented in the Attacking and Blocking

phase. The functionality of the game and its rules are described in Chapter 3. The

implementation details are explained in the following sections.

4.3.3.1 Initial Setup

The Hotsync Manager should be used to install the application on the Palm device. After

installing the application, during the next hotsync, the Game Conduit synchronizes the

deck of thirty cards with the Game application installed on the handheld device. After the

player launches the application, the first form opened is the TossForm.

TossFormHandleEvent () function handles all events occurred in the TossForm. Once the

toss is decided, the player who won the toss has to play first. The player who won the toss

will be prompted to begin the game. The player who loses the toss will wait for the other

players to play first. Then the player’s control will be transferred to the MainForm. The

TossForm and the MainForms of both players are displayed in Figure 7.

 49

Toss Form

MainForm of the
player who won
the Toss.

MainForm of the
player who lost
the toss.

Figure 7: TossForm and MainForms in the Game

MainForms of both the players are opened with an initial set of seven cards from the

database. Handset is the initial set of seven cards from the database.

CopyDatabaseRecord () function handles the copying of database records to the

currentList.

4.3.3.2 State-based Pattern

The game is implemented as a State-based pattern. The state diagram for the game is

shown in the Figure 8.

 Draw State

The player who wins the toss will start with the Draw state. To draw a card from the deck

in the database, the player should tap on the Draw button. If the player taps and releases

the button on the MainForm, a ctlSelectEvent enters the event queue and handles all the

button events. All button events are handled in ButtonHandleEvent () function. The

DrawButton case in the ButtonHandleEvent () function handles the Draw state in the

game.

 50

 Draw

 Play
Land/Animal

Attack

 Beam

Figure 8: State diagram representing the game

The index is maintained to keep track of deck in the database. During the Draw state, the

card with the index value is retrieved from the database and is added to the Handset in the

ListInterface. If the deck in the database is completely exhausted, the index value points

to the first card in the Deck. Draw state is the most crucial state in the game as it can

determine the next state in the game. The operations handled by the DrawButton case are

explained below:

1. Ensure it is the current player’s turn: If the current turn of the game is not the player’s

turn, then the player will not be allowed to play the game further. The player can view the

characteristics of his/her card in the ListInterface by selecting the cards in the Handset.

 51

2. Make sure the card is not already drawn: If the player already draws the card from the

deck, he will not be allowed to draw more cards from the deck.

3. Draw a card from the deck and add it to the List

4. Check for availability of Land cards in the deck: If there are any Land cards available

in the Handset, the player will be prompted for playing the land card and the game will

go to the Play state.

5. Check for the availability of Animal cards, if there are no Land cards: If there are no

Land cards in the Handset, and there are eligible Animal cards; the player will be

prompted for playing an Animal card and go to the Play state.

MoreAnimalCardsPlayable () function will check for the availability of eligible Animal

cards. If eligible Animal cards are not available, it will check for eligible attacking cards.

If there are attacking cards available, the game will go to the Attack state.

6. No Land cards, No eligible Animal cards, No attackable cards, go to Beam state: If

there are no cards available for this turn, the game will go to the Beam state indicating

that the player’s turn is over. The penLock and buttonLock variables are set to true before

sending the Beam. This indicates that the player cannot make any move once his/her turn

is over.

7. Redraw the MainForm with updated capabilities: The player cannot attack with the

Animal card that he/she just played in the current turn. So, the Animal cards played in the

previous turn are made eligible for attack in the current turn. If Animal cards were played

in the previous turn, then only the animalSize would be greater than zero.

 52

 Play State

During the Play state, the player can play either a Land card or an Animal card. If the

player does not have Land cards and eligible Animal cards, he/she will go to the Beam

state and his/her turn will be over. If the player has attackable cards, he/she will go to the

Attack state. The operations handled by the PlayButton case are explained below:

1. Play Land Cards: The player must have a Land card to play this turn. First, a Land

card is selected from the Handset using LstGetSelection () function. The

SelectedIndexIsLandCard () function then makes sure that the selected card is a Land

card. If the selected card is a Land card, it is copied from the Handset to the LandList

using CopyToLandList() function. Once the Land card is copied to the LandList, landSize

is incremented and Handset size is decremented to reflect the changes. The List is

updated using SetList() function. The player can play only one Land card during each

turn.

2. Draw (Display) Land Cards: The land cards played are drawn on the screen using

reDrawLandList() function. The function draws a bitmap representation of the Land card

on the screen. Land cards are not placed side by side to save the screen area. Instead, the

count of Land cards is displayed on the corner of the bitmap image.

3. Play Animal Cards: Once the player played the Land card, his Land count is

incremented (including this turn and the previous turn). The isAnimalCardPlayable ()

function checks for the eligibility to play an Animal card. If there are enough land cards

to pay for the Animal card, the Animal card can be selected from the Handset using

LstGetSelection() function. The SelectedIndexIsAnimalCard() function is used to check

whether the selected card in the Handset is an Animal card or not. The

 53

CopyToAnimalList() function is used to copy the Animal card in the Handset to the

Animal list. Once the card is added to the Animal list, the Animal size is incremented and

the Handset size is decremented to reflect the changes. The SetList() function is used to

update the current List. The player can play more than one Animal card during the turn if

he/she has enough number of Land cards to pay for the multiple Animal cards. The

usedLandCount is maintained to keep track of how many land cards are remaining.

4. Draw (Display) Animal Cards: Animal cards are displayed side by side on the screen.

The DrawImageAL() function is used to draw a Animal card image on the screen. The

system will not accept more than three Animal cards on the screen. If there are attackable

cards, a small dotted rectangle is drawn around the bitmap image to represent it is an

attackable card.

Example: The state of the Game at the end of the Play state is shown in the Figure 9. The

Player has two Land cards. He/she played the Animal card with cost two. Figure 10

represents the state of the player during the beginning of the next turn (Draw state). In

Figure 9, the Animal card knight is just drawn. The small rectangular frame around the

Knight in Figure 10 represents that Knight was played in the previous turn and is eligible

for attack during this turn.

Figure 9: Previous Play state Figure 10: Current Draw state

 54

Attack State

During the Attack state, the interaction with the other player should occur. Once the

player decided to attack the opponent, the game will go to the Beam state and player’s

decision is sent to the opponent. If the opponent decided to block the player, trading will

occur between the players. Different cases of trading are implemented using Trading

Pattern. Trading depends on the Power and toughness of both players’ animals. The

actions of the attacking and blocking players are discussed in the following sections.

Attacking Player:

If the player decided to attack the opponent, he/she will select the attackable card by

tapping it. Then the penDown event queues the Event queue. If there are multiple

attackable cards, the player will be prompted for attacking with all available cards. The

operations handled by the attacking player are described below:

1. Handling penDownEvent and Beam attacking cards: If the player taps the screen in the

attackable card area, the penDownEvent will occur. The screen area is recognized using

the RctPtInRectangle () function. The program will handle attacking with any number of

cards. The MoreAnimalCardsAttackable () function will handle attacking with multiple

cards. All the attacking cards are added to the array and beamed to opponent using

BeamRecord () function. The attacking cards are marked with letter ‘A’ on the screen to

indicate that the card is attacking using WinInvertChars () function.

2. Update the score: If the opponent does not have blockable Animal cards, the opponent

will beam the player with mode ‘CB’ indicating that the opponent cannot block the

attacking Animal. Then the player’s score will be incremented. The HandleAttack()

function increments the score.

 55

3. Update the Animal List: If the opponent blocks the Animal card and the player’s

Animal dies during the trading, the opponent will beam the player with mode ‘D’

indicating that the player’s Animal card is dead during this turn. The Player’s Animal list

is updated using UpdateAnimalList () function.

Example: The attacking player’s actions are shown in the Figure 11. The player has two

cards, Knight and Hammer. Knight is an attackable card and Hammer is not an attackable

card. First, the player will be prompted for attacking an Animal card. If the player’s

response is ‘Yes’ and he/she taps the Knight card, the attacking card, Knight, will be sent

to the opponent. The Knight card is marked as ‘A’ indicating that it is attacking.

Figure11: Attacking state

Blocking Player:

Once the opponent receives the records from the player, the mode will be checked by

retrieveRecord() function. If the mode is ‘A’, the opponent has to respond to the attack.

The operations handled by the blocking player are explained below:

1. Check for Blockable cards: To block the attacking card, the opponent should have

blockable cards. The MoreBlockableCards () function will check for the availability of

blockable cards. Suppose there are three attacking cards, the opponent might have three

 56

or less than three blockable cards. If he has three blockable cards, depending on his

strategy, he will block each attacking Animal card. Then the control will be transferred to

the HandleAttack() function to handle the attack.

2. Check for trading conditions and handle the attack: Once the opponent decided to

block the attacking player, the result of the trading will depend on the power and

toughness of the Animal cards of both the players. The trading conditions implemented

are explained in Table 2. The HandleAttack() function handles all possible cases that can

occur during trading between players. The three possible results that can occur during

trading are following:

• Animal cards of both the players are dead

• Attacking player’s Animal cards are dead

• Opponent’s Animal cards are dead.

3. Send the result of trading back to the Player: Whether the attacking player loses or

wins the trade, the result of trading will send back to the attacking player.

Example: The blocking player’s actions are shown in Figure 12. When the player attacks

with Knight, the opponent blocks with Nector, which has more power and toughness.

Then the attacking player’s card is dead and removed from the Animal list displayed on

the screen. Only Hammer is displayed on the Attacking player’s screen.

 57

Attacking Player
attack with Knight

Blocking Player has
Nector and Hammer to
Block

Blocking player
receives the Beam

Nector is blocking Knight is dead Hammer is
diaplayed

Figure 12: Trading between Players

Beam State

Players communicate with each other either through Infrared or Bluetooth

communication. The player can choose the method of communication, and that will be

used for throughout the game. Both Infrared and Bluetooth communication use the Palm

OS Exchange Manager functions.

We differentiate the way of communication using Exchange Library URL schemes. The

URL _btobex://?_single/ is used for Bluetooth communication, and the URL _beam: is

used for Infrared communication.

 58

The data exchanged between players is in the form of a record format. During the Draw

state and Play state, single records are sent between the players. Multiple records are sent

between the players only when they are in Attack state and attacking with multiple cards.

The operations handled by the Beam state are explained below:

1. Beaming Single Record and Multiple Records: Beaming a single record or multiple

records is handled in the BeamRecord() function. The ExgSocketType structure variables

are initialized to specify the Creator ID of the receiving application, and to specify the

type of data transfer between devices. The SendBeamedData () function is called to

transfer the data between devices. The first transfer should be the number of records to be

transferred between the players. Once the number of records being beamed is transferred,

one can send the data for the actual record. The Palm Exchange Manager function

Exgput() establishes the connection between the devices. The Palm Exchange Manager

function ExgSend() transfers the actual data between the devices. Once the data transfer is

completed, ExgDisconnect() function disconnects the connection between the devices.

2. Receive Single Record or Multiple Records: Receiving a single record or multiple

records is handled in the ReceivedRecord () function. The Exchange Manager sends a

sysAppLaunchCmdExgReceiveData launch code to the receiving application. The

ReceiveRecord() function is called in the PilotMain() function corresponding to the

launch code. The total number of records is received first and then the actual data

corresponding to the records is received. The ImportData() function is called to receive

the data sent by the other device. The Palm Exchange Manager function ExgAccept()

accepts the incoming data. The ExgReceive() function receives the actual data into

 59

temporary records. Once the data is received, ExgDisconnect() function disconnects the

connection between the devices.

3. Generating Digital Signature: A trivial digital signature scheme is implemented to

maintain the game security. The createSignature() function handles the generation of

digital signature for the messages transferred between the players.

4.3.3.3 Top Five Scores

Whenever the player wants to view the scores of the top five players in the centralized

database, he will request the Game Server to retrieve the scores from the database. The

connection between the Palm device and the Game Server is established through TCP/IP

and Palm OS Net Library. The data from the Game Server should be accessed through

the Internet. The request from the Palm device and the response from the Game Server

are handled in DownloadScores() function. The DownLoadScores() function calls the

InitNetwork() function to set up the connection with the Internet service provider. Once

the network connection is initialized, the hostname of the computer running the server is

resolved into a 32-bit IP address in the GetIPAddress() function. The

NetLibSocketConnect() function makes a connection with the Game Server. The actual

request to the Game Server is handled by the SendData() function. The SendData()

function sends the ‘GET’ request to the Game Server using NetLibSend() function. The

ReadLine() function handles receiving top five scores from the Game Server. The Palm

OS Net Library function NetLibReceive() is used to receive the actual data from the

server. Then the player can see the scores of the top five players in the centralized

database by selecting the Top Five Menu item on the MainForm.

 60

4.3.3.4 Application Preferences

The Palm OS supports only the execution of one application at a time. Once the game

application is launched and running, if the player accidentally opens another application

and returns to the game application, the game will start from the initial state. The player

loses the current state in the game. To avoid this state, application preferences are used in

this application. The Application preference is a kind of small database. The

PrefSetAppPreferences () function is called in the StopApplication () function to save the

state of the game in the Application Preferences before closing the application. The

PrefGetAppPreferences () function is called in the StartApplication() function to retrieve

the state of the game while re-opening the application.

Example: If the player is playing the game and he is in the Play state and suddenly closes

the application, the state of the game is saved to the preferences database. When the

player re-opens the application, the application will open at Play state. Figure 14

represents the example.

Figure14: Application Preference

Game is in the
Play state

Application closed Play state retrieved

 61

4.3.3.5 Quit Application

The Player can quit the Game application at any state of the game. To quit the game, the

Player has to choose Reset Game Menu item. Then the ResetForm will be opened. By

tapping the Quit button on the ResetForm, the player can quit the application. When the

player taps on the Quit button, the player’s score so far is updated to the Palm database

and the application will be closed. The SaveScore () function handles database operations

required for updating the player’s score. After the player’s scores are updated to the

database, the appStopEvent enters the event queue and the application will be stopped.

Figure 15 shows quitting the game application.

Figure 15: Quit the Game

Current Game
State

Menu bar Quit Button Application
Closed

4.3.3.6 Game Help

Players playing the game for the first time need to understand game rules. To view the

game rules, the player need to select the Help Menu item on the MainForm. Then the

HelpForm will be opened with rules. Figure 16 shows the HelpForm for the game

application.

 62

Figure 16: Game Rules

4.3.4 Game Conduit

The Game Conduit handles the actual transfer of data between a handheld application and

a desktop data source during a Hotsync operation. The various operations handled by the

conduit are explained in this section.

4.3.4.1 Synchronize Desktop data with Handheld Application

When the player requests the Hotsync operation, the first function to be called is

RetrieveDB(). The RetriveDB() function reads the record and adds it to the Handheld

database. The RetrieveDB() function transfers all the functionality to the ReadRecord()

function. The ReadRecord() function reads the data from the desktop file and stores it

into temporary structure variables representing the Handheld record. In addition to the

data, the Deck record needs to convert bitmap in Hex decimal format to bytes. The

ReadRecord() function will call the ConvertPctoGeneric() function to convert data stored

in the temporary structure variables to a Palm record format. Both structures representing

the player’s details (the first record) and the Deck elements (the remaining 30 records)

are defined in Table 3:

 63

 Table 3: Structs for Deck and Player’s Details

Player’s Details struct Deck Element struct
struct KeyAppInfoType
{
 DWORD recordID;
 bool newRec;
 bool updated;
 bool deleted;
 bool archived;
 char clientID[8];
 char randInit[2];
 char score[4];
 char version[4];
};

struct CardsPCRecord
{
 DWORD recordID;
 bool newRec;
 bool updated;
 bool deleted;
 bool archived;
 char cname[20];
 char cost[4];
 char power[4];
 char toughness[4];
 char typeOfCard[4];
 BYTE bitmap[32][4];
};

 Source: Author

Once the data is available in the temporary structure variables defined in Table 3,

it will be converted to Palm record format by the ConvertPCtoGeneric() function.

Memory is allocated depending on the size of record and each struct variable is converted

to the Palm record format and stored in the memory location. The basic operations of the

function ConvertPCtoGeneric() are memset(), memmove(), and setRawData().

4.3.4.2 Synchronize Handheld data with Desktop data source

When the player requests the Hotsync operation, the first function to be called is

StoreDB(). The StoreDB() function stores the data into the desktop file in XML format.

The StoreDB() function calls the WriteXMLHeader() function to write the header for the

XML document. Once the header is written, the records to be stored are the player’s

details record and the deck of thirty cards. The StoreDB() function transfers all control to

the WriteRecord() function.

 64

The WriteRecord() function handles the conversion from Palm record format to desktop

format by calling ConvertGenericToPC() function. Once the ConvertGenericToPC()

function converts the Palm data format to the desktop data format, the converted data will

be written back to the desktop using the WriteRecord() function. The bitmap data is also

converted to HEX format by the WriteRecord() function. Once all the records are written

to the desktop file, the function WriteXMLEndDocument(void) is called to write the XML

end statement.

4.3.5 Centralized Database

The operations handled by the centralized Oracle database are explained in this section.

4.3.5.1 Store Records

The Game Server generates a record for each player in XML format and stores it into the

centralized Oracle database. The XMLType table XML_USER is created to support

XML records. The XML schema validating the XML records is registered with the

database first. Whenever the new record is stored into the database, it is validated against

the schema. If the record is valid, then only it is allowed to be stored. The player in the

database is identified by the combination of username and clientID. The SQL statements

used for registering XML schema, creating table, and storing data are explained below:

1. Register XML Schema

begin

Registers user.xsd
with the database

 dbms_xmlschema.registerSchema
 ('user.xsd',
 getDocument('user.xsd'),
 TRUE, TRUE, FALSE, FALSE
);
end;

 65

2. Create XMLType Table

Creates xml_user table
which can access only
schema validated XML
documents

CREATE TABLE XML_USER of XMLType
XMLSCHEMA "user.xsd"
ELEMENT "user";

3. Store XML document into XMLType table

INSERT INTO XML_USER Inserts user.xml

document into
XML_USER table

values (xmltype(getDocument('user.xml')));

4.3.5.2 Update Records

The Game Server updates the latest scores of the players into the centralized Oracle

database. Oracle database allows XPath and Xquery features of XML to traverse XML

documents in the database. To update the score in the XML document in the database, the

query traverses the XML document using XPath up to the score node and updates the

value for that node. The update statement used for updating the score in player’s record in

the database is shown below:

1. Update Score

Updates given
player’s score

UPDATE XML_USER x SET value (x) =
updateXML (value (x),'/user/score/text ()','updatedScore')
WHERE existsNode (value (x),'/user [clientID="clientID"]')=1
AND extractValue (value (x),'/user/version')
in (select MAX (extractValue(value(x),'/user/version'))
from xml_user x
WHERE existsNode (value (x),'/user [clientID="clientID"]')=1);

4.3.5.3 Retrieve Records

When the player requests the top five scores from the central database, the Game Server

retrieves them from the database and sends them back to the player. User names and their

 66

respective scores are retrieved from the database for the top five players. The SQL

statement used for retrieving top five scores from the database is shown below:

1. Retrieve top five scores
SELECT * FROM
(SELECT extractValue (value (x),'/user/userName') "MyUser", Retrieves Top

five scores from
database

SUM (extractValue (value (x),'/user/score')) “Score”
FROM xml_user x
GROUP BY extractValue (value (x),'/user/userName')
ORDER BY SUM (extractValue (value (x),'/user/score')) DESC)
WHERE rownum < 6;

 67

Chapter 5

Usability Testing

Usability testing is a way of measuring how well users can actually use the product for its

intended purpose. Game usability is different from other applications. Fun is the main

factor that differentiates the game usability from usability in other frame works. Usability

provides the framework for playability to maintain the quality of the game. Playability

measures the quality of the game based on the interaction style, fun, and game

navigation. The main purpose of testing the game playability is to test the game from the

user’s perspective. Playability is affected by the quality of the story line, responsiveness,

usability, pace, customizability, control, intensity of interaction, intricacy, and strategy,

as well as the degree of realism and the quality of the graphics and sound.

To test the distributed gaming system developed in this project, we have selected three

groups of users with various backgrounds. All the users have expertise in playing games

on Palm devices. The players were given a brief overview of the game before the testing

commenced. The following are the important criteria in observing the user:

1. Can users easily understand the game setup?

2. Can users easily accomplish the intended tasks at their intended speed?

3. Do users make any mistakes when they interact with game interface? Can the

users recover easily from their own mistakes?

 68

4. Can users understand the communication mechanism between the players?

5. Can the users understand the navigation between the different game states?

6. Are the users satisfied with the overall game?

7. Do the users require any training to understand the game?

8. What are the suggestions/recommendations of the users to improve the game?

Palm devices installed with the game are given to players in the group and they were

asked to start the game. Each group was observed while playing the game. Once the

player was done with the game, he/she was asked to update the score.

Results

The results of the Usability Testing are explained below:

1. Players said that they were very happy with the option of choosing player type

because if they get bored with one type of deck, they have a choice for getting a

new type of deck with new cards having different levels of difficulty.

2. Players are happy with the system feedback, which is helpful to navigate from one

state to the other state.

3. Players are impressed with the attacking and blocking state, which is very

interesting and strategic.

4. Players are satisfied with the choices of communication - Bluetooth and IR

beaming.

5. Players are excited with the display of top five players scores from the centralized

database. They said it would increase friendly competition among them.

 69

6. One of the players suggested that he needs some instructions once he reached the

beam state. He did not understand what is going to happen when he reached the

beam state. After we gave instructions, he continued the game without confusion.

7. One player suggested that animations would give more look and feel to the

interface. We said that since the game itself occupied more memory, we do not

have enough memory to provide animations.

8. One player suggested that it is hard to understand the game for the first time. Even

though, it is a tough game one can follow after reading the rules in the help menu.

9. One player asked that he wanted to see opponent’s playing cards. Because of the

Palm’s small screen area we are showing opponent’s cards only in the most

important phase of the game, the attack phase.

Table 4: Usability Testing Results

User Group Expertise Level Time Taken
for single
game

Comments

User Group 1 Extensive 45min 1. Started without any
confusion.
2. Navigated between
the states easily.
3. Had problem with
finding the Menu bar
to select the menu
options. Because the
forms title hides the
menu bar.
4. Went through the
attacking and
blocking state.
5. Once he reached a
high score, he
successfully quit the
game.

User Group2 Average 60min 1.Started the game
without any

 70

confusion.
2. Navigated between
the states easily.
3.Problem with
finding the Menu bar
to select the menu
options because the
forms title hides the
menu bar.
3. Problem with attack
and block state.

User Group 3 Minimal 80 min 1.Started the game
without any
confusion.
3. Navigation between
the states is difficult.
3.Problem with
finding the Menu bar
to select the menu
options because the
forms title hides the
menu bar.
3. Problem with attack
and block state.

 S

ource: Author

Average time for playing the game is approximately 60 minutes.

Most of the players were happy with the game design. Especially, they were very

impressed with accessing top five scores dynamically from the centralized database.

Players are happy with navigation between states and moves in attack and block state.

They suggested that the interface would look very impressive if animations are provided.

 71

Chapter 6

Conclusion and Future Enhancements

As discussed in the above chapters, a Distributed System is implemented as an integration

of different platforms on different devices. The components implemented in the

distributed system are the following: Palm Maya game on a Palm device, Game Conduit,

Game Server, and centralized Oracle database on a desktop. As XML has the power to

store, carry, and exchange data between different platforms, it is chosen to communicate

data between all components in the distributed system. Oracle9i feature of XMLType

tables and columns support the storing and retrieving of XML data to and from the

database. The Game Server supports the multi-player environment that can be used to

maintain consistent state between centralized database and game players. Game Conduit

transfers large amount of data between Palm device and Game Server. Palm Maya game

is implemented on the Palm device using the features of Palm OS like User Interfaces,

Databases, Memory handling, Communications and Networking.

We have achieved the communication between the Palm devices and the Game Server by

implementing the Multi-channeling pattern. Multi-channeling pattern was implemented

to provide communication between the Game Server and Palm device in two ways: using

conduit, and through Internet (using a mobile phone and Palm Net Library). The conduit

is implemented to transfer large amounts of data between the Game Server and the Palm

device. In our game, we have used the conduit for storing a deck of cards in a Palm

 72

database and for storing the player’s updated score into the centralized database. These

two operations are not dynamic, as they do not interrupt the game. Palm Net Library was

used to retrieve the top five scores from the database dynamically while the game is in

progress. Even though the Palm Net Library supports transferring large amount of data;

we delegated that responsibility to the conduit to reduce network traffic.

We have accomplished smooth navigation between the different game states by

implementing the State-based pattern. The player needs to interact with the opponent

once at the end of each turn during the game. But, the player in the attack state needs to

communicate with the opponent more than once in a single turn. The communication

between players was achieved using Bluetooth, and Infrared beaming.

To conclude, we have implemented a distributed gaming system by integrating

technologies like Palm OS, Bluetooth, XML, Oracle9i, and Palm devices.

Future Enhancements

In this project, we implemented a trivial signature scheme to maintain the game security.

Later, one can plug-in a more sophisticated signature scheme to provide a higher level of

security. The user interface of the game can be enhanced by providing more graphics and

animations. In our game, each animal card has only four properties based on which the

players play with each other during the attack and block phase. We can add more

properties to the animal card to increase the toughness of the game.

 73

References

[ADGKR] Amund, A., Davide, B., Giuseppe, M., Kyle, B., Robert, H. “Patterns of three-

tier client-server architectures”. http://members.aol.com/kgb1001001/Articles/threetier/

threetier.htm.

[EJ] Eelke, F., Jan, B. “Architecturally Sensitive Usability Patterns”.

http://www.eelke.com/research/ vplop.pdf

[EN00] Elmasri, R. A., & Navathe, S. B. (2000). “Fundamentals of Database Systems”

(3rd ed.). Addison-Wesley.

[F00] Foster, L.R. (2000). “Palm OS Programming Bible”. Hungry Minds, Inc.

[HM02] Harold, R. E., & Means, S.W. (2002). “XML in a Nutshell (2nd ed.)”. O'Reilly.

[JS] Jussi, H., Staffan, B. “Game Design Patterns”.

http://civ.idc.cs.chalmers.se/publications/2003/gamedesignpatterns.pdf

[KBGP01] Kaljuvee, O., Buyukkokten, O., Garcia-Molina, H., Paepcke, A. (2001,April).

“Efficient Web Form Entry on PDAs.” Proceedings of the tenth international conference

on World Wide Web, 663-672.

[LLF98] Leventhal, M., Lewis, D., & Fuchs, M. (1998). “Designing XML Internet

applications.“ PrenticeHall.

[MSK03] Megowan, P., Suvak, D., Kogan, D. (2003). “Infrared Data Association.

(IrDA) Object Exchange Protocol (OBEX.)”. Extended Systems, Inc Microsoft

Corporation.

[ORA9i] Oracle9i XML Database Developer's Guide - Oracle XML DB.

[RG02] Ramakrishnan, R., & Gehrke, J. (2002). Database Management Systems

(3rd ed.). McGraw-Hill.

 74

[SM01] Sundaresan, N., Moussa, R. (2001,May). “Algorithms and Programming Models

for Efficient Representation of XML for Internet Applications.” Proceedings of the tenth

international conference on World Wide Web, 366-375.

[S01] Suciu, D. (2001,September). “On Database Theory and XML.” SIGMOD Record

(8), 39-45.

[TVBSSZ02] Tatarinov, I., Viglas, D.S., Beyer, K., Shanmugasundaram, J., Shekita, E.,

Zhang, C. (2002,June). “Storing and Querying Ordered XML using a Relational

Database System.” Proceedings of the 2002 ACM SIGMOD international conference on

Management of data, 204-215.

 75

