MathML without Plugins using VML

By Namon Nuttayasakul

Outline

- Introduction
 - Standard way to view math on the Web
 - MathML
 - Vector Graphics
- Project Objective
- Design
- Deployment
- Conclusion

Introduction

• Standard way to view math on the Web

Disadvantages of existing results

- Graphic file (GIF or JPEG file)

 - Slow to load
 - Difficult to maintain
- HTML
 - Small size
 - Bad quality
 - Bad alignment

MathML

- An XML based mark-up language for displaying math on the Web
- There are ways to convert Latex to MathML
- Only few Web browsers natively support it (Amaya, Mozilla)
- Popular browsers need Plugins to view it

Advantages of Vector Graphic

- Plain text format
- Scalable
- Zoomable
- Searchable and selectable text
- Scripting and animation
- True XML

Vector Graphic Markup Language

- VML –Vector graphic Markup Language – Natively supported by Internet Explorer
- SVG Scalable Vector Graphics
 - Standard vector graphic markup language by W3C

Reasons for choosing VML over SVG for this project

- VML can be viewed by Internet Explorer without using any Plugins
- Even though, SVG is an international standard language, it is not yet supported by any of the popular browsers
- VML's capabilities are sufficient to draw mathematical expressions.

Project objective

XSLT

- eXtensible Stylesheet Language Transformations
- Convert XML files that contains MathML to XML file containing HTML and VML
- Internet Explorer supports XSLT
- soon will be, available on the majority of desktop browsers

Design

- MathML
 - Content Markup: concerned with the semantics of mathematics.
 - Presentation Markup: concerned with the rendering of mathematics.
 - EG. X + Y

Content Markup

<apply> <plus> <ci> X </ci> <ci> Y </ci> </plus> </apply>

Presentation Markup

<mi>X</mi> <mo>+</mo> <mi>Y</mi>

Continued

- This project translates only MathML Presentation Markup.
- Most software application programs generate the MathML in Presentation Markup.
- MathML Content2Presentation Transformation is able to translate content markup expressions into presentation markup expressions automatically.
- Content2Presentation gives a very precise translation.

MathML Presentation Markup

- The presentation elements are divided into two main groups:
 - Token elements group
 <mi> Identifier, E.g. X, Y, A, B
 <mo> Operator, E.g.+, -, =, >, <
 <mn> Number, E.g.1, 10, 999.0093
 E.g. A+2
 <mi>A</mi>
 <mo>+</mo>
 <mn>2</mn>

MathML Presentation Markup

• Layout element group:

<msub> Subscript, E.g. $a_1 a_2 a_3$ <msqrt> Square root, E.g. $\sqrt{4ac}$

– E.g. Syntax for root element : <mroot> base index </mroot> <mroot>

<mrow>

<mn>4</mn>

<mi>a</mi>

</mrow>

<mi>x</mi>

</mroot>

MathML Presentation Mode

Category	Тад	Description
Token Elements:	<mi></mi>	identifier
	<mn></mn>	number
	<mo></mo>	operator, fence, or separator
	<mtext></mtext>	text
	<mspace></mspace>	space
	<ms></ms>	string literal
	<mrow></mrow>	group any number of sub-expressions
General	<mfrac></mfrac>	form a fraction from two sub-expressions
Layout:	<msqrt></msqrt>	form a square root sign
	<mroot></mroot>	form a radical with specified index
	<mstyle></mstyle>	style change
	<metror></metror>	enclose a syntax error message
	<mpadded></mpadded>	adjust space around content
	<mphantom></mphantom>	make content invisible but preserve its size
	<mfenced></mfenced>	surround content with a pair of fences
	<mrow></mrow>	group any number of sub-expressions
	<mfrac></mfrac>	form a fraction from two sub-expressions
	<msqrt></msqrt>	form a square root sign
Scripts and	<msub></msub>	attach a subscript to a base
Limits:	<msubsup></msubsup>	attach a subscript-superscript pair to a base
	<munder></munder>	attach an underscript to a base
	_ <mover></mover>	attach an overscript to a base
	<munderover></munderover>	attach an underscript-overscript pair to a base
	<mmultiscripts></mmultiscripts>	attach prescripts and tensor indices to a base
Tables:	<mtable></mtable>	form a table structure
	<mtr></mtr>	Form a row in a table
	<mtd></mtd>	form a column in a table
	<mlabdedtr></mlabdedtr>	form a row with label
	<maligngroup></maligngroup>	set group alignment
	<malignmark></malignmark>	set element alignment
Actions:	<maction></maction>	set HTML actions to a sub-expression

XSLT Structure

- Tree structure
- XPath
 - Enables you to refer to specific sections of XML document
- Weakness of XSLT
 - Did not provide For-loop, find max or min, etc.
 - Difficult to change the value within the same functions

Design Model

- Hierarchy value passing design
- Table design
- Vector graphic design
- MathML design

Translation Simulation

Deployment

Conclusion

- Using this approach, Mathematical expressions can be rendered on the Web without using any type of Plugins.
- Generate much smaller result file than the conventional way that uses image file such as Bitmapped or GIF or JPEG format.
- Better rendering result than those displaying the result using plain HTML.