
MathML without Plugins using VML

CS297 Final Repor t

Namon Nuttayasakul
namonpick@hotmail.com

Advisor : Dr . Chr is Pollett

� �
Introduction

The standard way to view math on the web is to write the mathematical document
using LaTeX and use a conversion program such as latex2html [D96], WebEQ [D02],
TtH [H01], or HeVeA [M02]. The first two of these programs generate graphic
images (WebEQ can output MathML and applet code) for each mathematical formula
on the page. This makes such web-documents both slow to load and hard to maintain
as they now consist of many files, one for each formula. The latter two programs
convert LaTeX directly into a single HTML file and try to draw the equations as best
as possible given the limitations of HTML. These programs are very fast and often
produce reasonable results. However, picture environments and the like still must be
output using graphics images. MathML is an XML based mark-up language for
displaying math on the web and there exist programs to convert both TeX and LaTeX
to this format. Unfortunately, neither Netscape nor Internet Explorer natively supports
this language. SVG [W3C01] and VML [W3C98b] are XML-defined vector mark-up
languages in which both math notations and picture environments could easily be
rendered. Currently, VML is natively supported in Internet Explorer but, SVG is
neither natively supported by Internet Explorer nor Netscape.

Style-sheet transformations are rules which are applied by the browser or by the
server to a tag when it is read or before it is transmitted. They basically provide a
mechanism by which a document can be “compiled” into a format displayable by a
browser. Netscape currently supports CSS2 (cascading style sheets level 2) [W3C98a]
with the intention to have built in support for XSLT (eXtensible Stylesheet Language
Transformations) [W3C99], the latter being stronger and more flexible. Internet
Explorer supports XSLT. CSS2 has some support for tag-replacement by hypertext.
This allows tags to be replaced by ECMAscript (aka Javascript) code [ECMA99]
which can in theory output SVG code.

This proposed project uses the XSLT transformation language to convert XML files
that contains MathML to XML file containing HTML and VML. The document only
requires a single processing instruction linking to the stylesheet. The stylesheet
transforms the supplied XML file, adding whatever markup is required to render
MathML in the current browser, and pass the resulting document to the browser for
rendering. Clearly this does require that the browser supports XSLT transformations,
which does mean that a relatively new browser is required, however the current
versions of (at least) Internet Explorer supports XSLT, so while XSLT support is not
universal it is, or soon will be, available on the majority of desktop browsers. Thus,
in both Netscape and Internet Explorer clients it should be feasible produce style-
sheet transformations from MathML to the target language. Nevertheless, such a
translation would be difficult to perform and is worthy of a masters.

This document is organized as follows. Section 2 states the goal of this master project
in detail. Section 3 provides information on the related research and background of
this project. Section 4 covers each deliverable and what I have accomplished in this
semester in detail. Section 5 contains conclusions of my research completed so far.

2. Master Project’s Goal

This section discusses the scope of the work in CS298 and the final result of the
Master Project. Since, there are many transformation programs that convert from
LaTeX to MathML currently available. With all the considerations of the time and the
large scope of the LaTeX language, I think it is not necessary to develop a stylesheet
transformation to convert LaTeX directly into VML. The LaTeX user can just use one
of the LaTeX – MathML conversion program and then apply this project’s XSLT
transformation to render MathML in the Web.

For MathML user, there are two ways of encoding mathematical data using MathML:
Content Markup or Presentation Markup. Content markup is concerned with the
semantics of mathematics. Presentation markup is concerned with the rendering of
mathematics. Currently, there are also several software applications that helps
generate MathML easily with powerful Graphic User Interface. Most of these
programs generate the MathML in presentation mode, which allows the user to
display most of the mathematical expression. However, there is a MathML
Content2Presentation Transformation (MathMLc2p), written in XSLT, is able to
translate content markup expressions into presentation markup expressions
automatically.

Within the three months period in CS298 Master Writing Project Course, the goal of
this master's project is to develop a stylesheet transformation from MathML in
presentation mode with default rendering and some important attributes into VML. In
particular, all the necessary mathematical rendering transformation will be developed;
however, some additional attributes that are used to enhance the rendering such as the
spacing attributes, or the ability to split an expression if it is too long will be ignored,
since this kind of rendering is software/device dependent.

The list of MathML tags that will be translate in the Master Project is provided below:

Category Tag Description

<mi> identifier
<mn> number
<mo> operator, fence, or separator
<mtext> text
<mspace/> space

Token
Elements:

<ms> string literal

<mrow> group any number of sub-expressions
horizontally

<mfrac> form a fraction from two sub-expressions

<msqrt> form a square root sign (radical without
an index)

<mroot> form a radical with specified index
<mstyle> style change

<merror> enclose a syntax error message from a
preprocessor

General
Layout:

<mpadded> adjust space around content

<mphantom> make content invisible but preserve its
size

<mfenced> surround content with a pair of fences

<mrow> group any number of sub-expressions
horizontally

<mfrac> form a fraction from two sub-expressions

<msqrt> form a square root sign (radical without
an index)

Scripts and
Limits: <msub> attach a subscript to a base

<msubsup> attach a subscript-superscript pair to a

base
 <munder> attach an underscript to a base
 <mover> attach an overscript to a base

<munderover> attach an underscript-overscript pair to a
base

<mmultiscripts> attach prescripts and tensor indices to a

base
 <mtable>
 <mtr>
 <mtd>
 <maligngroup/>

Tables:

 <malignmark/>

Actions:

<maction> bind actions to a sub-expression

Another intention of this project is to process the translation on the client-side.
However, if the translation is done client-side then one is essentially sending the
compiler along with the document, which makes it hard to sell this kind of product.
To handle this issue, we will investigate ways to make the stylesheets sent only
applicable to the given document requested.

3. Related Work and Background

This section will introduce related work and also the other technologies available to
view MathML on the Web.

MathML is becoming more and more widely used. Though, at the current time few
browsers have "native" support for MathML, and only one has native support for the
Content part of MathML. Currently, Mozilla version 0.9.9 is the only browser that
fully supports MathML in both presentation and content mode. The Amaya browser
supports only the presentation mode of MathML. However, popular browsers such as
Internet Explorer (IE) or Netscape still need some plug-ins or a range of extensions
that will render MathML (in particular, WebEQ and MathPlayer from Design Science
and Techexplorer from IBM) in order to make them able to display MathML. Below
is the summary list of browsers that will render the pages categorized by the operating
system as shown:

Operating System Browser with necessary configuration

IE 5.0 with the Techexplorer plug-in
IE 5.5 with either the MathPlayer or Techexplorer plug-ins
IE 6.0, optionally with MathPlayer or Techexplorer plug-ins
Netscape 6.1 with Techexplorer plug-in
Amaya (Presentation MathML only)

Windows

Mozilla 0.9.9
IE 5.0 with Techexplorer plug-in Macintosh

 Mozilla 0.9.9
Netscape 6.1 with Techexplorer plug-in

Mozilla 0.9.9
Linux/Unix

Amaya (Presentation MathML only)

The disadvantage of using a third party extension to render MathML within a web
page is that it requires specific markup to specify the rendering extension. The use of
such markup ties the document to one particular platform; whereas, the ideal of
publishing information on the Web is that it should be accessible to all using a range
of tools.

Related work that contributes to make MathML viewable on the Web is a stylesheet
[W3C22a] provided by W3C for XHTML file that has MathML code as an embedded
tag. This is a mechanism uses the XSLT transformation language to allow XML file
that contains MathML to convert to XML file containing XHTML. This will work in
most cases (but not on Internet Explorer: for security reasons IE will not execute an
XSLT stylesheet that is not located on the same server as the XHTML+MathML
document. However, there are alternatives such as processing it on the client side.
This mechanism basically transforms MathML document into an XHTML document,
which of course will give a result that is not as satisfying as it tries to draw the
mathematical expression using XHTML capability. The result will definitely be of
lower quality in compared to that proposed by this master’s project which uses a
Vector graphic language to draw the each expression. Furthermore, my project will
also give pages with better printing quality.

4. Deliverables Organization for CS297

In CS297 course, I have finished five deliverables each of which contribute to the
learning process for the final project. The five deliverables are listed as follow:

1. Become reasonably proficient with VML and SVG. This will be demonstrated by
creating an image of a sunset in both these languages.

The purpose of this deliverable was to learn and experiment with the currently
available vector markup languages. I need to become proficient with some of the
functions and features of the language in order to be able to render mathematical
expression as vector graphics in the final project.

2. Become reasonably proficient at MathML and LaTeX. This was to be demonstrated
by reproducing in these languages pages 130 and 131 of A Guide to LaTeX2e.

The purpose of this deliverable was to study the syntax and the results of most of the
tags in LaTeX and MathML as I need to keep that in mind and try create the
comparable or better results in the final stage.

3. Create a DTD for drawing matrices. Write a XSL transform to render this language
in VML.

The purpose of this deliverable was very important: to learn the structure of XML
markup languages by creating my own DTD for drawing matrices. This will help me
fully understand the structure of the MathML and LaTeX languages. In this
deliverable, I also started to explore on the way to make a transformation from XML
file to HTML file with VML embeded tags using XSL style sheet transformation
language.

4. Get the MathML matrix related, apply, minus, times, divide, and eq tags to translate
to VML and to SVG via XSLT.

The purpose of this deliverable was to show that I am ready and have all the necessary
knowledge to be able to produce the transformation of some tags in MathML to
HTML file with VML embedded tags. This is the beginning stage of the real project I
am going to deliver in the next semester. In this deliverable, I get a chance to fully
explore the stylesheet transformation language and the results it produces. I took notes
on good and bad coding techniques I experienced in this stage as ways to improve
results and the coding style in the final project.

5. A first semester report on project of length between 10-20 pages. This final report
is the result of the fifth deliverable.

The following sections describes each deliverable in details.

4.1 Deliverable 1

Deliverable Date: 02/08/02

Deliverable: To create an image of a sunset in VML and SVG.

Purpose: The purpose of this deliverable was to learn and experiment with the
currently available vector markup languages. I needed to become proficient with
some of the functions and features of the language in order to be able to render
mathematical expression in the vector graphic for the final project.

Descr iption: Today, the most available, well-known vector markup languages are
VML and SVG. According to my research during this semester, there are many
advantages of vector graphic format over other image formats, particularly over JPEG
and GIF, the most common graphic formats used on the Web today. Advantages of
vector graphic format over other graphic formats are provided below:

• Plain text format: Vector graphic files can be read and modified by a range of
tools, and are usually much smaller and more compressible than comparable JPEG
or GIF images.

• Scalable: Unlike bitmapped GIF and JPEG formats, vector format images can be
printed with high quality at any resolution, without the "staircase" effects you see
when printing bitmapped images.

• Zoomable: Vector graphic allow you to zoom in on any portion of an image and
not see any degradation.

• Searchable and selectable text: Unlike in bitmapped images, text in vector
graphic markup language is selectable and searchable. For example, you can
search for specific text strings, like city names in a map.

• Scr ipting and animation: Vector graphic markup format enables dynamic and
interactive graphics far more sophisticated than bitmapped or even Flash™
images.

• True XML : As an XML language, vector graphic markup language such as VML
and SVG offer all the advantages of XML:

o Interoperability
o Internationalization (Unicode support)
o Wide tool support
o Easy manipulation through standard APIs, such as the Document Object

Model (DOM) API
o Easy transformation through XML Stylesheet Language Transformation

(XSLT).

The following sections will briefly describe VML and SVG, then gather some
reasons for choosing VML for this Master’s project.

VML

Vector Markup Language (VML) is an XML, text-based markup language. VML has
specifications that include features allowing applications to store higher-level
application-specific private data within the graphics file. These features promote a
higher-level interchange of graphics between applications. It also provides new ways
of combining scripting with the Document Object Model (DOM) API to control a
Web page's graphical elements. It provides an easy, standard way for a script writer to
manipulate the graphic without requiring the use of special software tools.
VML is supported by Internet Explorer version 5 or greater. Many software
applications, such as Microsoft Word, Excel, and Power Point can automatically
convert pictures in vector graphic format by outputting XML file containing VML.

SVG

Scalable Vector Graphics (SVG) is a new graphics file format and Web development
language based on XML. SVG enables Web developers and designers to create
dynamically generated, high-quality graphics from real-time data with precise
structural and visual control. With this powerful new technology, SVG developers can
create a new generation of Web applications based on data-driven, interactive, and
personalized graphics. SVG was created by the World Wide Web Consortium (W3C),
and now over twenty organizations, including Sun Microsystems, Adobe, Apple, IBM,
and Kodak, have been involved in defining SVG.

Reasons for chosen VML for my Master ’s project

The main reasons for choosing VML as my target language is that VML is now
natively supported by Internet Explorer 5.0 or above. This makes it possible to display
MathML by using stylesheet transformation to render it in VML without using any
plugins. Even though, SVG is an international standard language, it is not yet
supported by any of the popular browsers. There are several tools available for
displaying MathML through SVG, but to be able to render it in popular browsers, the
user still needs some kinds of Plugins.

It is true that SVG seems to be better, cleaner, and a more complete standard, but
considering the purpose of this project which only needs the use of the vector graphic
to draw mathematical expression, which VML’s capabilities are more than sufficient
to accomplish this project.

Example Result:

VML’s example result:

SVG’s example result:

4.2 Deliverable 2

Deliverable Date: 03/01/02

Deliverable: To reproduce by hand in pages 130 and 131 of “A Guide to LaTeX2e”
in LaTeX and in MathML.

Purpose: The purpose of this deliverable was to gain experience with the most
common tags of LaTeX and MathML and know what they output in common
translating mechanisms as I need to keep that in mind and try to create the comparable
or better results in the final stage.

Descr iption: I wrote a LaTeX document and MathML document for the pages 130
and 131 of “A Guide to LaTeX2e” book. Looking at the results, LaTeX documents
that are viewed by DVI viewer gave a better rendering result compared to the
MathML document viewed by the Amaya browser. With the Amaya browser, some of
the MathML elements give an unsatisfying rendering such as matrix brackets that has
unconnected line as shown below.

MathML

MathML is the standard XML application used for displaying mathematical notation
and content on the web. The goal of MathML is to enable mathematics to be served,
received, and processed on the Web, just as HTML has for text. MathML provides the
ability to control the presentation and the meaning of such expressions. It does this by
providing two sets of markup tags, one set presents the notation of mathematical data
in markup format (presentation mode), and the other set relays the semantic meaning
of mathematical expressions (content mode), enabling complex mathematical and
scientific notation to be encoded in an explicit way

LaTeX2e

The history of LaTeX2e begins long ago with the program called TeX. TeX is a
computer program for typesetting documents, created by D. E. Knuth. It takes a
suitably prepared computer file and converts it to a form that may be printed on many
kinds of printers, including dot-matrix printers, laser printers and high-resolution
typesetting machines.

LaTeX, written by L. B. Lamport, is one of a number of variation of TeX. It is
particularly suited to the production of long articles and books, since it has facilities
for the automatic numbering of chapters, sections, theorems, equations etc., and also
has facilities for cross-referencing. LaTeX2e is a new version of LaTeX and is a
standard program for producing mathematical documents.

Example Result

Example result in MathML:

Example result in LaTeX2e:

4.3 Deliverable 3

Deliverable Date: 04/16/02

Deliverable: Create a DTD for drawing matrices. Write a XSL transform to render
this language in VML.

Purpose: The purpose of this deliverable was to learn the structure of the markup
language by creating my own DTD for drawing matrices. This will help me fully
understand the structure of the MathML and LaTeX languages. In this deliverable, I
also started to explore ways to make a transformation from XML to HTML with
VML embedded tags using XSL style sheet transformation language.

Descr iption: For this deliverable a Data Type Definition (DTD) was given for
matrices and an example document is written in this language. An XSLT document is
then used to translate this particular XML document to VML document for viewing.

The main reason for using the author's own DTD file was to reduce the complexity in
the XSLT transformation at this beginning stage of the project. Eventually, MathML
document will be translate to VML using XSLT.

One of the coding difficulties in this deliverable was to allow each row in the matrix
to have different number of column. This problem exists in presentation mode only,
since it allow each row in the same matrix to have any numbers of columns. On the
other hand, content mode in MathML has stricter rules which will not allow this type
of issue. From my experience with this deliverable, I discovered that implementing
stylesheet transformation from the presentation mode in MathML is more difficult
than that of the content mode. Since, presentation mode does not have any rules to
control the semantic meaning of the mathematical equation, it allow any kind of
rendering even though it does not make any sense in the real mathematical
environment. This makes the transformation harder because it has to deal with all the
possible cases of rendering. It is obvious that if MathML presentation mode stylesheet
transformation is successfully accomplished, the content mode transformation can be
implemented with ease.

Example Result
Below is the example result of a nested matrix in MathML presentation mode:

The Technical Specification for the author 's matr ixDTD:

1) The "matrices" element

Description:
This element is the root of the document.

XML template:
<matrices></matrices>

2) The "matrix" element
Description:
A matrix element can cantain many nested matrices inside itself. It can also contain
many rows elements. This element has two attributes which are "numberOfRows" and
"numberOfColumns"

<!ATTLIST matrix
 numberOfRows CDATA #REQUIRED
 numberOfColumns CDATA #REQUIRED
>

Attribute Descriptions:
numberOfRows is used for setting the number of rows in this matrix.
numberOfColumns is used for setting the number of columns in this matrix.

3) The "row" element
Description:
This element is used to define each row in the matrix. The row element can contain
many columns elements.

4) The "column" element
Description:
This element is used define each column within this row in the matrix. This element
has one attribute. Column can also contain nested matrices.

<!ATTLIST column
 content CDATA #REQUIRED
>

Attribute Description
The content attribute is used to hold the element to store in the column of the parent's
row in the matrix.

4.4 Deliverable 4

Date: 04/03/02

Deliverable: Get the MathML matrix related, apply, minus, times, divide, and eq tags
to translate to VML and to SVG via XSLT.

Purpose: The purpose of this deliverable was to show that I am ready and have all
the necessary knowledge to be able to produce the transformation of some MathML
tags to HTML file with embedded VML. This is the beginning stage of the real
project I am going to deliver in next semester. In this deliverable, I get a chance to
fully explore the stylesheet transformation language and the results it produces. I took
notes on good and bad coding techniques I experienced in this stage as a way to
improve the results and the coding style in the final project.

Descr iption: This deliverable gives a stylesheet transformation to VML for some
particular tags in MathML language such as: matrix related tags, apply, minus, times,
divide, and eq. It differs from the last deliverable in that it translates those tags from
the content markup mode, unlike last deliverable which transform according to the
presentation markup mode.

The use of content markup rather than presentation markup for mathematics is
sometimes referred to as semantic tagging. The parse-tree of a valid element structure
using MathML content elements corresponds directly to the expression tree of the
underlying mathematical expression. However, even in such simple expressions as X
+ Y, some additional information may be required for applications such as computer
algebra. Are X and Y integers, or functions, etc.? For example, do we have X+Y or
just +X. The interpretation must determine which operand a given operator should be
applied to. This additional information is referred to as semantic mapping. In
MathML, this mapping is provided by the semantics, annotation and annotation-xml
elements.

The semantic elements are the container element for a MathML expression together
with its semantic mappings. Semantic elements expect a variable number of child
elements. The first is the element (which may itself be a complex element structure)
for which this additional semantic information is being defined. The second and
subsequent children, if any, are instances of the elements annotation and/or
annotation-xml.

Our stylesheet transformation interprets the MathML expression according to some
features in the content markup mode explained above such as, the ability to determine
which operand should the operator apply to (eg. A-B or -B)

Example Result:

Below is an example result of the basic operators’ and matrix’s rendering in MathML
content mode:

4.4.1 Technical Information:

1) matrix and matrixrow
The matrix element is used to represent mathematical matrices It has zero or more
child elements, all of which are matrixrow elements. These in turn expect zero or
more child elements that evaluate to algebraic expressions or numbers. These sub-
elements are often numbers, or symbols as in the example below:
<matrix>
 <matrixrow> <cn> 1 </cn> <cn> 2 </cn> </matrixrow>
 <matrixrow> <cn> 3 </cn> <cn> 4 </cn> </matrixrow>
</matrix>
The matrixrow elements must always be contained inside of a matrix, and all rows in
a given matrix must have the same number of elements. Note that the behavior of the
matrix and matrixrow elements is substantially different from the mtable and mtr
presentation elements.

2) apply
Its purpose is to apply a function or operator to its arguments to produce an
expression representing an element of the codomain of the function. It is involved in
everything from forming sums such as a + b as in
<apply>
 <plus/>
 <ci> a </ci>
 <ci> b </ci>
</apply>
through to using the sine function to construct sin(a) as in
<apply>
 <sin/>
 <ci> a </ci>
</apply>

or constructing integrals. Its usage in any particular setting is determined largely by
the properties of the function (the first child element). However, in this deliverable the
sin and integrals transformations are not provided.

3) Subtraction (minus)
The minus element is the subtraction operator.
The minus element can be used as a unary arithmetic operator (e.g. to represent - x),
or as a binary arithmetic operator (e.g. to represent x- y).
<apply> <minus/>
 <ci> x </ci>
 <ci> y </ci>
</apply>

4) Addition (plus)
The plus element is the addition operator (e.g. to represent x + y).
<apply>
 <plus/>
 <ci> x </ci>
 <ci> y </ci>
 <ci> z </ci>
</apply>

5) Multiplication (times)
The times element is the multiplication operator (e.g. to represent x * y).

Example
<apply>
 <times/>
 <ci> a </ci>
 <ci> b </ci>
</apply>

6) Equals (eq)
The eq element is the relational operator `equals'(e.g. to represent x = y).

Example
<apply>
 <eq/>
 <ci> a </ci>
 <ci> b </ci>
</apply>

7) Division (divide)
The divide element is the division operator (e.g. to represent x / y).
<apply>
 <divide/>
 <ci> a </ci>
 <ci> b </ci>
</apply>

4.4.2. Example High-level design of Deliverable 4 stylesheet transformation

<xsl:stylesheet>

<!-- Declare variables -->

<!-- match root (<math>tag) -->
<xsl:template match="/">
 <html>
 <!-- header in vml -->
 <!-- Declare VML Shapes for each mathematical symbols -->
 </html>
</xsl:template>

<!-- If match "matrix", add table header and set align to "center" -->
<xsl:template match="matrix">
 <!-- sets table width and align at center and Add each row -->
 <xsl:apply-templates/>
</xsl:template>

<xsl:template match="matrixrow[position() = 1]">
 <!-- if row is the first one then add bracket into it -->
 <!-- The left and right brackets are in the first row of table (in HTML). Therefore,
the rowspan must be the number of rows of the entire matrix -->
</xsl:template>

<xsl:template match="matrixrow[position() > 1]">
 <!-- if row is not the fist one then just add new row of table -->
</xsl:template>

<xsl:template match="cn">
 <xsl:if test="parent::matrixrow">
 <!-- add number in the matrix's cell -->
 </xsl:if>
</xsl:template>

<xsl:template match="ci">
 <xsl:if test="parent::matrixrow">
 <!-- add variable in the matrix's cell -->
 </xsl:if>
</xsl:template>

<!-- Match Apply tag -->
<xsl:template match="apply">
 <xsl:apply-templates/>
</xsl:template>

<xsl:template match="eq">
 <xsl:call-template name="displayOperator">
 <xsl:with-param name="operator" select="'#equal'"/>
 </xsl:call-template>
</xsl:template>

<xsl:template match="minus">
 <xsl:call-template name="displayOperator">
 <xsl:with-param name="operator" select="'#minus'"/>
 </xsl:call-template>
</xsl:template>

<xsl:template match="plus">
 <xsl:call-template name="displayOperator">
 <xsl:with-param name="operator" select="'#plus'"/>
 </xsl:call-template>
</xsl:template>

<xsl:template match="times">
 <xsl:call-template name="displayOperator">
 <xsl:with-param name="operator" select="'#times'"/>
 </xsl:call-template>
</xsl:template>

<xsl:template name="displayOperator">
 <!-- display operator according to the name of template that called -->
</xsl:template>

</xsl:stylesheet>

 5. Conclusion

The desire to display math on the Web has been around for more than a decade. A
number of mechanisms previously proposed are still not adequate. This project
proposes a breakthrough technique to display math on the Web without any hassle by
transforming XML file containing MathML to XML file containing HTML and VML
using XSLT stylesheet transformation. Using this approach, Mathematical
expressions can be render on the Web without using any type of Plugins. Furthermore,
it takes shorter time to view the result than the conventional way that use image file
such as GIF or JPEG and also gives a better rendering result than those displaying the
result using plain HTML.

During this CS297 course, I have learned and gained experience with several
languages involving in viewing mathematical expression on the Web, such as, VML,
SVG, LaTeX, XML, MathML, and XSLT throughout all four deliverables. In CS298,
I will deliver the complete version of a stylesheet transformation from presentation
mode MathML mode with default rendering and some important attributes into
HTML and VML. Completing the entire conversion from presentation mode MathML
to HTML and VML is not an easy task. However, the approach that I will use in
CS298 will be similar to the transformation I have done in Deliverable 4 (Deliverable
4’s high level design is shown in section 4.4.2.) Lastly, the translation will be done on
the client-side with a modified approach to avoid sending the entire stylesheet
transformation code to the end user.

 Bibliography:

Van Ossenbruggen, J., Hardman, L. Rutledge, L., and Eliëns, A. "Style Sheet Support

for Hypermedia Documents". Proceedings of ACM Hypertext 97. pp. 216-217,
1997.

Greg J. Badros, Alan Borning, Kim Marriott, and Peter Stuckey. “Constraint

cascading style sheets for the web.” In Proceedings of the 1999 ACM
Conference on User Interface Software and Technology. pp.73-82, 1999.

WANG, P. S. “Design and Protocol for Internet Accessible Mathematical

Computation.” In Proc. ISSAC'99, ACM Press. pp. 291-298, 1999.

P. Wadler. “A Formal Semantics of Patterns in XSLT.” In Proceeding of the

Conference for Markup Technologies, 1999.

F. Bry and M. Kraus. “Adaptive Hypermedia made simple using HTML/XML Style

Sheet Selectors.” In 2nd Int. Conf. on Adaptive Hyperw, edia and Adaptive
Web Based Systems, 2002.

S. Abiteboul, P. Buneman, and D. Suciu. “Data on the Web: From Relations to

Semistructured Data and XML.” Morgan Kaufmann Publishers, 2000.

Nick Drakos. (2001) “All about LaTeX2HTML.” Retrieved January 31, 2002
from http://cbl.leeds.ac.uk/nikos/tex2html/doc/latex2html/latex2html.html.
1996.

Goosens M., and Rahtz S. “From LaTeX to HTML and back.” TUGBOAT. 1995.

Knuth D.E. “The TeXbook. Computer and Typesetting, Vol. B.” Reading MA. 1984.

Helmut Kopka and Patrick W. Daly. “A Guide to LaTeX 3rd Ed.” Addison-Wesley.

1999.

W3C (2000) “Extensible Markup Language (XML).” Retrieved January 20, 2002

from http://www.w3.org/XML.

W3C.(2000) Cascading Style Sheets, level 2 CSS2 Specification. Retrieved

January 20, 2002 from http://www.w3.org/TR/REC-CSS2.

W3C.(2001) “W3C's Math Home Page.” Retrieved

January 20, 2002 from http://www.w3.org/Math/.

W3C.(2001) “VML - the Vector Markup Language.” Retrieved

January 20, 2002 from http://www.w3.org/TR/NOTE-VML.

W3C.(2001) “XSL Transformations (XSLT) Version 1.0.” Retrieved

January 20, 2002 from http://www.w3.org/TR/xslt.

