
3D Graphics without Plugins using SVG

Paungkaew Sangtrakulcharoen
Department of Computer Science

San Jose State University
San Jose, CA 95192-0103

Tel. 408-223-1980
paungkaew@hotmail.com

Advisor: Dr. Chris Pollett
Committee members: Dr. Cay Horstmann

Dr. Ho Kuen Ng

Outline

• Introduction

• Requirements

• Project Design & Implementation

• Optimization

• Conclusion

Introduction

X3D

Browsers
with

Plugins

Browsers
without

Plugins by
SVG

Introduction (cont.)

<?xml version="1.0" encoding="UTF-8" ?>
<!DOCTYPE X3D SYSTEM "latest.dtd">
<X3D>

<Scene>
<Transform>

<Shape>
<Appearance>

<Material diffuseColor="1 0 0"/>
</Appearance>
<Box size="1.0 1.0 1.0" />

</Shape>
</Transform>

</Scene>
</X3D>

X3D BrowserX3D document

Introduction (cont.)

<?xml version="1.0"?>

<svg xmlns="http://www.w3.org/2000/svg">

<g transform="scale(0.5)">

<polygon style="fill:lime; stroke:blue;
stroke-width:10"

points="350,75 458,137.5
458,262.5 350,325 242,262.6
242,137.5"/>

</g>

</svg>

Mozilla-SVG browserSVG document

Introduction (cont.)

<?xml version="1.0" encoding="UTF-8" ?>

<!DOCTYPE X3D SYSTEM "latest.dtd">

<X3D>

<Scene>

<Transform translation="-2 -1 0">

<Shape> <Sphere radius="2"/> </Shape>

</Transform>

<Transform translation="3 0.15 0">

<Shape> <Cone bottomRadius="2" height="2"/> </Shape>

</Transform>

<Transform translation="-2 3 0">

<Shape> <Box size="1.5 1.5 1.5"/> </Shape>

</Transform>

<Transform translation="3 3 0">

<Shape> <Cylinder radius="1.5" height="2.5"/> </Shape>

</Transform>

</Scene>

</X3D>

X3D source data The output document

Buttons for changing perspectives

Requirements

• DTD file
– A source X3D file must be validated with

X3DToSVG.dtd.

• X3D tags supported by this application
– <Appearance>, <Box>, <Cone>, <Cylinder>,

<Group>, <Material>, <Transform>, <Shape>,
<Sphere>, <Scene>, <X3D>

• Features and User Interface
– Have features for the user to navigate a scene as it can

be done in an X3D browser.

Requirements (cont.)

The sample of the output document

Requirements (cont.)

• Maximum Load
– The program responds within a second when

we change perspectives of the scene that
renders up to 300-320 polygons (tested on
machines having AMD AthlonXP or Pentium
IV processor running 1300 –1400 MHz and 512
MB Memory).

Requirements (cont.)

A processing-time table of different test cases

of Polygons Processing Time (milliseconds)
32 (a cone) ~30-60
64 (a sphere) ~110-130
128 (two spheres) ~290-320
192 (three spheres) ~560-590
256 (four spheres) ~750-870
320 (five spheres) ~1090-1190
384 (six spheres) ~1590-1680
448 (seven spheres) ~1972-2133
512(eight spheres) ~2444-2654
576(nine spheres) ~3024-3405
640(ten spheres) ~3225-3755
672(ten spheres + one cone) ~3625-4266

Requirements (cont.)

• Limitations
– Our program cannot guarantee to display some

scenes of overlapping and intersecting objects
correctly.

A golf ball with a tee
sits on a green

An incorrect view

A correct view

Users have to subdivide the
polygons to get a correct view of
this scene. The program cannot
subdivide polygons

A leg of this tee
should appear on
the green, not
behind the green.

Figure 1

Figure 2

Figure 3

Project’s Design & Implementation

Viewing
Pipeline

A mesh of polygons
forming 3D graphics

Visible
Surface
Detection

Sorted front-face polygons
&&

Sorted back-face polygons

Surface-
rendering

A view of a
3D scene

X3D

document

Load
X3D file

A DOM
structure of
a X3D file

Project’s Design &
Implementation (cont.)

• Visible-Surface Detection
– Can be classified in two categories, an object-

space method and an image-space method.
– Most visible-surface detection algorithms in

computer graphics use image-space methods
such as depth-buffer method or z-buffer
method.

– Only object-space methods can be used in our
project.

Project’s Design &
Implementation (cont.)

visible
polygons

invisible
polygons

invisible
polygons

visible
polygons

invisible
polygons

objects

sphere cone cylinder box

64 polygons 33 polygons 10 polygons 6 polygons

0 1 2 3

visible
polygons

invisible
polygons

visible
polygons

box sphere cylinder cone

sorted objects

sort objects according
their depths

Project’s Design &
Implementation (cont.)

sorted invisible polygons sorted visible polygonssorted polygons

sorted objects

visible
polygons

invisible
polygons

invisible
polygons

visible
polygons

invisible
polygons

64 polygons 33 polygons 10 polygons 6 polygons

visible
polygons

invisible
polygons

visible
polygons

sphere cone cylinder box

sorted
visible
polygons

sorted
invisible
polygons

sorted
invisible
polygons

sorted
visible
polygons

sorted
invisible
polygons

sorted
visible
polygons

sorted
invisible
polygons

sorted
visible
polygons

Sort each group

Project’s Design &
Implementation (cont.)

(x1, y1, z1)

(x2, y2, z2) (x3, y3, z3)

(x4, y4, z4)

A center point (x, y, z)

The depth of the polygon

The polygon’s depth
x = (x1+x2+x3+x4)/4

y = (y1+y2+y3+y4)/4

z = (z1+z2+z3+z4)/4

Project’s Design &
Implementation (cont.)

Box

createFirstWC()
assignProjectionToFaces()
createNormalVector()
findColor()
getVCandProjection()
getShade()

Primitive

createTag()
modifyWC()
createVC()
createProjection()
adjustCenter()
createPlane()
findIntensity()
modifyGradientTag()

Cylinder

createFirstWC()
assignProjectionToFaces()
createNormalVector()
findColor()
getVCandProjection()
getShade()

Cone

createFirstWC()
assignProjectionToFaces()
createNormalVector()
findColor()
getVCandProjection()
getShade()

Sphere

createFirstWC()
assignProjectionToFaces()
createNormalVector()
findColor()
getVCandProjection()
getShade()

Point3D
X3D, Y3D, Z3D
Xp, Yp, Zp
Visibility

setXYZ()
rotate_translate()
translate()
rotate()
scale()
project()

Polygon

vertices
id
object
plane
visibility

setVisibility()
isVisible()
getDepth()

Transform

matrix

translate()
rotate()
reset()

Plane

A, B, C
visibility

Vector
A, B, C

size()
normalize()
addVector()
dotVector()

Optimization
• Optimize the rendering algorithms

– The first version (non-optimized version):
• Renders every polygon on the scene (both front-face and back-

face polygons).

– The second version:
• About 50% of the system processing time is coming from the

surface-rendering procedure.
• Want to reduce the bottleneck surface-rendering processing

time.
• Selectively renders only front-face polygons.
• Improve the performance by 30-40%.
• Has time complexity ; n is the number of

polygons
)ln2(nnO

Optimization (cont.)

of
Polygons System

processing time
Surface-rendering
processing time

36 ~70-80 ms ~ 30-40 ms

113 ~ 240-290 ms ~ 110-140 ms

192 ~ 560-590 ms ~ 280-310 ms

309 ~ 1000-1400 ms ~ 700-930 ms

Comparing between the system processing time
and the surface-rendering processing time.

Optimization (cont.)

version 2

0
500

1000

1500
2000
2500

3000

3500
4000
4500

32 64 128 192 256 320 384 448 512 576 640 672

version 2

The processing time of our program version 2

A graph associated with
results shown in the table

of Polygons Processing time
32 (a cone) ~30-60 ms
64 (a sphere) ~110-130 ms
128 (two spheres) ~290-320 ms
192 (three spheres) ~560-590 ms
256 (four spheres) ~750-870 ms
320 (five spheres) ~1090-1190 ms
384 (six spheres) ~1590-1680 ms
448 (seven spheres) ~1972-2133 ms
512(eight spheres) ~2444-2654 ms
576(nine spheres) ~3024-3405 ms
640(ten spheres) ~3225-3755 ms
672(ten spheres + one cone) ~3625-4266 ms

Optimization (cont.)

– The third version:
• Apply the hidden-surface removal algorithm to

reduce a number of rendered polygons so that the
surface-rendering time can decrease.

• This algorithm is to check and remove any
UNSEEN or HIDDEN front-face polygons.

• The algorithm for detecting a hidden surface is
every front-face polygons must be checked with the
other CLOSER polygons that belong to
DIFFERENT objects.

Sphere has 32 front-
face polygons

Optimization (cont.)

The second version renders = 32 + 16 polygons

The third version renders < 32 + 16 polygons

Because some front faces of the sphere are hidden by some
front faces of the cone.

Cone has 16 front-
face polygons

Optimization (cont.)

• Ironically, it drops the performance more than
100 % because the overhead of the hidden-surface
removal process is more than the time we save from
the surface-rendering process.

Optimization (cont.)
Test Case I: 36 polygons

Version Processing Time % Performance Increases or Drops
(compared with Version I)

I ~90-110 ms -
II ~60-80 ms Increases 20-30 %
III ~230-270 ms Drops > 100%

Version Processing Time % Performance Increases or Drops
(compared with Version I)

I ~ 830-850 ms -
II ~ 560-590 ms Increases 32-36 %
III ~ 3895-6690 ms Drops > 100 %

Test Case II: 192 polygons

Optimization (cont.)

• Of all three versions, the second version has
the best performance.

• The third version, which we thought would
be the best, has the worst performance
because of the overhead of the hidden-
surface removal process.

Optimization (cont.)

• Performance hints to speed up JavaScript
– Avoid using a dot operator because it requires time to

dereference. Locally cache values if we need to access
them very often. IMPROVE

– Use a var statement when possible. IMPROVE

– Try to reuse the object when possible because a
constructor new can be slow. IMPROVE

– It is recommended to use the forms of the Array
constructor that specify a size or take a list of initial
elements. It will speed up the code. NOT IMPROVE

Conclusion

• Project Achievements
– Succeeded in using SVG (originally designed

for 2D graphics) to render 3D graphics.
– Deliver an application which translates X3D to

SVG, produces a view of smooth shaded 3D
objects, and has features for the user to navigate
the scene.

– Optimized the application and achieved a
performance improvement around 30-40%.

Conclusion (cont.)

– Discover that not all of performance hints
which claimed to boost JavaScript code can
speed up the program.

– Successfully used JavaScript in a nonstandard
way to develop a nontrivial and complicated
task like a rendering program.

Conclusion (cont.)

• Future Work
– Subdivide polygons so that the translator can

display overlapping and intersecting objects
correctly.

– Clip a part of the scene outside the viewing
limit.

Conclusion (cont.)

– Optimize a hidden-surface removal algorithm.
Reduce a number of front-face polygons to be
checked by using a hidden-object removal
approach instead.

Conclusion (cont.)
A hidden-surface removal method

thirty two front-
face polygons

sixteen front-
face polygons

verified with

A hidden-object removal method

a boundary box
(only six polygons will
be verified)

verified with sixteen front-
face polygons

Some polygons
of sphere are
outside the
viewing limit but
they are still
rendered by our
program.

Polygons are sorted ONLY with
the other polygons of the same
collection (object).

Polygons are sorted with every
other polygon in the scene

Correct views from an
X3D browser

