A Simple Interface for Non Standard Knowledge Systems (SINKS)

By

Harini Rao Advisor: Dr.Christopher Pollett

1/8/2004

- Objective
- Introduction
- Design
- Deployment
- Applications
- Challenges
- Conclusion

Objective

 To deploy a deductive database system such as XSB, as a back end for a relational database, Oracle.

• Application programmers can use SQL.

Introduction

 Deductive databases - integration of relational databases and logic programming techniques.

• A deductive database system - a database system that includes capabilities to define deductive rules which can deduce or infer additional information from the facts that are stored in a database.

Advantages

• Combine benefits of two approaches.

Provide means for expressing negation and disjunction.

Query processing is much simpler and easier.

Disadvantage

 Most database application programmers are unfamiliar with logic programming.

• XSB - a deductive database system developed at the computer science department, Stony Brook University.

Features:

- Uses goal-directed resolution strategy to solve Prolog's problems.
- Evaluates stratified queries much faster.
- Tabling to evaluate programs with negation.

Design

 Oracle–XSB interface is a subsystem that allows Oracle users to access XSB databases.

• Allows facts in XSB to be accessed from Oracle's environment.

• Permits users to write explicit SQL statements.

Data Flow Diagram

Oracle-XSB Interface

The Oracle-XSB interface has two sub components.

- View Level Interface translates SQL queries into Prolog clauses.
- C-XSB interface (provided with XSB) allows a C program to pass queries to XSB.

View Level Interface

Translates a complex database query into a combination of one or more Prolog rules.

 Its design includes updatable views, instead of triggers or stored procedures and external C procedures.

Updatable Views

 View - a virtual table whose contents is defined by a query.

• A view is not modifiable if its view query contains joins, set operators, aggregate functions, GROUP BY, CONNECT BY, START WITH clauses or DISTINCT operator.

Instead of Triggers

 Instead of trigger - tells Oracle how to process a DML operation performed on a view.

• Execute the body of trigger instead of performing the actions that invoked the trigger.

Stored Procedures

 Stored procedure - Named group of SQL statements previously created and stored in the server database.

• Reduce network traffic.

• Improve performance and security.

External Routines

• External routine - a third-generation language procedure stored in a DLL, and called by the DBA to perform specialpurpose processing.

 PL/SQL calls the routine as if it were a PL/SQL subprogram.

C - XSB Interface

Calling XSB from C:

• Several functions - that allow a C program to initialize and interact with XSB.

They pass commands or queries to the XSB system.

C-Callable Functions

Some of these functions are:

- *int xsb_init(int argc, char *argv[]):* Used for initializing XSB.
- *int xsb_command():* Passes a command to XSB.
- *int xsb_query():* Used for passing a query to XSB.
- *int xsb_next():* Returns answers to the calling program if the query has multiple data answers.
- *int xsb_close():* Completely closes the connection and no other calls can be made to XSB.

Deployment

Combine queries from different database systems.

 Retrieve data from either XSB or Oracle or from both.

Example - Retrieving Data only from XSB

Assume the table declarations: emp(ename,job,sal,comm,deptno). dept(deptno,dname,loc).

the SQL statement: SELECT empno,comm,hiredate,dname from dept,emp;

generates the Prolog query, emp(EMPNO, _, _, _,HIREDATE, _,COMM, _),dept(_,DNAME, _).

Example (cont.)

and the results:

Answer

7934	565	1-jun-1980	research
7934	565	1-jun-1980	sales
7934	565	1-jun-1980	operations
7834		15-jan-1985	research
7834	_	15-jan-1985	sales
7834	_	15-jan-1985	operations
7782	_	9-jun-1981	research
7782	_	9-jun-1981	sales
7782		9-jun-1981	operations

A more complicated example

The SQL statement: SELECT dname,empno,mgr,hiredate, FROM dept,emp, where deptno=20');

generates the rule, equalto(DNAME,EMPNO,MGR,HIREDATE) :dept(X,DNAME,_),emp(EMPNO,_,_MGR,HIRED ATE,_,_X), X = 20.

and the results:

Answer

research 7844 _____ research 7369 7902 17-dec-1980 research 7566 7839 2-apr-1981

Example - Retrieving Data both from XSB and Oracle

To retrieve the data from both Oracle and XSB, invoke a stored procedure as follows:

begin

Select_From('SELECT empno,colmpos,colmname FROM emp,sampletable');

end;

Equivalent XSB query generated: emp(EMPNO, _, _, _, _, _).

Results

Answer

7934	roy	
7844	keeth	
7780	russell	
7834	george	

Oracle Results

1	col1
2	col2
3	col3
4	col4

Insertions and deletions

Insertion: To insert a new row to a table, invoke an instead of trigger as follows:

begin Insert_into('emp','#empno#ename#job#mgr# hiredate#sal#comm#deptno#'); end;

Insertion

The SQL statement,

INSERT INTO emp VALUES(7390,'KIT','CFO',7342,'10-OCT-1960',56344,0,20);

adds a new fact to the database as

emp(7390,kit,cfo,7342,10-oct-60,56344,0,20).

Deletion

To delete a fact from a table based on a condition:

begin
 Delete_from('emp','sal');
end;

The SQL statement, DELETE FROM emp WHERE sal = 1680;

deletes the fact from the emp table.

Applications

• Many applications - in the fields of biotechnology and genetic research.

 Use - potential replacement to access data, previously stored using legacy systems.

• Limit the scope of queries and potentially improve the speed of their evaluation.

Sample application scenario

- Presence of two different database systems

 provides access to both separately and simultaneously.
- Users and application programmers can access knowledge based systems use SQL.

• Reduces time and effort.

Challenges

- Translation of SQL queries into prolog queries.
- Retrieval of data without updating it.
- Accessing external C procedures from Oracle.
- Calling XSB from C.
- Returning the results from XSB to Oracle.

Future Enhancements

• A faster implementation of the interface reducing the data retrieval time.

 Creating a virtual drive and allocating some memory in RAM.

• Using Java external procedures.

Conclusion

- Completely different from the XSB-Oracle interface.
- Uses a novel approach to access XSB from Oracle.
- Allows the users to retrieve facts(in XSB), from Oracle's environment as though they existed as tables.

Conclusion (cont.)

- Permits the users to write SQL statements to access data from XSB.
- Does not require the user to be familiar with logic programming.
- Provides a method to perform updates on the logical databases.

Questions