
Optimizing Analytics Storage Strategies
for Search Engines and Wiki Platforms

Master’s Defense
by Sujith Kakarlapudi

Advisor : Dr. Chris Pollett
Committee : Dr. Navrati Saxena
Committee : Dr. Thomas Austin

1

Outline

1. Introduction

2. Background

3. Implementation

4. Comparative Analysis

5. Results

6. Conclusion
2

➔ Small to medium scale search engines like DocFetcher, MediaWiki rely on SQLite for Analytics.

➔ Analytics events such as page views, edits and clicks are directly inserted into SQLite tables.

➔ Under heavy write loads, this leads to random I/O operations, journal overhead, and lock

contention.

➔ Consequently, ingestion throughput stalls and storage requirements increases, delaying real-time

analytics.

Problem Statement

3

➔ Integrate an append-only, size-rotated log storage mechanism into Yioop.

➔ Extend the aggregation routine to consume those log partitions and populate summary tables.

➔ Benchmark and compare the log-based and SQL-based pipelines on write throughput, storage

footprint, aggregation latency, and query performance.

Objectives

4

➔ Relational Analytics Storage

◆ Uses B-tree indices, rollback journals (e.g., SQLite) or MVCC (e.g., PostgreSQL)

◆ Suffers random I/O and lock contention under heavy writes

➔ Log-Based Storage

◆ Appends events sequentially to files

◆ Enables partitioning by time or size for parallelism and bounded reads

➔ Key Trade-Offs

◆ Write performance & storage efficiency vs. query flexibility

Introduction

5

1

SQlite
Rollback-Journal & B-Tree Storage

● Two writes per insert (DB file + journal)

● Tables/indexes in B-trees ⇒ random I/O

SQL Querying

● SELECT/GROUP BY traverse B-trees in native code

● Reads can block on write locks

Key Challenges

● Lock contention under heavy writes

● Growing storage footprint

6

1

PostgreSQL
MVCC & Write-Ahead Logging

● Writes first append to the WAL, then data files on

checkpoint

● Heap stores multiversion tuples; B-tree (and other)

indexes maintain pointers

● Queries use consistent‐snapshot reads via MVCC

● Index scans and sequential scans skip dead tuples

Key Challenges

● Table/index bloat requiring frequent vacuuming

● Checkpoint-driven I/O spikes and write amplification

7

1

Log Based

Sequential Ingestion & Partitioning

● Append-only writes eliminate random seeks and lock

contention

● Rotate logs by time or size to keep file sizes bounded

and enable parallel reads

Compaction & Querying

● Background roll-ups merge partitions into summary

tables for sub-second lookups

● Raw log scans support deep forensic analysis

alongside real-time dashboards

8

1

Implementation - Log
Redirection & Append Pipeline

Purpose:

Batch and buffer incoming analytics events into an

append‐only log to minimize per‐event I/O and lock

contention.

Key Steps:

● Buffer each event as a CSV line in

impression_buffer.log

● On 1,000 buffered events, load them and call

PartitionDocumentBundle::put($rows)

● Clear the buffer file and reset the counter

Result: Thousands of individual writes collapse into a single,

high‐throughput log append per batch, dramatically reducing

disk seeks.
9

1

PartitionDocumentBundle –
Creation & Rotation

Purpose:

Keep log files bounded in size and rows, with a fast in-RAM

index for reads.

Key Steps:

● Load maxRows & maxBytes thresholds from

pdb_parameters.txt.

● After each batch append, update row/byte counters

● When a threshold is reached:

○ Atomically write the in-RAM index to disk.

○ Increment the partition number and open a

new log file.

Result: Predictable, bounded partitions with constant-

memory indexing and atomic rotation to avoid half-written or

corrupted logs.
10

1

PackedTableTools – Binary
Encoding

Purpose:

Minimize on-disk footprint and parsing cost with a compact

binary format.

Key Steps:

● Batch prefix: Var-byte encode the number of records

● Null flags: Pack up to 8 boolean fields into a single

bitmap byte

● Integer fields: Use 2-bit headers to select 1/2/4/8-byte

encoding per value

● Text fields: Store a length byte followed by UTF-8 data

● Optional compression: Apply LZ4 to the full buffer for

further size reduction.

Result: Adaptive integer encoding shrinks each value to 1–8

bytes (vs. fixed 8), cutting average record size by ~50%.

11

1

Synthetic Workload Generation

Purpose:

Simulate realistic, reproducible analytics traffic with

time‐ordered events.

Key Steps:

● Script creation of synthetic users and their personal and

public groups.

● Generate multiple events per user, stamping each with a

strictly increasing time via getNextTimestamp().

● Compute pseudo random gaps within the configured

time window to spread events realistically.

● Replay the entire event stream identically through both

SQL‐based and log‐based ingestion.

Result: A controlled, chronologically distributed workload that

exercises both pipelines under identical conditions, enabling

fair performance comparison. 12

1

Aggregating Impression Data

Purpose:

Roll up raw events from log partitions into queryable summary

tables.

Key Steps:

● Calculate boundaries (hourly, daily, monthly, …) for the

current period.

● Delete any existing summary rows for the target period.

● For each partition index, unpack new events, filter by

timestamp, and tally counts in memory.

● Batch‐insert results into the summary table.

● Run a single SQL INSERT … SELECT SUM(...)

GROUP BY … over the just‐written hourly rows.

Result: Accurate, idempotent summaries for each time bucket.

13

1

Comparative Analysis -
Storage Footprint

Purpose:

Assess how much disk each pipeline consumes at scale.

Key Steps:

● Load 10.000 to 100,000 events into both the database

and log system.

● Measure on-disk size of raw tables versus rotated log

files.

Result: Log-based storage uses only ~74 % of the space of

the SQL tables at 100,000 events (1,460 KB vs. 1,968 KB).

14

1

Comparative Analysis -
Query Response Time

Purpose:

Compare latency across different analytics query scenarios for

both pipelines.

Key Steps:

● Execute a broad “all impressions” query over the entire

dataset

● Run targeted lookups for a single user and a single item

across all partitions

● Perform single‐partition scans filtering only the relevant

log file

● Measure mean, median, and P95 latencies for each

scenario on both systems

Result: Full scans: 296 ms vs. 156 ms; partition scans: 25

ms/48 ms vs. SQL’s 5 ms/17 ms.
15

1

Comparative Analysis -
Write Throughput - Sequential

Purpose:

Measure end-to-end Sequential ingestion time for varying data

volumes.

Key Steps:

● Sequentially write 50 000, 100 000, and 200 000 events

through each pipeline.

● Use the same hardware and script for both log-based

and database-based methods.

● Record total execution time for each dataset size.

● Compare raw write costs without parallelism.

Result: Across tested volumes, the log-based pipeline was

about 25–30% faster—delivering roughly a 1.3× throughput

gain over the database-based approach.

17

1

Comparative Analysis -
Write Throughput - Concurrent

Purpose:

Measure ingestion throughput when multiple clients write

simultaneously.

Key Steps:

● Simulate concurrent insert requests against both

pipelines.

● Record operations per second and per-request latencies

(mean & median).

● Compare how each handles locking, batching, and I/O

under load.

Result: Under concurrent load, SQLite achieved about 4.70

req/sec versus 4.48 req/sec for the log-based pipeline, showing

nearly identical throughput.

18

1

Comparative Analysis -
Aggregation Latency

Purpose:

Evaluate end-to-end time to generate analytics summaries from

raw events.

Key Steps:

● Run computeStatistics() on a fixed event set.

● Measure wall-clock time from invocation start to

completion

● Execute under identical conditions for both log-based

and SQL paths.

Result: Log-based aggregation was only about 5% slower than

the SQL-only approach, demonstrating near-parity despite the

extra decoding step.

19

Results
➔ Write Throughput: Log-based achieved ~1.3× higher throughput than SQL in sequential insertions

and on par results during concurrency.

➔ Storage Footprint: Log files consumed ~74% of the disk space of database tables

➔ Query Latency:

◆ Full-dataset scans slower on log (296 ms vs. 156 ms)

◆ Single-partition lookups narrowed to 25 ms–48 ms

➔ Aggregation Latency: Log-based roll-ups incurred only ~5% extra time

20

Future Work
➔ Partition Metadata

◆ Maintain a tiny partition‐metadata index mapping each partition to its time range, so

the aggregation job can compute the cutoff partition in O(1) without scanning logs.

➔ Adaptive Partition Compression

◆ Apply lightweight or no compression on the most recent “hot” partitions to keep CPU

overhead low, then switch to stronger codecs on older, colder partitions, balancing

real-time write/read performance.
21

Conclusion

➔ A hybrid log‐and‐summary design meets both high‐throughput ingest and real‐time query

demands.

➔ Append-only logs ensure sequential, crash-safe writes with minimal code changes.

➔ Empirical benchmarks validate scalability, efficiency, and robustness.

22

References

1. M. Rosenblum and J. K. Ousterhout, ‘‘The log-structured file system,’’ in Proceedings of the 13th ACM

Symposium on Operating Systems Principles (SOSP),1992.

2. P. O’Neil, E. O’Neil, and G. Weikum, ‘‘The log-structured merge-tree (lsm-tree),’’ Acta Informatica,

1996.

3. S. Patro and Others, ‘‘Dynamic partition sizing in log-structured storage,’’ in Proceedings of the 2021

USENIX Annual Technical Conference, 2021.

4. Y. Zhang and J. Patel, ‘‘Hybrid indexing for append-only logs,’’ in Proc. 2021 IEEE Int. Conf. on Data

Engineering (ICDE), 2021.

23

Thank You!
Questions?

24

