Optimizing Analytics Storage Strategies
for Search Engines and Wiki Platforms

Master’s Defense Advisor : Dr. Chris Pollett
by Sujith Kakarlapudi Committee :Dr.Navrati Saxena
Committee :Dr. Thomas Austin

Outline

1. Introduction

2. Background

3. Implementation

4. Comparative Analysis
5. Results

6. Conclusion

Problem Statement

\

Small to medium scale search engines like DocFetcher, MediaWiki rely on SQLite for Analytics.
Analytics events such as page views, edits and clicks are directly inserted into SQLite tables.
Under heavy write loads, this leads to random I/O operations, journal overhead, and lock
contention.

Consequently, ingestion throughput stalls and storage requirements increases, delaying real-time

analytics.

Objectives

- Integrate an append-only, size-rotated log storage mechanism into Yioop.

Extend the aggregation routine to consume those log partitions and populate summary tables.

\

-> Benchmark and compare the log-based and SQL-based pipelines on write throughput, storage

footprint, aggregation latency, and query performance.

Introduction

-> Relational Analytics Storage
€ Uses B-tree indices, rollback journals (e.g., SQLite) or MVCC (e.g., PostgreSQL)
€ Suffersrandom I/O and lock contention under heavy writes
-> Log-Based Storage
€ Appends events sequentially to files
@ Enables partitioning by time or size for parallelism and bounded reads
- Key Trade-Offs

€ Write performance & storage efficiency vs. query flexibility

SQlite

Rollback-Journal & B-Tree Storage

e Two writes per insert (DB file + journal)
e Tables/indexes in B-trees = random 1/O

SQL Querying

e SELECT/GROUP BY traverse B-trees in native code
e Reads can block on write locks

Key Challenges

e Lock contention under heavy writes
e Growing storage footprint

SELECT/GROUP BY

cr- 40— g

B-Tree Lock
Contention

SELECT/GROUP BY

—> SQL Querying

MVCC & Write-Ahead Logging
A
Heap

PostgreSQL - -
osigre Write-Ahead o

: . L
MVCC & Write-Ahead Logging » o
e Writes first append to the WAL, then data files on .
checkpoint SQL Querying
e Heap stores multiversion tuples; B-tree (and other) & (h
indexes maintain pointers Csonsistent L‘E"g’*’
napshot v ——
Queries use consistent-snapshot reads via MVCC Read J Dead Tuples
Index scans and sequential scans skip dead tuples : . Sk"iped
Key Challenges Index Scan)
or ‘— | i
e Table/index bloat requiring frequent vacuuming Sequential
e Checkpoint-driven I/O spikes and write amplification Scan 13'3:::3::

Log Based

Sequential Ingestion & Partitioning

e Append-only writes eliminate random seeks and lock
contention

e Rotate logs by time or size to keep file sizes bounded
and enable parallel reads

Compaction & Querying

e Background roll-ups merge partitions into summary
tables for sub-second lookups

e Raw log scans support deep forensic analysis
alongside real-time dashboards

Sequential
Ingestion

Partitioning

Raw Logs

Summary

Implementation - Log
Redirection & Append Pipeline

Purpose:

Batch and buffer incoming analytics events into an
append-only log to minimize per-event I/O and lock
contention.

Key Steps:

e Buffer each event as a CSV line in
impression_buffer.log

e On 1,000 buffered events, load them and call
PartitionDocumentBundle::put($rows)

e Clear the buffer file and reset the counter

Result: Thousands of individual writes collapse into a single,
high-throughput log append per batch, dramatically reducing
disk seeks.

EVENT RECEIVED
- J
BUFFER FILE

BUFFER
COUNT
21000%

Yes
BATCH FLUSH
< J
S S
CLEAR BUFFER
& RESET COUNTER
2 J

PartitionDocumentBundle -
Creation & Rotation

Purpose:

Keep log files bounded in size and rows, with a fast in-RAM
index for reads.

Key Steps:

e Load maxRows & maxBytes thresholds from
pdb_parameters.txt.
e After each batch append, update row/byte counters
e When athreshold is reached:
o Atomically write the in-RAM index to disk.
o Increment the partition number and open a
new log file.

Result: Predictable, bounded partitions with constant-
memory indexing and atomic rotation to avoid half-written or
corrupted logs.

Load thresholds from
pdb_parameters.t.txt

|

Append batch and
update counters

!

Threshold
reached?

|

Write index and
rotate partition

!

New partition open

10

PackedTableTools - Binary
Encoding

Purpose:

Minimize on-disk footprint and parsing cost with a compact
binary format.

Key Steps:

Batch prefix: Var-byte encode the number of records
Null flags: Pack up to 8 boolean fields into a single
bitmap byte

e Integer fields: Use 2-bit headers to select 1/2/4/8-byte
encoding per value
Text fields: Store a length byte followed by UTF-8 data
Optional compression: Apply LZ4 to the full buffer for
further size reduction.

Result: Adaptive integer encoding shrinks each value to 1-8
bytes (vs. fixed 8), cutting average record size by ~50%.

Record
(2,3423, 6,174285493)

Var-Byte Encode Count=4 \

2

|r Size-Marker Byte (Bits: 7-6:00
5-4:01, 3-2:00,1-0:10) = 0x12

.

/

&
' Field1 Ox02 |
Field2 Ox0D
0x57
Field3 0x06
Field4 670F3
i B8 DD5
&
Binary Blob

04 12 02 OD 57
06 67 F3 B8 D5

11

Synthetic Workload Generation

Purpose:

Simulate realistic, reproducible analytics traffic with
time-ordered events.

Key Steps:

e Script creation of synthetic users and their personal and
public groups.

e Generate multiple events per user, stamping each with a
strictly increasing time via getNextTimestamp().

e Compute pseudo random gaps within the configured
time window to spread events realistically.

e Replay the entire event stream identically through both
SQL-based and log-based ingestion.

Result: A controlled, chronologically distributed workload that
exercises both pipelines under identical conditions, enabling
fair performance comparison.

Create synthetic
users & groups

y

Generate events with
getNextTimestamp()

Y

Compute pseudorandom
gaps

Y

Replay event stream on
SQL and log pipelines

12

Aggregating Impression Data

Purpose:

Roll up raw events from log partitions into queryable summary
tables.

Key Steps:

e Calculate boundaries (hourly, daily, monthly, ...) for the
current period.
Delete any existing summary rows for the target period.
For each partition index, unpack new events, filter by
timestamp, and tally counts in memory.
Batch-insert results into the summary table.
Run a single SQL INSERT ... SELECT SUM(...)
GROUP BY ... over the just-written hourly rows.

Result: Accurate, idempotent summaries for each time bucket.

Compute Time Buckets

Determine the appropriate
time intervals to aggregate
data

Clean Summaries

Remove outdated summary
data for the current time
bucket

Unpack & Tally Log Events

Extract user actions from the
event log and calculate counts

Update summaries &
aggregate higher-level
data

13

Comparative Analysis -
Storage Footprint

Purpose:

Assess how much disk each pipeline consumes at scale.

Key Steps:

e Load 10.000 to 100,000 events into both the database

and log system.
e Measure on-disk size of raw tables versus rotated log

files.

Result: Log-based storage uses only ~74 % of the space of
the SQL tables at 100,000 events (1,460 KB vs. 1,968 KB).

2,000

1,500

\
J

000

Storage (KB

500

Storage Footprint vs. Entrics

—s— Databasc
-#— Log Storage

L 1

0.1 0.2 03 04 0. 06 0.7 08 09
Number of Entrics

1
107

14

Comparative Analysis -
Query Response Time

Purpose:

Compare latency across different analytics query scenarios for
both pipelines.

Key Steps:

e Execute a broad “all impressions” query over the entire
dataset

e Run targeted lookups for a single user and a single item
across all partitions

e Perform single-partition scans filtering only the relevant
log file

e Measure mean, median, and P95 latencies for each
scenario on both systems

Result: Full scans: 296 ms vs. 156 ms; partition scans: 25
ms/48 ms vs. SQL’s 5 ms/17 ms.

\
)
J

Mean Response Time (ms

300 |-

250

200

150 |-

100

Mean Query Response Time by Scenario

| Log-Based
o SQLite

=l

Al

User

Query Scenario

Ttem

15

Comparative Analysis -
Write Throughput - Sequential

Purpose:

Measure end-to-end Sequential ingestion time for varying data
volumes.

Key Steps:

e Sequentially write 50 000, 100 000, and 200 000 events
through each pipeline.

e Use the same hardware and script for both log-based
and database-based methods.
Record total execution time for each dataset size.
Compare raw write costs without parallelism.

Result: Across tested volumes, the log-based pipeline was
about 25-30% faster—delivering roughly a 1.3x throughput
gain over the database-based approach.

1,800
1,600
1,400

1,200
@

51,000

800

600 |-

400 |-

Log-based
—s— Databasc-based //.
]
/ 2l
T
P
//
,//
./’/’ -
=
0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Number of Insertions

17

Comparative Analysis -
Write Throughput - Concurrent

Purpose:

Measure ingestion throughput when multiple clients write
simultaneously.

Key Steps:

e Simulate concurrent insert requests against both
pipelines.

e Record operations per second and per-request latencies
(mean & median).

e Compare how each handles locking, batching, and I/O
under load.

Result: Under concurrent load, SQLite achieved about 4.70
reqg/sec versus 4.48 req/sec for the log-based pipeline, showing
nearly identical throughput.

Requests per second

]

Concurrent. Write Throughput.

4.48

Databasc LogDBased

Storage Model

18

Comparative Analysis -
Aggregation Latency

Purpose:

Evaluate end-to-end time to generate analytics summaries from
raw events.

Key Steps:

Run computeStatistics() on a fixed event set.
Measure wall-clock time from invocation start to
completion

e Execute under identical conditions for both log-based
and SQL paths.

Result: Log-based aggregation was only about 5% slower than
the SQL-only approach, demonstrating near-parity despite the
extra decoding step.

Aggregation Time (s)

(0

Apgprepation Latency Comparison

376

T

SO Lite

LogBased

19

Results

- Write Throughput: Log-based achieved ~1.3x higher throughput than SQL in sequential insertions
and on par results during concurrency.
- Storage Footprint: Log files consumed ~74% of the disk space of database tables

- Query Latency:
€ Full-dataset scans slower on log (296 msvs. 156 ms)

@ Single-partition lookups narrowed to 25 ms-48 ms

- Aggregation Latency: Log-based roll-ups incurred only ~5% extra time

20

Future Work

- Partition Metadata
€ Maintain a tiny partition-metadata index mapping each partition to its time range, so
the aggregation job can compute the cutoff partition in O(1) without scanning logs.
- Adaptive Partition Compression
€ Apply lightweight or no compression on the most recent “hot” partitions to keep CPU
overhead low, then switch to stronger codecs on older, colder partitions, balancing

real-time write/read performance.
21

Conclusion

- Ahybrid log-and-summary design meets both high-throughput ingest and real-time query
demands.
- Append-only logs ensure sequential, crash-safe writes with minimal code changes.

- Empirical benchmarks validate scalability, efficiency, and robustness.

22

References

1. M.Rosenblum and J. K. Ousterhout, “The log-structured file system,” in Proceedings of the 13th ACM
Symposium on Operating Systems Principles (SOSP),1992.

2. P.O’Neil, E.O’Neil, and G. Weikum, “The log-structured merge-tree (Ism-tree),” Acta Informatica,
1996.

3. S.Patro and Others, “Dynamic partition sizing in log-structured storage,” in Proceedings of the 2021
USENIX Annual Technical Conference, 2021.

4. Y.Zhang and J. Patel, “Hybrid indexing for append-only logs,” in Proc. 2021 IEEE Int. Conf. on Data
Engineering (ICDE), 2021.

23

Thank You!
Questions?

24

