
OPTIMIZING YIOOP SEARCH ENGINE FOR ANALYTICAL WORKLOADS 
 

 

Optimizing Yioop Search Engine for Analytical 

Workloads 

 
A Project Report 

 

 

 

                                  Presented to 

                                  Dr. Chris Pollett 

Department of Computer Science 

San Jose State University 

 

 

In Partial Fulfillment 

of the Requirements for the Class 

Fall 2024: CS297 

 

 

By 

Sujith Kakarlapudi 

December,2024 



OPTIMIZING YIOOP SEARCH ENGINE FOR ANALYTICAL WORKLOADS 
 

i 

 

 

ABSTRACT 

 

Modern search engines and wikis, such as Yioop, generate massive volumes of analytics data, 

including user interactions [1], system usage trends, and engagement measures, all of which are 

crucial for improving performance and user experience. Yioop monitors events such as page 

visits, ad impressions, and search exit clicks in the ITEM_IMPRESSION table, with the 

computeStatistics function aggregating this data at regular intervals and saving it in the 

ITEM_IMPRESSION_SUMMARY table while eliminating outdated information. To improve 

Yioop's analytical performance, this project introduces a roll-up technique to the 

computeStatistics function for hierarchical data aggregation. Furthermore, synthetic datasets 

simulating Yioop's analytics are being developed to rigorously test these improvements. These 

enhancements attempt to grow Yioop's analytics framework for larger datasets and complex 

reporting demands by enhancing SQLite's processing capabilities and decreasing bottlenecks, 

and ensuring efficient management of growing data demands.



OPTIMIZING YIOOP SEARCH ENGINE FOR ANALYTICAL WORKLOADS 
 

 

3  

INTRODUCTION 

 
Yioop, an open-source search engine and wiki, monitors a variety of metrics to better 

understand user behavior, such as ad impressions, page views, thread interactions, group 

memberships, and search exit clicks. These metrics are collected and analyzed to provide insight 

into user behavior and improve search engine performance. However, as data volume grows, 

Yioop's present SQLite-based [2] design becomes inefficient at meeting these expectations. This 

project addresses these issues to improve Yioop's capacity to process and store analytics data 

more effectively.  

The major goal is to improve search engine performance by increasing data storage and 

aggregation in SQLite, particularly within the computeStatistics function. This function collects 

analytics data from the ITEM_IMPRESSION table at various time intervals (hour, day, month, 

and year) and saves it to the ITEM_IMPRESSION_SUMMARY table. Previously, data 

aggregation lacked a roll-up mechanism, resulting in inefficiencies when searching huge data 

sets. 

To address this, a roll-up mechanism has been added to the computeStatistics function to 

enable efficient data aggregation over several time periods. Synthetic datasets simulating Yioop's 

analytics environment were created to thoroughly test these enhancements. These enhancements 

decrease redundancy, improve query performance, and lead to faster lookups and aggregations. 

The enhancements are intended to help Yioop scale with increasing data needs, improve 

performance and user experience, and establish the framework for future optimizations discussed 

in the next sections. 

 

. 



OPTIMIZING YIOOP SEARCH ENGINE FOR ANALYTICAL WORKLOADS 
 

 

4  

DELIVERABLE 1: RESEARCH ON ANALYTICS IN SEARCH ENGINES 

AND WIKIS 
 

 

Search engines and wikis, especially Yioop, generate massive volumes of analytics data, 

which can provide crucial insights into user behavior, system efficiency, and content relevancy. 

To remain effective, Yioop must include efficient data management mechanisms as its scale 

grows. Insights from platforms such as Apache Solr, MediaWiki, Google, and Bing can help 

Yioop improve its analytics handling, assuring scalability and performance. 

Platforms like Apache Solr highlight the benefits of lightweight logging for analytics 

tracking. Rather than depending solely on relational databases, these platforms monitor essential 

metrics such as query response times [3] and result counts, lowering storage overhead while 

retaining usable data. Yioop may use a similar recording method to monitor occurrences like 

search exit clicks and ad impressions. This would improve storage efficiency and reduce database 

load, especially during high usage. Logs could also help with performance tuning by capturing 

accurate timestamps and interaction details, which can be used for debugging and optimization. 

MediaWiki manages huge traffic levels via incremental aggregation, which is another 

effective way. Rather than recording each user action, MediaWiki updates aggregated counters for 

data such as page views, which significantly reduces storage requirements. Yioop can use this 

method to manage metrics like group membership and thread interactions. Yioop might sustain 

effective data processing during increases in traffic by directly updating aggregate values, while 

also facilitating retrieval for analytics queries. This solution is ideally suited to Yioop's need to 

manage increasing workloads while providing a responsive user experience. 

 

 

 



OPTIMIZING YIOOP SEARCH ENGINE FOR ANALYTICAL WORKLOADS 
 

 

5  

Closed platforms, such as Google and Bing, emphasize the need of session-level logging 

and data aggregation for optimizing caching and reducing query times. For example, these 

platforms record session parameters like dwell time and CTR [4] to improve relevance and 

performance. Yioop, being an open-source system, can take similar techniques by analyzing 

session data to find popular content and optimize cache strategies. These insights will enable 

Yioop to provide faster and more relevant search results while enhancing overall system 

performance. 

Implementing these strategies would significantly improve Yioop's ability to process and 

analyze its expanding analytics dataset. Yioop's lightweight logging, incremental aggregation, and 

session-based optimization can help reduce performance bottlenecks and boost scalability. These 

enhancements will enable Yioop to manage larger datasets more efficiently, assuring a seamless 

and responsive experience for users while laying the groundwork for future advances in its 

analytical capabilities. 

 

 

 

 

 

 

 

 

 

 

 



OPTIMIZING YIOOP SEARCH ENGINE FOR ANALYTICAL WORKLOADS 
 

 

6  

DELIVERABLE 2: IMPLEMENTATION OF ROLLUP  

 
The enhanced computeStatistics function is a significant advancement toward optimizing 

Yioop for handling analytical workloads effectively. This function now includes a simulated 

rollup mechanism, allowing for hierarchical data aggregation over multiple time periods such as 

hourly, daily, monthly, and yearly. Yioop addresses SQLite's problem of not having native rollup 

functionality, enhancing scalability and enabling sophisticated data management. 

To replicate the rollup capability found in other database systems such as MySQL, we 

used a sequence of SQL procedures to aggregate data at different levels. The strategy involved 

arranging the process as a union of queries, with each query individually aggregating data for a 

given time period. For example, one query concentrates on hourly data, another on daily data, 

and so on, with the results integrated into a single format. 

The simulated rollup procedure uses UNION ALL to merge these granularities into a 

single result set. By grouping data by determined time-based attributes (such as year, month, 

day, and hour), the function guarantees that the aggregated data appropriately represents the 

various time periods. Yioop's hierarchical structure enables it to efficiently handle complicated 

analytical queries while remaining flexible enough to scale with rising data quantities. 

Implementation Details: 

 

To accommodate the rollup technique, many changes were made to the computeStatistics 

function and database schema.  

1. Dynamic Time-Based Aggregation: The function calculates timestamps at each level of 

granularity (hourly, daily, monthly, and yearly). These timestamps ensure that data is 

properly sorted and aggregated for each period. 

2. Enhanced Schema for Intuitive Analytics: The ITEM_IMPRESSION_SUMMARY table 



OPTIMIZING YIOOP SEARCH ENGINE FOR ANALYTICAL WORKLOADS 
 

 

7  

now has four additional columns: UPDATE_YEAR, UPDATE_MONTH, 

UPDATE_DAY, and UPDATE_HOUR. These columns allow for more organized and 

efficient querying of aggregated data. 

3. SQL Union for Simulated Rollup: The function uses UNION ALL to combine many SQL 

queries, each responsible for a specific level of granularity. This technique provides the 

hierarchical aggregation needed for analytical insights while overcoming SQLite's 

intrinsic restrictions 

This approach resembles the behavior of a native rollup capability, ensuring that Yioop 

can process and summarize analytics data over a variety of time periods without losing 

efficiency.The rollup approach significantly improves Yioop's analytical architecture, making 

data aggregation more efficient for scaling applications. The computeStatistics function prepares 

the environment for testing and validation with synthetic datasets that mimic real-world Yioop 

analytics. These datasets will evaluate the rollup mechanism's effectiveness under a variety of 

scenarios and provide insights for future development. 

 

 

 

 

 

 

 

 

 

  



OPTIMIZING YIOOP SEARCH ENGINE FOR ANALYTICAL WORKLOADS 
 

 

8  

DELIVERABLE 3: PREPARING SYNTHETIC DATASET 
 

The objective of this deliverable was to create a synthetic dataset that simulated Yioop's analytics 

(for example, wiki impressions) in order to test the computeStatistics function's performance and 

correctness. The dataset simulates real-world user interactions with wiki pages and other content, 

collecting impressions at random timestamps to assess the function's ability to produce statistics 

in a variety of scenarios. 

Dataset creation and key considerations: 

 

A total of 500 users were created, each with their own group. Each user has a unique profile and 

is allocated to at least one group. This resembles the user-group relationships found in a social or 

collaborative platform. 

Users were divided into 100 groups and allocated at random. Each user is a member of at least 

one group, and many users belong to several groups, reflecting typical user activity on platforms 

such as Yioop. 

Wiki Page Creation: 

 

Wiki pages were assigned to each group, representing the content with which members interact. 

These pages are essential for imitating real-world user behavior since users commonly engage 

with material within their groups. 

Impression Data Generation: 

 

The synthetic dataset is built using impression recordings. These entries describe exchanges in 

which a user examines a wiki page within their group. The ITEM_IMPRESSION table stores 

each impression, which includes the USER_ID, PAGE_ID, and interaction date. 

Random Timestamps: To imitate realistic user activity, impressions were created with random 

timestamps from the previous year. This variety in timestamps guarantees that the dataset covers 



OPTIMIZING YIOOP SEARCH ENGINE FOR ANALYTICAL WORKLOADS 
 

 

9  

various periods of user activity, allowing the computeStatistics function to be tested under more 

dynamic and unpredictable settings. Impressions are dispersed across the year, reflecting real-

world user behavior that varies over time. 

$current_timestamp = time (); 

    $one_year_ago_timestamp = $current_timestamp - (365 * 24 * 60 * 60); 

    foreach ($unique_user_id_list as $user_id) { 

        foreach ($page_id_list as $page_id) { 

            $random_timestamp = rand ($one_year_ago_timestamp, $current_timestamp - 60); 

            $this->addWithDb($user_id, $page_id, C\WIKI_IMPRESSION, $db, 

$random_timestamp); 

            L\crawlLog("Adding to DB with USER_ID: $user_id, PAGE_ID: $page_id, 

TIMESTAMP: $random_timestamp"); 

        } 

    } 

Dataset Summary: 

 

Users: 500 people with individual IDs and personal groups. 

Groups: 100 groups, each having several users to ensure accurate membership distribution.  

Impressions: Approximately 10,000 impressions, randomly scattered across the past year.  

Purpose: To offer a realistic dataset for testing the computeStatistics function, verifying that it can 

handle diverse, time-varying user interactions and perform analytics quickly in real-world 

scenarios. 

 

 



OPTIMIZING YIOOP SEARCH ENGINE FOR ANALYTICAL WORKLOADS 
 

 

10  

DELIVERABLE 4: A/B TESTING 

 
In this deliverable, an A/B test was conducted to compare the execution times of the 

computeStatistics function using two approaches. 

Original Approach: The original computes statistics function directly performs aggregation 

without any rollup on the data. 

Approach with Rollup Simulation: This method replicates a rollup process in which data is 

aggregated in intermediate steps prior to final computation. 

Execution Time Results: 

The test's purpose was to determine how the rollup technique affected the computeStatistics 

function's execution time. The results, measured in seconds, are summarized as follows: 

Original Approach (Without ROLLUP): 

Execution times: 0.03, 0.04, and 0.05 seconds (approx.) 

The original method produces relatively consistent execution times, with little change between 

runs. 

Test Result 1: 

 

 

 

 

 

 



OPTIMIZING YIOOP SEARCH ENGINE FOR ANALYTICAL WORKLOADS 
 

 

11  

Test Result 2: 

 

Test Result 3: 

 

Updated ComputeStatistics (With ROLLUP Simulation): 

Execution times: 0.05, 0.06, and 0.07 seconds (approx.) 

The approach integrating rollup techniques has slightly longer execution times than the original 

method. 

Test Result 1: 

 

Test Result 2: 

 



OPTIMIZING YIOOP SEARCH ENGINE FOR ANALYTICAL WORKLOADS 
 

 

12  

Test Result 3: 

 

In conclusion, while the rollup simulation resulted in somewhat longer execution times, the 

difference was modest, showing that the rollup strategy adds some overhead. However, the rollup 

technique may offer further advantages in other areas, such as increased data accuracy or 

enhancements for future computations. 

 

FUTURE WORK AND CONCLUSION 
 

 

This project focused on on improving Yioop's analytics data summarization using the 

rollup process, which resulted in better data aggregation. However, it resulted in a minor increase 

in execution time over the previous approach. Future work in CS298 will investigate whether a 

database or log-based system is more efficient for storing and evaluating analytics data, 

considering retrieval and processing requirements. This will let Yioop determine the optimum 

strategy for long-term storage and high-performance data retrieval as its dataset expands. In 

addition, efforts will be made to optimize storage and query execution in order to assure 

scalability while maintaining efficiency. 

In conclusion, while the rollup strategy improved data aggregation, it resulted in longer 

execution times. These discoveries lay the groundwork for additional optimization, such as 

investigating novel storage strategies and improving Yioop's ability to handle larger analytical 

workloads effectively. 

 



OPTIMIZING YIOOP SEARCH ENGINE FOR ANALYTICAL WORKLOADS 
 

 

13  

REFERENCES 

 
[1]   Stonebraker, M. and Çetintemel, U. 2005. "One Size Fits All": An Idea Whose Time Has 

Come and Gone. Proc. of the Int. Conf. on Data Engineering (2005), 2-11. 

[2]   Heitzmann, A., van Beek, M., and Zhao, Z. 2019. SQLite: Past, Present, and Future. Int. J. of 

Computer Science and Software Engineering 8, 5 (2019), 197-209. 

[3]   Graefe, G. 1993. Query evaluation techniques for large databases. ACM Computing Surveys 

25, 2 (1993), 73-170. 

[4]   Melnik, S., Gubarev, A., Long, J. J., Romer, G., Shivakumar, S., Tolton, M., and Vassilakis, 

T. 2010. Dremel: Interactive analysis of web-scale datasets. Proc. of the VLDB Endowment 3, 1-2 

(2010), 330-339. 

 

. 

 

 

 

 


	INTRODUCTION
	DELIVERABLE 1: RESEARCH ON ANALYTICS IN SEARCH ENGINES AND WIKIS
	DELIVERABLE 2: IMPLEMENTATION OF ROLLUP
	Implementation Details:

	DELIVERABLE 3: PREPARING SYNTHETIC DATASET
	Dataset creation and key considerations:
	Wiki Page Creation:
	Impression Data Generation:
	Dataset Summary:

	DELIVERABLE 4: A/B TESTING
	FUTURE WORK AND CONCLUSION
	REFERENCES

