Enhancing LLM’s Mathematical and Theorem Proving Abilities

A Project
Presented to:
The Faculty of the Department of Computer Science

San Jose State University

In Partial Fulfillment
of the Requirements for the Degree

Master of Science

Presented By:
Naga Rohan Kumar Bayya
November, 2025

Enhancing LLM's Math and Theorem Proving Abilities

© 2025
Naga Rohan Kumar Bayya
ALL RIGHTS RESERVED

Enhancing LLM's Math and Theorem Proving Abilities

The Designated Project Committee Approves the Project Titled
Enhancing LLM's Math and Theorem Proving Abilities

By
Naga Rohan Kumar Bayya

APPROVED FOR THE DEPARTMENT OF COMPUTER SCIENCE

SAN JOSE STATE UNIVERSITY

November 2025
Dr. Chris Pollett Department of Computer Science
Dr. Navrati Saxena Department of Computer Science

Prasanna Nikhil Sathwik Vadlamani Software Engineer Glass Imaging

Enhancing LLM's Math and Theorem Proving Abilities

Abstract

Enhancing LLM's Math and Theorem Proving Abilities
By Naga Rohan Kumar Bayya

Large language models (LLMs) are good at natural language tasks but are not up to the
mark when it comes to mathematics and theorem-proving, as they rely on language patterns
instead of understanding the problem and thinking through the solution. This project addresses
issues such as a lack of exposure to structured datasets, difficulty with generating outputs that
require multi-step reasoning, and limitations of short context. We fine-tune pre-trained LLMs on
structured datasets like MATH, GSM8k, open-r1, deepseek-prover, and
OpenBootstrappedTheorem. We integrate two software tools, Mathics and LEAN, and enhance
reasoning through Chain-of-Thought (CoT). Additionally, we conduct the experiments using
state of the art Mixture of Experts (MoE) and parameter efficient fine-tuning (PEFT) techniques
such as LoRA and DoRA. The outcomes of this project are better model performance on
complex math problems, and particularly on formal theorem-proving datasets, which is a
comparatively understudied domain in recent LLM research. This takes a step toward
developing and fine-tuning models that can handle challenging mathematical and logical

domains.

Keywords: Large Language Models, LLMs, Mathics, Lean, Chain-of-Thought prompting,

Deepseek, Post-tuning

Enhancing LLM's Math and Theorem Proving Abilities

1o T 11T T o 1
2. Background and Literature ReVIieW.........ceeeeciiiiiiiiiiccccsrs s s s e e s e e s smm s s s e e e ennnn 3
2.1. Limits of LLMs on Mathematics and Theorem Proving...........ccccooviiiiiiiiiiiiiiiieceieeeee 3
2.2. Datasets for Mathematical REasONiNg..........ccuuiiiiiiiiiiiiiie e 3
2.3. Parameter-Efficient Fine-Tuning (PEFT) Techniques...........ccuveiiiiiiiiiiiieee 4
2.4. Mixture of Experts (MOE) Architecture...........ccooiiiii e 5
2.5. Post-Training TECANIQUES........coii it e e e e e e e e e e eeees 6
2.6. Tool-Augmented REaSONING........ccuuuiiiiiiii e e 8
3. Preliminary WOrK..... ..ot 10
3.1 ODJECHIVE. ...t aaeeas 10
3.2 MEENOAS. ... 10
3.3 GSMBK/MATH FINE-tUNING....ceiiiiiiiiiiiie et e e e e e s e eeeeeeeeennes 10
3.4. Integrating Mathics and LEAN With LLM...........oooi e 13
4. Infrastructure and SEtUP.........coovreiiiiiiieiii e 19
4.1. Text Generation INferenCe (TGI)........ueiiiiii i 19
4.2. Chat APPIICALION. e e e e e e e e e e e e e et e e eaeaeaaaaaaaaaaaaaaaaaaans 19
5. Experiment-1: Finetuning Llama-3.2-3B using open-r1............ccooiiiimmimrcmecccnnssseseeeessssnnnns 22
5.1 ODBJECHIVE. ...t 22
o2 I - - TP 22
TR I 1Y 1= 1 Lo T FA PP UPSPPP 22
o =T U] 25
6. Experiment-2: OpenBootstrappedTheorem (OBT) Style Finetuning for Lean 4 Proof
SYNENESIS....eeeiiiii i —————————————— 30
G IO o} =T o2 1 PSSR 30
G2 I - - T 30
TR I 1Y 1= 1 Lo T PP SOPRI 31
8.4 RESUIS. ... e ettt — e b e ———rre——eate e e e eeeeee e e e e e aaeeeees 34
7. Experiment-3: Fine-tuning a Mixture-of-Experts Model on Math and Lean Datasets..... 35
% O o)1= 3 (A TP 36
4072 - - T 36
A IR T=) (1] o TSRS 36
A0 =T U] £ P 37
L= 01013 o2 11T 1o o O 40

L T Y =Y =Y o= Y- 7 41

Enhancing LLM's Math and Theorem Proving Abilities

1.Introduction

LLMs have transformed natural language processing (NLP) by generating human-like
text and automating various language tasks. Hendrycks et al. proposed that they still have room
to grow in mathematics and theorem-proving because LLMs are mostly trained on internet data,
which lacks the reasoning needed for mathematical calculations and multi-step deductions.
Although they generate correct-sounding answers, they fall short in terms of the factual
correctness of their outputs, because they prioritize sounding "right" over being correct. This
project explores different ways to improve LLM performance with the help of specialized training

and data centric fine-tuning techniques.

Mathematics and logic play an important role in many fields, ranging from scientific
research to business. The domain of formal theorem proving is a fairly understudied and
challenging area for many LLMs. Hence, we explore various ways to improve LLM performance
on this domain, like fine-tuning with structured datasets that strengthen Chain-of-Thought [10],
incorporating symbolic reasoning software, and experimenting with post-training techniques like
SFT and GRPO. Ultimately, our goal is to help the model go beyond just mimicking answers and

to improve its mathematical capabilities.

This report shares the progress made over three semesters in improving how LLMs
handle mathematical problems, especially in theorem proving. It starts with a Preliminary Work
section, which explains the foundational studies from the first phase. In this stage, we laid the
groundwork by fine-tuning a smaller LLM, GPT-2 [17], using mathematics datasets like MATH
and GSM8k. We also incorporated symbolic tools (Mathics) and formal proof assistants (LEAN)
through LangChain to see how these resources could improve the LLM’s workflow. Based on
the observations and learnings in this phase, we conducted more advanced experiments in the

next phase.

We also talk about the technical setup behind our evaluation process in the
Infrastructure and Setup section. To make model evaluation easier, we built a server and
designed an interactive web interface to compare all model versions side by side. This allowed

us to clearly see how each approach performed throughout the project

Enhancing LLM's Math and Theorem Proving Abilities

The main body of the report details three experiments conducted in the second phase.
Experiment 1 focuses on scaling up the fine-tuning process to a larger model architecture
(Llama-3.2-3B). This compares various data supervision styles using extensive theorem-proving
datasets and post-training strategies. For Experiment 2, we apply an advanced OBT-style
pipeline, designed to help the model generate Lean4 proofs from natural language input more
reliably. In experiment 3, we investigate the implications of two finetuning regimes and their

effects on catastrophic forgetting, basing our experiments on a Mixture of Experts (MoE) model.

Enhancing LLM's Math and Theorem Proving Abilities

2. Background and Literature Review

2.1. Limits of LLMs on Mathematics and Theorem Proving

LLMs are mostly trained on large natural language datasets, so they produce answers
that look convincing but lack a formal understanding of the underlying domain. This is pretty
evident from their weak arithmetic and reasoning skills. Even when tested on special math
benchmarks such as MATH and GSMB8K, these models often produce fluent but incorrect chains
of reasoning, especially when multistep derivations or symbolic transformations are required [1],
[2]. These mistakes happen due to a few reasons: a mismatch between pretraining data and the
downstream symbolic domains [16], weak inductive biases for formal manipulation, and they’re

not very good at checking their own steps.

2.2. Datasets for Mathematical Reasoning

MATH provides 12.5k competition style problems with stepwise solutions across topics
(algebra, geometry, number theory, etc.) and is widely used for supervised finetuning and
evaluation [1]. GSMB8K targets grade school word problems requiring multi-step arithmetic and is
commonly used to assess reasoning with natural-language problem statements [2]. These
corpora complement each other: MATH stresses formal derivation depth and GSM8K stresses
compositional reasoning in natural language.

Alongside MATH and GSMB8K, this project leverages three additional corpora covering
process supervision, formal proof, and symbolic logic:

1. OpenR1-Math-220k (open-r1/OpenR1-Math-220Kk): curated long-form math problems
with stepwise rationales aligned to “Open-R1” style reasoning traces. Useful for process
supervision and stabilizing multi-step derivations in arithmetic/algebra/geometry word
problems.

2. DeepSeek-Prover-V1 (deepseek-ai/DeepSeek-Prover-V1): theorem/proof pairs,
Lean-style statements, and tactic-level supervision suitable for theorem proving and
learning proof trajectories. No natural language Chain of thought (CoT)

3. Open Bootstrapped Theorem (RickyDeSkywalker/OpenBootstrappedTheorem): Lean
4-Natural Language aligned and bootstrapped dataset for training a Lean4 LLM expert.

Includes Chain of thought

Enhancing LLM's Math and Theorem Proving Abilities

2.3. Parameter-Efficient Fine-Tuning (PEFT) Techniques

LLMs usually consist of billions of tunable weights. In order to train such huge models
from scratch, a lot of computational resources and time are required. PEFT techniques are
clever methods for adapting such large models to downstream tasks without having to retrain
the entire model from scratch, while achieving the same result. They freeze the entire model
weights and focus only on a subset of them to cut down on the compute, memory, and training
time. This approach makes them more feasible for tasks with limited resources. The idea comes
from the fact that a pre-trained language model can be adapted for specific tasks by only
changing a few parameters [3]. In this project, we used two popular PEFT techniques, Low
Rank Adaptation (LoRA) and Decomposed Low Rank Adaptation (DoRA), to fine-tune GPT-2.

2.3.1 Low-Rank Adaptation (LoRA)

LoRA is a clever parameter efficient fine-tuning method that introduces a pair of low-rank
decomposition matrices (denoted by A and B in Fig. 1) to update the underlying model's
weights. LoRA updates only these small matrices instead of updating all the weights. This
reduces the total trainable parameters to fine-tune the model on new datasets. Edward Hu, et
al's work fine-tunes GPT-2 transformer on MATH and GSM8k datasets by applying LoRA on

self-attention layers.

7 B A

| b=0 |
]_ shared
Pretrained Weights | across layers
4B

W e Hd!:i

shared
across layers

N 4
x| | [- frozen
B - trainable

dim;,

Fig 1: LoRA architecture

Enhancing LLM's Math and Theorem Proving Abilities

2.3.2 Decomposed Low-Rank Adaptation (DoRA)

Although low-rank adaptation reduces the memory footprint by freezing the underlying
model, we often observe a gap when compared to full training. DoRA tries to close this gap by
introducing one more matrix decomposition step by breaking down the original weight matrix W
into two component matrices Magnitude (M) and Direction (D), and then applies LoRA only on
the Direction matrix [4]. The intuition behind this decomposition is that Direction of the weights
adapts to the new task, but the magnitude can remain the same.

Pretrained | 1 Merged
Weight | — Frozen Weight
“’IU = R-l’xl.— — Trainable Wl’ c Rr.h:k
Decompose
(Initialize) Merge
Magnitude __ _ _ *________ Magnitude __ _— _ ______
1 m= ||W’n||.e € Rlxi‘ : : me er.i.- :
1
Direction - - - - - 2§ —————— - Direction - - - - - 3@ —————— .
jr 1/||[Wa \1 r’ 1/||V + AV]|. \|
I 1 1 .
! , | Adapt | dL .
: Pretrained | | }3 .
' Weight : a AVer® !
: | : Pretrained B I
| V=W;e Rdxk : | Weight i :
| 0 | Ve Rc!ﬂ' A i
I | | A |
I i 1 i

. e e = == e e = ===

Fig 2: DoRA Architecture. Courtesy: NVIDIA’'s blog post

2.4. Mixture of Experts (MoE) Architecture

Instead of a single network processing all information, a Mixture of Experts (MoE)
architecture consists of many smaller "experts" and a "gating network" (or router) [15] [16]. The
router’s job is to pick a small subset of experts (top k) to process any given token. This way, the
model can grow large with lots of experts, yet maintain a small workload for each input.
Because this sparse architecture activates fewer experts to generate a token, it requires fewer

resources and mitigates catastrophic forgetting.

Enhancing LLM's Math and Theorem Proving Abilities

¥

! “f|FFN1 | (Pemz]| Frns | [Frma |
[Add + Normallze] H
| Switching FFN Layer p =065
t h
[Add + Narmalize [t | Flovter |
1 4 4
. Jl Il -
Self-Attention 44 Add + Normalize |‘7
! t f
* . Self-Attention
.
N Positional i Positional
~ embadding embadding ?
N
»[IT1TT1] w[ITTTT]
More Parameters

Fig 3: Mixture of Experts (MoE) architecture

2.5. Post-Training Techniques

Pre-trained LLMs are good at predicting the next word, but not at following human
instructions or engaging in a conversation. We apply post-training techniques to transform these
models into capable assistants as they align a model's general knowledge with its ability to
apply that knowledge in a useful and reliable manner. The primary methods used in our project

are illustrated in the diagram below.

Enhancing LLM's Math and Theorem Proving Abilities

Step1 Step 2 Step 3
Collect demonstration data, Collect comparison data, Optimize a policy against
and train a supervised policy. and train a reward model. the reward model using

reinforcement learning.

A promptis A prompt and A new prompt »
sampled from our Explaia tharmoen several model Exotain e mocn is sampled from Mooy
prompt dataset. landing to a & year old outputs are landing to a & year old the dataset. about frogs
sampled.
v i © o | y

A |abe|el‘ Expelain grasily.. Explain war._. The pol |CV -

. .0
demonstrates the @ @ (0] generates %
desired output samthect oy an output. %S¢

. Z | S —
b eha‘\f lor. Some people went ‘In

to the moon,
A labeler ranks

+ the OUtDUtS from @ Onee upon a time..
This data is used ST best to worst. 0-6.0-0 \
to fine-tune GPT-3 M The reward model .
with supervised '\.\;s'ag/ calculates a 225
learning. \l reward for A0
d 4 This data is used au the outpu. N
EIEE to train our M I
reward model. .W The reward is
r
k
0-0:-0:-0 used tg update
the policy
using PPO.

Fig 4: A diagram illustrating three steps in the Post-training phase [23]

2.5.1 Supervised Fine-Tuning (SFT)

SFT is usually the first phase in the post-training process, and its purpose is to adapt a
model to behave like a helpful assistant. In this phase, the model is trained on a high-quality
dataset consisting of prompt and response pairs that demonstrate the desired behavior. It
teaches the model an appropriate tone for conversation and to reason thoroughly. Datasets like
MATH and GSM8k are perfect for this because they include detailed solutions forcing the model
to replicate the reasoning process. This way, SFT helps the model become both understandable

and reliable in its responses.

2.5.2 Reinforcement Learning and Preference Alignment

After SFT, a model's behavior is further refined using feedback on its outputs. While
traditional Reinforcement Learning from Human Feedback (RLHF) usually trains a reward model

separately, recent advances introduced methods that offer greater stability and efficiency.

-

Enhancing LLM's Math and Theorem Proving Abilities

e Direct Preference Optimization (DPO): DPO is a technique that trains the model directly
on a dataset of preferred and rejected responses. It uses a special loss function that
directly pushes the model to favour the probability of generating the preferred response
over the rejected one, instead of a separate reward function.

e Group Relative Policy Optimization (GRPO): GRPO is a newer RL technique based on
rejection sampling. During training, the model generates multiple candidate responses
for a given prompt and a reward model or another heuristic then scores these
responses. The model is fine-tuned only on the highest-scoring or winning response.
DeepSeek-R1 technical report demonstrates that this feedback loop allows the model to

incrementally improve its correctness [22].

2.5.3 Model Distillation

Model distillation is a "student-teacher" technique where knowledge from a large,
powerful "teacher" model is transferred to a smaller and faster "student" model. This is achieved
by having the teacher generate a large, high-quality synthetic dataset, which is then used to
fine-tune the student. This process is one of the main principles used in the open-r1 project as it
applies the reasoning skills of the larger model to create a smaller model that mimics the same
outputs. It provides a way to build small models that are still powerful enough for real-world use

[22] instead of training models from scratch.

2.6. Tool-Augmented Reasoning

Language models aren't always exact or reliable with their facts, as they can't look up
information instantly. They tend to make mistakes with complex numerical calculations and
struggle to follow strict logic. Tool-Augmented Reasoning is another strategy for overcoming

these fundamental limitations.

This technique utilizes LLM as a brain that can delegate tasks to specialized software.
When the model recognizes that a task exceeds its own capabilities, it issues a query for the
appropriate tool and then consumes the tool's output back into its reasoning process to
generate a final answer. It combines the LLM's wider understanding of the language with the

accuracy of specialized software tools. Some of the tools are listed below:

Enhancing LLM's Math and Theorem Proving Abilities

e Computer Algebra System (CAS): These are special software tools for manipulating
algebraic expressions and calculus instead of just performing mathematical calculations.
Mathics [8], an open-source Mathematica-like CAS, is used to offload tasks like solving
complex equations or computing integrals.

e Proof Assistants: For tasks that need formal verification, proof assistants can carefully
check the proof steps or tactics generated by an LLM. We used Lean4 [5], a dependent
type theory proof assistant, to make sure all generated proofs are valid.

e Code Interpreters: For executing code, performing complex simulations, or handling data
analysis.

e Information Retrieval Systems: To access proprietary information from external sources

like search engines, databases, or APlIs.

Agentic frameworks help coordinate how the LLM interacts with different tools. They
make it easier to define tools, understand when the LLM wants to use a tool, and manage the
process of executing those tools. In this project, we use LangChain [9] to create the agent and

to communicate with external Mathics and Lean tools.

Enhancing LLM's Math and Theorem Proving Abilities

3. Preliminary Work

3.1 Objective

This first phase of the project validates three core hypotheses for enhancing LLM
reasoning on a small scale: (i) that a base LLM's mathematical abilities could be improved via
PEFT on specialized datasets; (ii) an LLM could be augmented with a symbolic computation
engine for performing algerbic calculations and (iii) an the proofs that it generates could be

verified using a proof assistant software.

3.2 Methods

Model and PEFT

We implemented DoRA, an advanced PEFT technique, to fine-tune GPT-2 on subsets of
the MATH and GSM8k datasets. A learning rate of 5e-5 and a small batch size were used in the
training process. The resulting fine-tuned models were published to the Hugging Face Hub as

rkumar1999/gpt2-fine-tuned-math and rkumar1999/gpt2-fine-tuned-gsm8k.

Integration With External Tools

We buiilt a unified pipeline by integrating Mathics, a symbolic computation tool, and
LEAN, a formal proof assistant, to solve complex mathematical word problems. Our main goal
was to show how combining these tools with LLMs can enhance their ability to tackle problems

that require symbolic understanding and theorem proving.

3.3 GSM8K/MATH Fine-tuning

3.3.1 Datasets

1. MATH dataset is a compilation of 12,500 high-school-level math problems with varying
difficulty levels ranging from 1 to 5 and is used to evaluate the mathematical
problem-solving abilities of machine learning models. 7,500 problems are designated for
training, and 5,000 for testing. It covers topics such as Prealgebra, Algebra, Number

Theory, Counting and Probability, Geometry, Intermediate Algebra, and Precalculus.

10

Enhancing LLM's Math and Theorem Proving Abilities

2.

Each problem is formatted in LaTeX with visual elements generated using the Asymptote
vector graphics language. Solutions include step-by-step derivations and a boxed final
answer, facilitating interpretability and learning using Chain of thought , as proposed by
Jason Wei et al.

The GSM8k (Grade School Math 8K) is another high quality dataset that consists of
8500 grade school math problems that need multiple reasoning steps to be solved. It
presents unique challenges as it requires the model to clearly understand problem

statements and engage in step-by-step reasoning to find the right solutions [2].

11

Enhancing LLM's Math and Theorem Proving Abilities

3.3.2 Results

« Finetuned Model:

model_name = 'rkumar1999/gpt2-fine-tuned-math'
tokenizer = GPT2Tokenizer.from_pretrained(model_name)
model = GPT2LMHeadModel.from_pretrained(model_name)

generate_response(model, tokenizer)

Question:
Find the value of x if 2x + 3 =11

Generated Solution:

\left[\begin{array}{11} \right] &= \dfrac{1}{2x+3x} & \cdot \frac{11}{11}&=\left(11lx\right) \end{align}\right\]$

Now let's look at the eguation for the sum of x and y. We can see that we can solve for x by multiplying by the square root of

« Base GPT-2 Model:

model_name = 'gpt2'
tokenizer = GPT2Tokenizer.from_pretrained(model_name)
model = GPT2LMHeadModel. from_pretrained(model_name)

generate_response(model, tokenizer)

Question:
Find the value of x if 2x + 3 =11

Generated Solution:
12345678910 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 3@ 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45

Fig 5: Fine tuning on MATH dataset

12

Enhancing LLM's Math and Theorem Proving Abilities
« Finetuned Model:

device = th.device("cpu")

tokenizer = GPT2Tokenizer.from_pretrained("rkumarl999/gpt2-fine-tuned-gsm8k")
model = GPT2LMHeadModel. from_pretrained(" rkumarl999/gpt2-fine-tuned-gsm8k")
model. to(device)

generate_response(model, tokenizer)

Triggered calculator, answer 1575
what is the value of 21%75 equals to?
21475 = 21#75 = 21#75 = $=<21475=1575=>15

« Base GPT-2 Model:

device = th.device("cpu")
tokenizer = GPT2Tokenizer.from_pretrained("gpt2")
model = GPT2LMHeadModel.from_pretrained("gpt2")

model.to(device)

generate_response(model, tokenizer)

what is the value of 21%75 equals to?

I'm not sure. I'm not sure if it's a good idea to use a calculator, or if it's a good idea to use a calculator, or if it's a qu

Fig 6: Fine tuning on GSM8K dataset

3.4. Integrating Mathics and LEAN with LLM
3.4.1. Mathics

Mathics is an open source computer algebra system. It is a free alternative to

Mathematica and supports a variety of features such as algebraic manipulations, calculus,

13

Enhancing LLM's Math and Theorem Proving Abilities

plotting, and also handles symbolic computations, function definitions, and data visualization.

Mathics provides a flexible way for collaborating with LLMs using a command line interface [8].

3.4.2. LEAN

LEAN provides formal verification to mathematical statements. We choose LEAN as it is
an open source software and used by many mathematicians to build and verify proofs [5]. The
user writes tactics to transform the goal into sub-goals, and LEAN kernel validates these tactics.

The LEAN proof below shows the existence of infinite primes.

import Mathlib.Data.Nat.Factorial.Basic
import Mathlib.Data.Nat.Prime.Defs
import Mathlib.Order.Bounds.Basic
namespace Nat
-- Theorem: For any "n’, there exists a prime "p° such that "'n < p".
theorem exists_infinite primes (n : M) : 3 p, n < p A Prime p :=
-- Let "p° be the smallest prime factor of "'n! + 1.
let p := minFac (Nat.factorial n + 1)

-- 'n! +1° is not 1 (since "n! + 1 > 17).
have f1 : n! + 1 # 1 := ne_of_gt <| succ_lt succ <| factorial pos _

-- 'p is prime by definition of “minFac® (since "n! + 1 # 17).
have pp : Prime p := minFac_prime f1

-- We need to show "n
have np : n < p := by
-- Assume "p < n for contradiction.
apply le of not_ge fun h =>
-- If "'p < n, then "p° divides "n!° (from definition of factorial).
have hl : p | Nat.factorial n := dvd_factorial (minFac_pos _) h
-- "p divides "n! + 1° (by definition of “minFac’).
-- If "p divides "n!" and "n! + 17, it must divide their difference 1
have h2 : p | 1 := (Nat.dvd add_iff right h1).2 (minFac_dvd)
-- But a prime “p° cannot divide "1 . This is a contradiction.
exact pp.not_dvd_one h2
-- combine p and properties (n < p, Prime p), to complete the exists goal.

(p, np, pp)

< p . Proof by contradiction:

end Nat

14

Enhancing LLM's Math and Theorem Proving Abilities

Proof to demonstrate that for any natural number n, there exists a prime p=n by considering the

smallest prime factor of n!+1. It uses the fact that n!+1 cannot be divisible by any prime <n.

3.4.3 Integration using Langchain

1. Mathics was invoked through a LangChain agent using its MathicsSession class to
handle symbolic computations. For example, queries like "Find the integral of sin%(x)

from O to 11/2" were passed to Mathics, which returned correct results.

2. We created a custom Proof Assistant tool to work with LEAN. It uses a pre-trained
sequence-to-sequence model [6] that can generate a variety of tactics based on a proof
state. Some key components are:

e Proof Initialization: We used LEAN’s read eval print loop (REPL) to define initial
an initial proof state and placeholders for any unresolved steps

e Tactic Generation: We used a sequence-to-sequence model to generate several
potential tactics for each proof state, which are iterated over to recursively search
valid paths

e Proof Validation: We used LEAN to provide feedback on unresolved goals and

verify each step to ensure correctness.

15

Enhancing LLM's Math and Theorem Proving Abilities

Algorithm for PROOFSEARCH(thm)

Input: thm: Lean4 theorem declaration with a 'sorry' goal
Output: A sequence of tactics that discharges all goals, or FAIL

Procedure PROOFSEARCH(thm):
P «— LaunchREPL()
DefineWithSorry(P, import Mathlib; open Real; open Nat; open
BigOperators)
(so, go) <« DefineWithSorry(P, thm, env = 0)
if (so, go) is None then
return FAIL

return DFS(go, So, @, []) // Initial call to DFS (go: initial goals, so:
initial score, ©: initial depth, []: initial proof)

Function DFS(g, s, d, T):
if d = DEPTH_LIMIT then
return None // Exceeded depth limit
T « GenerateTactics(g, k = NUM_CANDIDATES)
for each t in T do
(s', g', M) « ApplyTactic(P, s, t)

if (s', g', M) is None then
// syntax/type error, etc.
continue // Try the next tactic

end if
if |G'| = @ then

return 1 appended with t // Success: goals discharged
end if

if s' = s + 1 and |G'| > @ then
g' «— G'[@] // Focus on the first remaining goal
// Recursively search deeper
m' «— DFS(g', s', d + 1, 1 appended with t)
if ™" # None then
return m' // Proof found in a deeper search
end if
end if
end for
return None // No successful path found at this depth

16

Enhancing LLM's Math and Theorem Proving Abilities

on. e
session = Mathi ion{add_built , catch_interrupt=
result = session.evaluate(expression).to_python()
return str(result)

nd the proof a t ition in LEAN. The for) f e inp sh) 5 : 'th
Do not g e entire proof and do not use s. Use e r to for

from lean_tool import Proof

lean_assistant = ProofA

result = lean_assistant.proof_search(expression)
return ", ".join(result or [])

math_tool = Tool(
name="MathTool",
func=perform_math,
description="Computes complex mathematical exp ns using Mathics, a computer algebra

)

lean_tool = Tool(
name="LeanTool",
func=perform_lean,
description="""Use this too
st give the theorm followed

)

tools = [math_tool, lean_tooll]

0.0

Fig 9: Using Tool class of langchain to invoke Mathics and LEAN

3.4.4. Results

The pipeline integrates an LLM with both the Mathics and LEAN tools, enabling it to
accomplish tasks that would be too complex for the model to solve on its own. The LLM figures
out that it has to call a specific tool by looking into the tool’s description expressed as
docstrings. The image below shows a pipeline invocation where we simultaneously added two
numbers using “perform_math” and verified the correctness of the result using the

“perform_lean” Proof Search tool.

17

Enhancing LLM's Math and Theorem Proving Abilities

agent_executor = initialize_agent(
tools,
model,
agent="ch versational-react-description”,
verbose= B
prompt=prompt,
memery=memory

result = agent_executor
"input": "/ 0 adds yri $3 an s 3 y compute the sum of pric verify the calculation in Lean."

})

> Entering new AgentExecutor chain...

Observation:
Thought:

theorem sum_of_three_and_five : 3 + 5 = 8 := by sorry
<Popen: returncode: None args: ['lake', 'exe', 'repl']> theorem sum_of_three_and_five : 3 + 5 = 8 := by sorry

Observation: norm_cast
Thought:

Fig 10: Invoking the Langchain pipeline to solve multiple tasks at once

The experiments in the initial phase were promising, but they pointed out the limitations
of a recursive approach to solving a proof, which was both time-consuming and computationally
infeasible. To better achieve our main goal of improving formal theorem proving, we scaled up to

larger LLM architectures and adopted more advanced training techniques.

18

Enhancing LLM's Math and Theorem Proving Abilities

4. Infrastructure and Setup

In this whole project, we produced multiple fine-tuned checkpoints and adapters. To
easily evaluate and compare them, we built an interactive user interface and chat application.
This section describes the underlying technical framework to help users compare model
evaluations. It uses the high-performance Text Generation Inference (TGI) for GPU-accelerated

deployment.

4.1. Text Generation Inference (TGl)

TGl is an open-source project created by Hugging Face to deploy large language
models smoothly in production-grade settings. It is optimized for GPU performance [15] and
offers several benefits for our project.

We achieved GPU acceleration through CUDA kernels and smart memory management
to maximize throughput on NVIDIA GPUs. For robust evaluation, we set up Model Serving by
configuring every fine-tuned variant (base, SFT, GRPO, OBT) as its own isolated Docker
container running on a different port, allowing us to query them all concurrently without
interference.

TGI automatically manages Dynamic Batching, which combines multiple inference
requests to keep the GPU busy while maintaining high throughput. Also, the Docker container
handles all dependency management (like installing Flash-Attention and PyTorch), simplifying
our setup. All TGl instances expose a REST API with a standard /generate endpoint. We
deployed these TGI containers on cloud GPU instances (Lightning.ai with H200 GPUs), with

each model hosted on separate ports starting from 8080.

4.2. Chat Application

We built a chat application and inference engine to evaluate our different finetuned
models created during this project.

The frontend is a React.js based application for a user-friendly interface. It includes
model selection dropdowns, a chat box for submitting prompts, and a split-pane view showing
responses from two models for side-by-side comparison. Users can also adjust generation

settings like max tokens and see live updates on the status of the TGI endpoints.

19

Enhancing LLM's Math and Theorem Proving Abilities

The backend uses FastAPI server as a middleware whose role is to track all TGI
endpoints and provide RESTful APIs to direct incoming requests to the correct port. The
inference layer manages model inference using Docker containers deployed on cloud instances
with access to GPUs. Each container loads a specific model checkpoint along with all necessary

parameters, such as port number and temperature, and operates independently.

LLM Model Comparison

Llama 3.2 3B (Base) X
Maedel 1:| « Llama 3.2 3B (SFT Prover) v' | Maodel 2 Llama 3.2 3B (SFT Prover) v v {(i'(

You are a helpful Assistant that provi ll-reasoned and valid Lean 4 proofs.First < i fthil ive the final proof in a fenced " "“leand” " " b Given a property ‘N’ of natural numbers
that holds for 0 and wder t peration (i.e., if "N(x) " then "N c)), at "N 5. theorem succ25_mem_of_zero_and_suc :MNat = Prop) (h0: NO) (hS: v

¢ > N x.51

by { intros, cases } by goal_by : induction on x 0 | h0 1| hS (ind.h

| have a few guestions and comments on the Leal

parameter "N
hould be replaced with '"h0". The "hS" int ond
gument should be a "hS" instead of "hS (h0) . The function should be d s fi theorem

mem_of_zero_and_: closed (N : Na ¥] N

natural number

on on the natural nun y induction on x 0 |

2. The type of "ind" is not defin

*, then it also

User Prompt

Fig 11: Chat application and inference engine

4.2.1 Usage in Experiments

This infrastructure played a key role in conducting the experiments 1-3 smoothly. In Experiment
1, we used our interface to put the base Llama-3.2-3B model up against fine-tuned versions
using SFT and GRPO, focusing on how well they could generate Lean4 proofs. The
side-by-side comparison made it clear how each model differed in their proof structure, choice of

tactics, and how they handled tricky edge cases.

20

Enhancing LLM's Math and Theorem Proving Abilities

For Experiment 2, we compared OBT-style fine-tuned model versus the base version on
theorem proving tasks. The interface displayed Lean4 code with syntax highlighting along with
its thought process (or CoT), making it easy for users to check the accuracy and style of each

proof in an interactive fashion.

Experiment 3 showed the effects of different training regimes (mixing of tasks vs sequential
training) while fine-tuning a Mixture-of-Experts (MoE) model by comparing the outputs
side-by-side on the interface. This experiment showed some common mistakes to avoid

catastrophic forgetting when we are fine-tuning on multiple tasks.

This infrastructure provided a user-friendly framework for model evaluation throughout the
project. It separates concerns across three architectural layers: presentation, orchestration, and
inference. We were able to compare the outputs of different models on identical prompts and

also experiment with hyperparameters like the number of tokens, temperature, etc.

21

Enhancing LLM's Math and Theorem Proving Abilities

5. Experiment-1: Finetuning Llama-3.2-3B using

open-r1

5.1 Objective

This experiment explored the effects of different data supervision styles and post-training
techniques on an LLM’s ability to generate formal proofs. We fine-tuned a mid-sized model,
meta-llama/Llama-3.2-3B-Instruct, across two distinct data regimes using SFT+GRPO pipeline
from the Hugging Face open-r1 handbook [24]:

1. Formal-Only Supervision: Training on Lean theorem statements and their corresponding
formal proofs without natural language chain of thoughts.
2. Text-Guided Supervision: Training on Lean statements and proofs, along with their

natural language explanations and step-by-step reasoning behind choosing each tactic.

The hypothesis is that text-guided supervision will substantially improve the model's
correctness, logical stability, and ability to generate valid Lean4 proofs compared to training on

just the formal code.

5.2 Data

Two datasets were used to create the different supervision regimes:

1. deepseek-ai/DeepSeek-Prover-V1: This dataset constitutes pairs of Lean theorem
statements and their raw proof code. It provides formal-only supervision with little to no
natural language rationale.

2. Cartinoe5930/DeepSeek-Prover-V2-generation: This dataset contains synthetic
mathematical problems accompanied by step-by-step natural language solutions and

their corresponding Lean proofs.

5.3 Method

We conducted the experiments using sft.py and grpo.py scripts from the Hugging Face

Alignment Handbook and open-r1 repositories [24]. A custom chat template based on the Llama

22

Enhancing LLM's Math and Theorem Proving Abilities

3 format was used to structure the prompts with special tokens (<|start_header_id|>, etc.),

ensuring the model received a consistent system prompt along with conversational history.

5.3.1 Prompt Format

We used Llama 3 chat template to help the model follow conversations more effectively.
This template structures the input as a series of messages, each marked with special control
tokens that indicate turns and when a message ends. It has special token to guide the
conversation flow. The prompt starts with a <|begin_of_text|> to mark the start of a
conversation, followed by a series of messages where cach role—system, user, or assistant—is
wrapped between <|start_header_id|> and <|end_header_id|>. <|eot_id|> marks the end of a
message. The add_generation_prompt flag ensures that the final <|start_header_id|> assistant
<|end_header_id|> tokens are appended, prompting the model to begin its turn. This
token-based structure helps instruction-tuned models to produce clear outputs by distinguishing

between instruction, user questions, and the previous context.

{%- if messages and messages[@]['role'] == 'system' -%}
<|start_header_id|>system<|end_header_id|>

{{ messages[@]['content'] }}

<|eot_id|>

{%- else -%}

<|start_header id|>system<|end _header_id|>

{{ default_system }}

<|eot_id|>

{%- endif -%}

{%- for m in messages -%}
{%- if not (loop.first and m.role == 'system') -%}
<|start_header_id|>{{ m.role }}<|end_header_id|>
{{ m.content }}
<|eot_id|>
{%- endif -%}
{%- endfor -%}

{# When generation is requested, open the assistant header #}
{%- if add_generation_prompt -%}
<|start_header_id|>assistant<|end_header_id|>

{%- endif -%}

23

Enhancing LLM's Math and Theorem Proving Abilities

5.3.2 GRPO Custom Reward Function

We developed a custom GRPO reward function that evaluates each generated proof
against its corresponding ground-truth solution. It assigns a perfect score of 1.0 for an exact
match and a partial score based on the Jaccard similarity between tokens. It also penalizes

incomplete proofs if they contain keywords like "sorry".

Algorithm for Lean Proof Reward Function

Input: Model completion C, Gold proof G
Output: Reward score s € [-1, 1]

1. Extraction and Normalization:
C_code « ExtractLastLeanBlock(C)
G_code « ExtractLastLeanBlock(G) (if applicable, else use G directly)
C_norm «— Normalize(C_code) // Remove comments and collapse whitespace
G_norm «— Normalize(G_code)

2. Scoring Logic:
if C_norm is empty then
return -0.8 // Penalize for no proof generation
end if

if C_norm = G_norm then
return 1.0 // Perfect score for exact match
end if

--- Partial Credit Calculation

s_sim <« 0.7 x JaccardSimilarity(C_norm, G_norm) // Score based on
token overlap

s_format «— 0.1 if C has a Lean code block, else 0.0

s_penalty « -0.5 if C_norm contains 'sorry', 'admit', or 'by skip’,
else 0.0

S < s_sim + s_format + s_penalty
return max(-1.0, min(1.9, s)) // Clip final score to the range [-1, 1]

24

Enhancing LLM's Math and Theorem Proving Abilities

5.3.3 Training Hyperparameters

The following hyperparameters were used to fine-tune the base llama model:

1. Epochs = 2, LR = 3e-4 with cosine schedule, weight decay = 0.0.
2. Per-device batch size = 2, gradient accumulation steps = 8 (effective batch = 16).
3. Warmup ratio = 0.03; log steps = 10; save each epoch (or = 5k steps).
4. Seeding and TF32/bf16 enabled for throughput; Flash-Attention v2 for attention kernels.
5. QLoRA: 4-bit NF4 quantization (bitsandbytes), bf16 compute, LoRA adapters (rank = 16,
a = 32, dropout = 0.05) on causal-LM projections.
Context: model_max_length = 8192
Optimizations: Flash Attention v2 kernel.
Setup: H200 GPU by lightning.ai
5.4 Results

The fine-tuning process produced three distinct model artifacts, which are publicly available on
the Hugging Face Hub.
1. SFT-1 (Non natural language guided): rkumar1999/Llama3.2-3B-Prover-openr1-SFT
2. SFT-2 (Natural language guided data):
rkumar1999/Llama3.2-3B-Prover-openr1-distill-SFT
3. GRPO (RL finetuned after SFT-2): rkumar1999/Llama3.2-3B-Prover-openr1-distil-GRPO

5.4 1 Evaluation Rubric

To measure performance, a rubric was developed to score each model's output on a scale of
100. It focuses on proof validity, efficiency, explanation quality, and structural integrity.

Sub-Criterion and
Main Category Metric Max Points Scoring Breakdown

Measures if the proof is valid and correct.

* 40 pts: Pass (100% syntactically valid and
logically correct).

* 20 pts: Partial Credit (Correct strategy but
contains a minor, fixable error).

+ 5 pts: Fail (Syntactically valid but logically

wrong).
Validation Score * 0 pts: Fail (Syntactically invalid,
Proof Score (60) (Pass / Fail) 40 incomplete, or non-existent).

25

Enhancing LLM's Math and Theorem Proving Abilities

Efficiency Score

A = |Generated Lines -
Ideal Lines|

Max (0, 20-A)

Component Checklist

Explanation Score (25) (Checklist)

Format and Integrity
Score (15)

Quality Checklist
(Checklist)

Structural Checklist
(Checklist)

Generation Integrity
(Pass / Fail)

20

15

10

10

Measures the deviation of proof length from
ideal proof length

Measures if the explanation is complete and
accurate.

5 pts: Goal Identification (Accurately states
the theorem).

5 pts: Strategy Outline (Describes a valid
high-level plan).

5 pts: Logical Soundness (Free of major
factual errors).

Measures if the explanation is relevant and
well-formed.

* 5 pts: Proof Alignment (The explained
strategy matches the generated code).

* 5 pts: Conciseness (Zero "thought loops"
or significant verbal repetition).

Measures if the output follows the required
format.

* 5 pts: Explanation Present (An
explanation section exists).

5 pts: Code Block Present (A fenced Lean
4 code block exists).

Measures against catastrophic failures.

* 5 pts: Pass (No severe repetition,
gibberish, or truncation).

* 0 pts: Fail (A severe generation error is

5 detected).

Table 1: Scoring rubric for evaluating models.

26

Enhancing LLM's Math and Theorem Proving Abilities

5.4.3. Evaluation Results

The models were evaluated on a set of benchmark theorem-proving tasks. The table below
shows the scores for the base model and each fine-tuned variant.

Prompt

theorem
imp_chain
(abcdef:
Prop)
(hi:a—b)(h::
b—c)
(hs:c—d) (hs:
d—e)

(hs:e —f):
a—f:=

theorem

succ25 mem_of

_zero_and_succ
_closed

(N: Nat —
Prop)

(h0:NDO)

(hS: VvV {x}, Nx
— N x.succ) :

N 25 :=

SFT-1
Base Model Scor (NonNL Scor Scor Scor
(Llama-3.2-3B) e dataset) e SFT-2 (NL dataset) e GRPO+SFT e
by
intro a
assume h : a
induction h on h
generalizingb ¢ have h_main:a —f have h_main:a —f
de = by = by
{h:a=> intro ha intro ha
induction' h on h have hb: b :=h: ha have hb: b :=h: ha
generalizing e f intro h have hc:c:=h:hb have hc:c:=h:hb
{h:a=>..} simp_all have hd: d:=hs hc have hd: d:=hs hc
. only [hi, hy, have he : e ;== h: hd have he : e ;== hs hd
(Enters a hs, hs, hs, have hf : f := hs he have hf : f := hs he
severe true_and] exact hf exact hf
repetitive loop) 5 tauto 10 exact h_main 93 exact h_mai 93
by
have h1: N 1 := by
have h2 : N 2 := by
by
have h1: N1 :=by ...
have h19: N 19 :=
by have h24 : N 24 := by
have h19_1:N 18 := have h24 1:N 24 :=
by induction on h18 hS 23 h23
xin 25...; have h19 2: N 19 := exact h24 1
case zero => by hS 18 h19_1 have h25 : N 25 := by
assumption; intro h exact h19 2 have h25 1:N 25 :=
case succ X' => simp [hO, (Correct but hS 24 h24
hS (succ x') (hS hS, h] truncated by token exact h25_1
x") 40 aesop 10 limit) 55 exact h25 80

27

Enhancing LLM's Math and Theorem Proving Abilities

theorem
add_zero _eq_s
elf (n: N):
n+0=n:=

theorem
succ_add_one_
eq_add two (n:
N) :
nsucc+1=n+
2:=

theorem
succ_pred_self
(n:N)(h:n>0)

(n-1).succ=n

theorem
two_divides_do
uble (n:) :
2| n+n:=

by

induction n with
(O | succ n) =>
| 0 => -- Base
case:0+0=0
by simp

| succ n => --
Inductive step
by simp

by

apply
succ_add_one_
eq_add_two_in
d

induction n

| base n => rfl

| succ n ih => by
induction n

import Lean
theorem ... :=
by

have n.succ =n
+1, ...

have (n -
1).succ =n, ...
(Enters a deep
repetitive loop
of
self-correction)

by (reflexive n)
and (or(n% 2 =
0) (n % 2 #0))
and (ifn % 2 =
Othen2 | n
else2 | n+1)

intro h
40 simp [h]

intro n
simp
[n.succ_ad
d one_eq_
40 add_two]

intro h
5 simp [h]

intro h
simpa
10 using h

10

10

10

10

28

haveh:n+0=n:=
by

simp

exact h

have h_main ... :
simp
[Nat.succ_eq _add o
nej

<;>ring

<;>simp_all

<;>ring

<;>simp_all

<;>ring

by

have h_main ... := by
cases n with

| zero => ...

| succ n =>

simp [...]

<;> (try omega) <;>
(try simp_all ...)

<;> (try { cases n
with ... }) ...

(Full "kitchen sink" of
broken tactics)

(Enters a repetitive
thought-loop in the
explanation, failing to
produce a final proof
block)

98

40

40

5

haveh:n+0=n:=
by

rfl

exact h

have h_main ... := by
simp
[Nat.succ_eq_add _on
e]

<;>ring

<;>simp_all

<;>ring

<;>simp_all

<;>ring

have h_main ... ;= by
cases n with

| zero => contradiction
| succ n =>

cases n with
| zero =>
simp

[Nat.succ_eq_add on
€] <;> norm_num

| succ n =>

simp_all [...] <;>
ring_nfat* <;>
omega

have h_main ... := by
usen

-- We need to show
that2*n=2%n

<;> simp [mul_comm]
<;>ring

<;> omega

exact h_main

98

40

45

94

Enhancing LLM's Math and Theorem Proving Abilities

theorem
two_divides_do
uble (n:) :
2| n+n:=

begin
assume n : [N,
have n_is_even

‘n+n=2%n:=
by ring,

have
two_divides_n:
2]2*n:=by
ring,

have

two_divides_do
uble:2 | n+n
= by

from
two_divides_n,
end

intro h
simpa
40 usingh 0

10

have h_main ... := by
rw

[Nat.dvd_iff mod_eq
_zero]

simp [...]

<;> induction n with

| zero => simp

| succ nih =>

simp [...]atih +
<;>omega
(Incorrect use of
induction)

GRPO+SFT

29

have h_main ... := by
haveh:n+n=2%*n
= by

ring

rw [h]

simp

[Nat.dvd_iff mod_eq_

zero, Nat.mul_maod,
Nat.add_mod]
<;> omega

45 exact h_main

Table 2: Scoring 1. Base Model, 2. SFT over Non-CoT data, 3. SFT over CoT data, 4.

93

Enhancing LLM's Math and Theorem Proving Abilities

6. Experiment-2: OpenBootstrappedTheorem (OBT)
Style Finetuning for Lean 4 Proof Synthesis

6.1 Objective

For this experiment, we implemented a fine-tuning pipeline on the OBT dataset [14]. This
dataset consists of examples that have natural language explanations embedded into formal
proofs. We trained a Llama 3 instruction model using two concepts introduced in TheoremLlama
research paper [13]. The goals were to (i) improve end-to-end Lean proof synthesis quality, (ii)

reduce syntax errors, and (iii) stabilize long tactics via few-shot block training and curriculum

sorting.
(b) Leand Prover Training = = = = C O "= == == === ======================"1
| 1
1 Record 1 Easy data :
I ' i=2 | ! i Record 2
. Recard 3 :
I e —— || i |iri——— i o®o |
1 R Record N-2 |
1 “ i |i+p|i+2 |
1 Hard data
OBT ..] |
: Block Training Curriculum o Insnuc]tj{)n . :
I Data Sorting inetune Liama I
Fig 13: TheoremLlama fine-tuning process
6.2 Data

Primary dataset: OpenBootstrappedTheorem
(RickyDeSkywalker/OpenBootstrappedTheorem)[14], containing natural-language (NL)
statements+proof rationales paired with Lean statements, commented/bootstrapped Lean

proofs, and raw Lean code.

Schema mapping: Instead of splitting the natural-language blob, we kept the entire “informal

statement and proof” text as a single field (nl_text) to preserve global context. A normalization
pass mapped heterogeneous column names (e.g., Generated_informal_statement_and_proof,
Statement, Proof, Commented_proof) to a consistent schema {name, nl_text, lean_statement,

lean_proof_raw, lean_bootstrapped, ...}.

30

Enhancing LLM's Math and Theorem Proving Abilities

6.3 Method

6.3.1 Prompt Format

We adopted manual prompt format using reserved special tokens:

<|start_header_id|>system<|end_header_id|> ... <|eot_id|>, then
<|start_header_id|>user<|end_header_id|> ... <|eot_id|>, then
<|start_header_id|>assistant<|end _header_id|>

Few-shot block training: each block contained a solved example with:
e Natural language version of the theorem and proof
e Lean statement in a fenced code block

e Lean theorem and proof in a fenced code block

6.3.2 Curriculum Sorting

We calculated a difficulty score for all the examples using the formula: d = length of

lean_bootstrapped + 50 x (number of tactic tokens). Then, we sorted the examples from easiest

to hardest. During training, each item picked its few-shot examples from a sliding window to

gradually increase difficulty and avoid sudden jumps in challenge.

31

Enhancing LLM's Math and Theorem Proving Abilities

6.3.3 Pseudocode

Algorithm: OBT Data Preparation Pipeline
Input: Raw Dataset D_raw, Few-shot count k
Output: Formatted Examples E_formatted
1. Schema Unification:
R < new 1list of records
for each row in D_raw do
r «— StandardizeSchema(row)
R.append(r)
end for

2. Curriculum Sorting:
for each record r_i in R do
d_i « EstimateDifficulty(r_i.lean_bootstrapped) // Score on
length and tactic count
end for
0 <« SortIndicesByDifficulty(d o, d_1, ...) // array of indices from
easy -> hard

3. Few-Shot Prompt Construction:
E_formatted <« new list of examples
for each index i in the sorted order 0 do
// Select k easier examples from the curriculum
P_prior_indices « GetPriorExamples(i, 0, k)

// Build the multi-turn prompt

prompt_messages « BuildFewShotPrompt(SystemPrompt,
P_prior_indices, R[i])

// Define the target for completion-only loss

completion « R[i].lean_bootstrapped
if completion is not empty then
E_formatted.append({'messages': prompt _messages, 'completion’:
completion})
end if
end for

return E_formatted

32

Enhancing LLM's Math and Theorem Proving Abilities

6.3.3 Completion-Only Loss with TRL
We used TRL’'s SFTTrainer (= 0.21) with its prompt—completion API. The completion

column is the Lean proof (prefer lean_bootstrapped, fallback to lean_proof_raw). We relied on
TRL to infer completion-only loss without a custom data collator. This focused learning on the

proof generation region and avoided diluting gradients on the prompt side.

6.3.5 Training Hyperparameters

Epochs = 2, LR = 2e-4 (cosine schedule), weight decay = 0.0.

Per-device batch = 1, grad accumulation = 16 (effective batch = 16).

Warmup ratio = 0.03; logging every 10 steps; save each epoch (or = 5k steps).

Eval split = last 1% of curriculum-ordered examples (small sanity set).

Seeding and TF32/bf16 enabled for throughput; Flash-Attention v2 for attention kernels.
QLoRA: 4-bit NF4 quantization (bitsandbytes), bf16 compute, LoRA adapters (rank = 16,

a = 32, dropout = 0.05) on causal-LM projections.

o a0k~ w N~

7. Context: model_max_length = 8192 to accommodate long NL proof rationales + multiple

few-shot blocks.

6.3.6 Implementation Summary

We first performed schema unification with map_row_schema, which selected the first
available field among multiple candidate keys to robustly handle dataset variants. We then
ordered examples by an easy—hard curriculum using a difficulty heuristic that combined
sequence length with counts of common Lean tactic tokens (e.g., simp, rw, apply, aesop,
linarith) to approximate complexity. For few-shot conditioning, we built a prior few-shot pool from
a few-shot window of earlier (easier) items in the curriculum and sample block_k solved
examples (typically 3) to prepend as demonstration blocks. Prompt rendering used
render_example_block for each solved example and then appends the current item with your
exact section headers and terminators, preserving the manual <|start_header_id|>...<|eot_id|>
format. Training was run with TRL's SFTTrainer using

dataset_kwargs={"prompt_column":"prompt","completion_column":"completion"}, enforcing

completion-only loss with no chat_template and no custom collator

Outputs: https://huggingface.co/rkumar1999/llama3.2-3b-obt

33

https://huggingface.co/rkumar1999/llama3.2-3b-obt

Enhancing LLM's Math and Theorem Proving Abilities

6.4 Results

The fine-tuning process produced the resultant model available publicly on huggingface:
rkumar1999/llama3.2-3b-obt

6.4.1

The same evaluation rubric in 7.4.1 was used to score and compare the resultant model

Prompt Base Model Score | Finetuned Model Score
(Llama-3.2-3b) (rkumar1999/llama3.2-3b-obt)
#iH# Lean4 version of by 35 (hy, hz, hs, hs, hs) 50
theorem statement: { assume a,
“lean have h: a,
theorem imp_chain have h: hi a,
(abcdef:Prop) have hs h: a,
(hiza—Db)(h2:b—c) have hs hs a,
(hsIC—>d)(h4Zd—>e) havehsh4a,
(hs: e —f): apply hs }
a—f:=
Lean4 version of -- initial induction 20 -- 25 iterations of N x — N 40
theorem statement induction N on 25 -- base
(explicit 25 iterations, no | case | 0 => h0 | succi=> x.succandNO|O,h=>h0]1,h
induction): hS (N i) =>h1|2,h=>h2]|3,h=>h3]|
“lean 4, h=>h4|5h=>h5]|6,h=>
theorem h6|7,h=>h7|8 h=>h8]|9,
succ25 _mem_of zero h=>h9|10,h=>h10| 11, h=>
and_succ_closed h11]12,h=>h12|13,h=>h
(N : Nat — Prop) 13|14, h=>h14]|15,h=>h 15
(h0:NDO) |16, h=>h16 |17, h=>h 17|
(hS: VvV {x}, Nx >N 18,h=>h18|19,h=>h 19|
x.succ) : N 25 := 20,h=>h20|21,h=>h 21|
22,h=>h22|23,h=>h23|
24, h=>h24|25 h=>h25
Leand version of by 5 add _commn 0 » add_zero 55
theorem statement: induction n with
lean | 0 => sorry
theorem | n.succ => by
add_zero_eq_self (n: contradiction
NM):n+0=n:
Lean4 version of by { assume h : n.succ + 10 -- This theorem states that the 100
theorem statement: 1=n+2; -- assume that successor of a natural number
lean the theorem is true for plus one is equal to the natural
theorem some n number plus two

34

Enhancing LLM's Math and Theorem Proving Abilities

succ_add_one_eq_add -- we want to show that
_two (n: N): n.succ + 1 | the theorem is true for rfl
=n+2:= n.succ
assumption h }
Lean4 version of by 5 -- Proof that the successor of a 20
theorem statement: { apply succ_pred_def, natural number is equal to the
lean apply h, number itself.
theorem succ_pred_self exact (n- 1)} -- This theorem is used to prove
(n:M)th:n>0):(n- the well-foundedness of the
1).succ =n:= natural numbers.
Nat.add_sub_self _
(Nat.succ_pos_iff.2 h) h.
Natural language by by simp [add_comm]
version of theorem and {assumeh:n+n=2"*
proof: n} -- show that 2 divides n + n by
two_divides_double using the commutative property
Twice any natural of addition
number is divisible by 2.
For any n, the number n
+nequals2*n,so?2
divides n + n with
witness n.
Lean4 version of
theorem statement:
lean
theorem
two_divides_double (n :
N):2|n+n:=
Lean4 version of by 5 -- This theorem states that 2 25
theorem statement: (refl : 2 | 2) => divides the sum of a number and
lean (refl:n+n=2*n)=> itself.
theorem (by symmetry => refl : 2 -- In other words, if n is a
two_divides_double (n: | | 2*n) multiple of 2, then n + nis also a
N):2 [n+n:= multiple of 2.
two_divides_add n n

Table 3: Scoring 1. Base Model, 2. SFT finetuned model over OBT dataset

35

Enhancing LLM's Math and Theorem Proving Abilities

7. Experiment-3: Fine-tuning a Mixture-of-Experts

Model on Math and Lean Datasets

7.1 Objective

This experiment quantified the trade-offs between mixed fine-tuning and sequential
(curriculum) fine-tuning on two adjacent but different domains, natural-language math reasoning
and formal Lean proofs using a Mixture-of-Experts (MoE) backbone. We tested the hypothesis
that mixed training better preserved performance across domains, while sequential training

risked catastrophic forgetting on the earlier domain.

7.2 Data

1. Math (NL, stepwise): rkumar1999/Mixture-of-Thoughts-math-cleaned
(cleaned subset from open-r1/Mixture-of-Thoughts; max sequence <4096 tokens)

2. Lean (formal proofs): rkumar1999/DeepSeek-Prover-V2-chat-cleaned
(filtered from Cartinoe5930/DeepSeek-Prover-V2-generation; max sequence <4096 tokens)
Both corpora were length-bounded to fit the model’s context window and avoid overflow during
SFT.

7.3 Setups

We held architecture, optimizer, and PEFT settings constant and vary only the data curriculum:
e Regime A: Mixed (Joint) Fine-Tuning:
Train on a 50/50 interleaved mixture of Math and Lean examples per batch (or per
epoch) with temperature-based sampling if desired to smooth domain imbalance.

Goal: learn both domains concurrently and minimize interference.

e Regime B: Sequential (Math — Lean):
Stage 1: fine-tune on Math only — checkpoint A..
Stage 2: continue from A: and fine-tune on Lean only — checkpoint A..

Goal: measure forgetting in Math after adapting to Lean.

36

Enhancing LLM's Math and Theorem Proving Abilities

Backbone: MoE model (microsoft/phi-tiny-moe-instruct) with identical PEFT/QLoRA settings

across both regimes for a fair comparison.

7.4 Results

7.4.1 Outputs

The fine-tuning process resulted in three distinct model artifacts, each representing a

different training regime or stage. These models are publicly available on the Hugging Face Hub
and serve as the basis for the comparative evaluation in the following section.

1.

Mixed-Domain Model (rkumar1999/Phi-mini-MoE-Mix-Prover-openr1-distill-SFT) This
model is the result of Regime A (Joint Fine-Tuning). It was trained on an interleaved
mixture of the Math and Lean datasets, designed to learn both domains concurrently and
minimize interference between them.

Lean-Specialized Checkpoint (rkumar1999/Phi-mini-MoE-Prover-openr1-distill-SFT) This
model represents the intermediate output from Stage 1 of the sequential fine-tuning
process. It was fine-tuned exclusively on the formal Lean proof dataset
(rkumar1999/DeepSeek-Prover-V2-chat-cleaned).

Sequential Fine-Tuned Model (Lean -> Math)
(rkumar1999/Phi-mini-MoE-Prover-Math-openr1-distill-SFT) This is the final model from
the sequential curriculum. It was initialized from the Lean-Specialized Checkpoint and
then further fine-tuned exclusively on the natural-language math dataset
(rkumar1999/Mixture-of-Thoughts-math-cleaned). This artifact is used to measure the
catastrophic forgetting of the initial Lean domain.

Evaluate both checkpoints (Mixed and Sequential-final) on two held-out test sets:

1.

Math Test (NL) — accuracy on final answers, chain-quality (self-consistency), and

verbosity penalties.

2. Lean Test (Formal) — proof validity (kernel pass/fail), syntax correctness, and proof

efficiency (|gen_lines — ideal_lines|).

37

Enhancing LLM's Math and Theorem Proving Abilities

7.4.2 Results - Lean4 prompts

Prompt

theorem
imp_chain (abc
def:Prop) (h::
a—b)(h.:b—
c) (hs:c—d)(hs
:d—e)(hs:e—
flra—f:=

theorem
succ25_mem_of _
zero_and_succ_c
losed (N : Nat —
Prop) (hO : N 0)
(hS: VvV {x}, Nx
— N x.succ) : N
25:=

theorem
add_zero_eq_sel
fn:N):n+0=
n:=

BASE

(microsoft/Phi-mini-MoE-ins

truct)

lean4

begin

intro a,

have b := hi a,
have c ;= h: b,
have d ;= hs c,
have e := h. d,
have f:=hs e,
end

lean4

begin

intro hO,

induction hS,

cases ho0,

cases hS,

apply hS,

apply hS,

end

lean4

begin

rw[n+ 0 =n],

Qed.

(The model got stuck in a
repetitive loop of
self-correction before

outputting this invalid
proof.)

Score FT - mixed data

lean4

by

have h_main:a —f:=
by

intro h

have hs : b := by

have he: : @ — b := hy

have h»2 : b :=he
exact hs1 hizexact hio
35 exact h_main

lean4

by

have h_main : N 25 :=
by

have h1: N0 :=h0
have h2 : N 1 := hS (0,
by simp) h1

have h3: N 2:=hS {1,
by simp) h2

have h26 : N 25 := hS
(24, by simp) h25
exact h26

20 exact h_main

lean4
by
have h:n+0=n:=by
simp
<:>rfl
5 exact h

38

FT - Sequential

Score data

(Catastrophic

failure: The model

entered a severe

"thought loop" and

produced no Lean
84 code.)

(Catastrophic

failure: The model

entered a severe

"thought loop" and

produced no Lean
60 code.)

(Catastrophic

failure: The model

entered a severe

"thought loop" and

produced no Lean
97 code.)

Enhancing LLM's Math and Theorem Proving Abilities

theorem
succ_add one_e
g_add_two (n:)
nsucc+1=n+
2=

theorem
succ_pred_self (n :
N)y(h:n>0):(n-
1).succ =n:=

lean4

begin

cases n,

{

rw [n.succ +1:=0 + 1],
rw[0+1:=0+2],

}
assume h:k.succ+1 =k +
2,...(Enters a repetitive loop
of invalid rw tactics.)

lean4

begin

rw h,

w (n+ 1),

exact (pred (n + 1)).succ = n,
end

(Uses hallucinated pred
function and invalid rw tactics.)

leand

by

have h_main : n.succ +
1=n+2:=by

rw
[Nat.succ_eq_add _one]
<;>ring

<;>omega

exact h_main

lean4

by

have h_main : (n - 1).succ
=n:= by

have hi: n =1 := by
linarith

have h.: (n-1).succ=n:
by

have hs:n-120:=by
omega

have hs: (n-1).succ=n:
by

rw [Nat.succ_eq_add_one]
<;>omega

exact hs

exact h:

5 exact h_main

(The model

produced a long

explanation but

failed to generate

a final Lean code
96 block.)

(Catastrophic

failure: The model

entered a severe

"thought loop" and

produced no Lean
92 code.)

Table 4: Scoring 1. Base Model, 2. Fine-tuned model on mixed data, 3. Fine-tuned model on

sequential data

39

30

Enhancing LLM's Math and Theorem Proving Abilities

8. Conclusion

This project explored different ways to improve Large Language Models’ mathematical
capabilities in the challenging area of formal theorem proving. We found that the limitations of
general-purpose LLMs in solving formal proofs can be improved through targeted training on

specialized datasets, smart fine-tuning techniques, and the use of external tools.

We tested our approach on a smaller GPT-2 model through parameter-efficient
fine-tuning on specialized math datasets. We also explored a hybrid solution where we
integrated the model with symbolic tools like Mathics and LEAN to perform complex calculations

and recursively search for a proof, respectively.

Our main experiments scaled up to more powerful architectures and showed significant
insights. Fine-tuning of Llama-3.2-3B demonstrated that natural language guided datasets are
more effective than training on formal code alone. The GRPO-aligned model achieved highest
performance of 95+ (scored out of 100) on LEAN4 proof generation, followed by a plain SFT
finetuned model (85+). Furthermore, the OpenBootstrappedTheorem (OBT) experiment
confirmed that combining curriculum-learning and few-shot prompting approaches can help
models handle longer proofs. We compared two different fine-tuning regimes, mixed and
sequential, on a Mixture of Experts (MoE) model. Fine-tuning the model on a mixed dataset
increased the model performance to 90+, while sequential fine-tuning resulted in forgetting the

original knowledge visible in its low performance of < 20 for many examples.

Our findings show the value of chain-of-thought reasoning and fine-tuning techniques in
creating models that provide well-reasoned solutions rather than generating text plainly. Future
work could extend these findings by scaling to larger models like DeepSeek, exploring more
advanced reinforcement learning techniques for tactic selection. These directions aim to shift

models from text generation machines toward robust thinking agents.

40

Enhancing LLM's Math and Theorem Proving Abilities

9. References

[1] Hendrycks, D., Burns, C., Kadavath, S., Arora, A., Basart, S., Tang, E., Song, D., &
Steinhardt, J. (2021). Measuring Mathematical Problem Solving With the MATH Dataset. arXiv
preprint arXiv:2103.03874. https://doi.org/10.48550/arXiv.2103.03874

[2] Cobbe, K., Kosaraju, V., Bavarian, M., Chen, M., Jun, H., Kaiser, t., Plappert, M., Tworek, J.,
Hilton, J., Nakano, R., Hesse, C., & Schulman, J. (2021). Training Verifiers to Solve Math Word
Problems. arXiv preprint arXiv:2110.14168. https://doi.org/10.48550/arXiv.2110.14168

[3] Hu, E. J., Shen, Y., Wallis, P., Allen-Zhu, Z., Li, Y., Wang, S., Wang, L., & Chen, W. (2021).
LoRA: Low-Rank Adaptation of Large Language Models. arXiv preprint arXiv:2106.09685.
https://doi.org/10.48550/arXiv.2106.09685

[4] Liu, S.-Y., Wang, C.-Y., Yin, H., Molchanov, P., Wang, Y.-C. F.,, Cheng, K.-T., & Chen, M.-H.
(2024). DoRA: Weight-Decomposed Low-Rank Adaptation. arXiv preprint arXiv:2402.09335.
https://doi.org/10.48550/arXiv.2402.09335

[5] de Moura, L., Kong, S., Avigad, J., van Doorn, F., & von Raumer, J. (Year). The Lean

Theorem Prover (System Description). Microsoft Research and Carnegie Mellon University.

[6] Yang, K., Swope, A. M., Gu, A., Chalamala, R., Song, P, Yu, S., Godil, S., Prenger, R., &
Anandkumar, A. (Year). LeanDojo: Theorem Proving with Retrieval-Augmented Language
Models. Caltech, NVIDIA, MIT, UC Santa Barbara, UT Austin. Retrieved from
https://leandojo.org

[7] leanprover-community. (n.d.). repl: A simple REPL for Lean 4. GitHub repository. Retrieved

December 9, 2024, from https://github.com/leanprover-community/repl

[8] (2022). Mathics: Open-Source Alternative to Mathematica. Retrieved December 9, 2024,

from https://mathics.ora/

41

https://doi.org/10.48550/arXiv.2103.03874
https://doi.org/10.48550/arXiv.2110.14168
https://doi.org/10.48550/arXiv.2106.09685
https://doi.org/10.48550/arXiv.2402.09335
https://leandojo.org
https://leandojo.org
https://github.com/leanprover-community/repl
https://mathics.org/

Enhancing LLM's Math and Theorem Proving Abilities

[9] LangChain. (2024). LangChain Documentation. Retrieved December 9, 2024, from

https://python.langchain.com/docs/introduction/

[10] Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E. H., Le, Q. V., &
Zhou, D. (2016). Chain-of-Thought Prompting Elicits Reasoning in Large Language Models.
Google Research, Brain Team. arXiv:2201.11903v6

[11] Brown, T. B., Mann, B., Ryder, N., Subbiah, M., Kaplan, J., Dhariwal, P., Neelakantan, A.,
Shyam, P., Sastry, G., Askell, A., Agarwal, S., Herbert-Voss, A., Krueger, G., Henighan, T,
Child, R., Ramesh, A., Ziegler, D. M., Wu, J., Winter, C., Hesse, C., Chen, M., Sigler, E., Litwin,
M., Gray, S., Chess, B., Clark, J., Berner, C., McCandlish, S., Radford, A., Sutskever, I., &
Amodei, D. (2020). Language Models are Few-Shot Learners. 34th Conference on Neural

Information Processing Systems (NeurlPS 2020), Vancouver, Canada

[12] Hendrycks, D., Burns, C., Kadavath, S., Arora, A., Basart, S, Tang, E., Song, D., &
Steinhardt, J. (2021). Measuring Mathematical Problem Solving With the MATH Dataset.
NeurlPS. Retrieved December 9, 2024, from https://github.com/hendrycks/math

[13] Ruida Wang H, Jipeng Zhang, Yizhen Jia, Rui Pan (2024). TheoremLlama: Transforming
General-Purpose LLMs into Lean4 Experts. https://arxiv.org/htm|/2407.03203v1

[14] Open Bootstrapped Theorem Dataset. Huggingface dataset card.
https://huggingface.co/datasets/RickyDeSkywalker/OpenBootstrappedTheorem

[15] Omar Sanseviero, Lewis Tunstall, Philipp Schmid, Sourab Mangrulkar, Younes Belkada

(2023). Mixture of Experts Explained. https://huggingface.co/blog/moe

[16] A. Vaswani et al., “Attention Is All You Need,” in Advances in Neural Information Processing

Systems, 2017. https://doi.org/10.48550/arXiv.1706.03762

[17] A. Radford et al., “Language Models are Unsupervised Multitask Learners” OpenAl Blog,
2019. https://api.semanticscholar.org/CorpusiD:160025533

42

https://python.langchain.com/docs/introduction/
https://github.com/hendrycks/math
https://arxiv.org/html/2407.03203v1
https://huggingface.co/datasets/RickyDeSkywalker/OpenBootstrappedTheorem
https://huggingface.co/blog/moe
https://doi.org/10.48550/arXiv.1706.03762
https://api.semanticscholar.org/CorpusID:160025533

Enhancing LLM's Math and Theorem Proving Abilities

[18] L. Ouyang et al., Training language models to follow instructions with human feedback.

2022. https://doi.org/10.48550/arXiv.2203.02155

[19] W. Fedus, B. Zoph, and N. Shazeer, “Switch Transformers: Scaling to Trillion Parameter
Models with Simple and Efficient Sparsity” Journal of Machine Learning Research, vol. 23, no.
120, pp. 1-39, 2022. https://doi.org/10.48550/arXiv.2101.03961

[20] Hugging Face, “Text Generation Inference,” GitHub Repository.

https://qgithub.com/huggingface/text-generation-inference

[21] Hugging Face, “TRL - Transformer Reinforcement Learning,” GitHub Repository.
https://github.com/hugqgingface/trl

[22] DeepSeek-Al, "DeepSeek-R1: A Reasoning Language Model," arXiv preprint
arXiv:2407.12484, 2024.

[23] Ouyang et.al., “Training language models to follow instructions with human feedback”,
2022. https://arxiv.org/abs/2203.02155

[24] Hugging face, Open R1: A fully open reproduction of DeepSeek-R1.
https://github.com/huggingf n-r1

43

https://doi.org/10.48550/arXiv.2203.02155
https://doi.org/10.48550/arXiv.2101.03961
https://github.com/huggingface/text-generation-inference
https://github.com/huggingface/text-generation-inference
https://github.com/huggingface/trl
https://github.com/huggingface/trl
http://et.al
https://arxiv.org/abs/2203.02155
https://github.com/huggingface/open-r1

	Abstract
	
	1.​Introduction
	2.​ Background and Literature Review
	2.1. ​​Limits of LLMs on Mathematics and Theorem Proving
	2.2. Datasets for Mathematical Reasoning
	2.3. Parameter-Efficient Fine-Tuning (PEFT) Techniques
	2.3.1 Low-Rank Adaptation (LoRA)
	2.3.2 Decomposed Low-Rank Adaptation (DoRA)

	2.4. Mixture of Experts (MoE) Architecture
	2.5. Post-Training Techniques
	2.5.1 Supervised Fine-Tuning (SFT)
	2.5.2 Reinforcement Learning and Preference Alignment
	2.5.3 Model Distillation

	2.6. Tool-Augmented Reasoning

	3. Preliminary Work
	3.1 Objective
	3.2 Methods
	Model and PEFT
	Integration With External Tools

	3.3 GSM8K/MATH Fine-tuning
	3.3.1 Datasets
	3.3.2 Results​​​​​​Fig 5: Fine tuning on MATH dataset​​

	3.4. Integrating Mathics and LEAN with LLM
	3.4.1. Mathics
	3.4.2. LEAN
	3.4.3 Integration using Langchain
	3.4.4. Results

	4. Infrastructure and Setup
	4.1. Text Generation Inference (TGI)
	4.2. Chat Application
	4.2.1 Usage in Experiments

	5. Experiment-1: Finetuning Llama-3.2-3B using open-r1
	5.1 Objective
	5.2 Data
	5.3 Method
	5.3.1 Prompt Format
	5.3.2 GRPO Custom Reward Function
	5.3.3 Training Hyperparameters

	5.4 Results
	5.4.1 Evaluation Rubric
	
	5.4.3. Evaluation Results

	
	6. Experiment-2: OpenBootstrappedTheorem (OBT) Style Finetuning for Lean 4 Proof Synthesis
	6.1 Objective
	6.2 Data
	6.3 Method
	6.3.1 Prompt Format
	6.3.2 Curriculum Sorting
	
	6.3.3 Pseudocode
	6.3.3 Completion-Only Loss with TRL
	6.3.5 Training Hyperparameters
	6.3.6 Implementation Summary

	6.4 Results
	6.4.1

	7. Experiment-3: Fine-tuning a Mixture-of-Experts Model on Math and Lean Datasets
	7.1 Objective
	7.2 Data
	7.3 Setups
	7.4 Results
	7.4.1 Outputs
	
	7.4.2 Results - Lean4 prompts
	
	

	8. Conclusion
	
	9. References

