

Enhancing LLM’s Mathematical and Theorem Proving Abilities

A Project

Presented to:

The Faculty of the Department of Computer Science

San Jose State University

In Partial Fulfillment

of the Requirements for the Degree

Master of Science

Presented By:

Naga Rohan Kumar Bayya

November, 2025
​

Enhancing LLM's Math and Theorem Proving Abilities

© 2025

Naga Rohan Kumar Bayya

ALL RIGHTS RESERVED

Enhancing LLM's Math and Theorem Proving Abilities

The Designated Project Committee Approves the Project Titled

Enhancing LLM's Math and Theorem Proving Abilities

By

Naga Rohan Kumar Bayya

APPROVED FOR THE DEPARTMENT OF COMPUTER SCIENCE

SAN JOSÉ STATE UNIVERSITY

November 2025

Dr. Chris Pollett Department of Computer Science

Dr. Navrati Saxena Department of Computer Science

Prasanna Nikhil Sathwik Vadlamani Software Engineer Glass Imaging

Enhancing LLM's Math and Theorem Proving Abilities

Abstract
Enhancing LLM's Math and Theorem Proving Abilities

By Naga Rohan Kumar Bayya

Large language models (LLMs) are good at natural language tasks but are not up to the

mark when it comes to mathematics and theorem-proving, as they rely on language patterns

instead of understanding the problem and thinking through the solution. This project addresses

issues such as a lack of exposure to structured datasets, difficulty with generating outputs that

require multi-step reasoning, and limitations of short context. We fine-tune pre-trained LLMs on

structured datasets like MATH, GSM8k, open-r1, deepseek-prover, and

OpenBootstrappedTheorem. We integrate two software tools, Mathics and LEAN, and enhance

reasoning through Chain-of-Thought (CoT). Additionally, we conduct the experiments using

state of the art Mixture of Experts (MoE) and parameter efficient fine-tuning (PEFT) techniques

such as LoRA and DoRA. The outcomes of this project are better model performance on

complex math problems, and particularly on formal theorem-proving datasets, which is a

comparatively understudied domain in recent LLM research. This takes a step toward

developing and fine-tuning models that can handle challenging mathematical and logical

domains.

Keywords: Large Language Models, LLMs, Mathics, Lean, Chain-of-Thought prompting,
Deepseek, Post-tuning

Enhancing LLM's Math and Theorem Proving Abilities

1. Introduction..1
2. Background and Literature Review... 3

2.1. ​​Limits of LLMs on Mathematics and Theorem Proving...3
2.2. Datasets for Mathematical Reasoning..3
2.3. Parameter-Efficient Fine-Tuning (PEFT) Techniques... 4
2.4. Mixture of Experts (MoE) Architecture..5
2.5. Post-Training Techniques... 6
2.6. Tool-Augmented Reasoning... 8

3. Preliminary Work... 10
3.1 Objective..10
3.2 Methods... 10
3.3 GSM8K/MATH Fine-tuning.. 10
3.4. Integrating Mathics and LEAN with LLM...13

4. Infrastructure and Setup...19
4.1. Text Generation Inference (TGI)... 19
4.2. Chat Application..19

5. Experiment-1: Finetuning Llama-3.2-3B using open-r1... 22
5.1 Objective..22
5.2 Data... 22
5.3 Method...22
5.4 Results...25

6. Experiment-2: OpenBootstrappedTheorem (OBT) Style Finetuning for Lean 4 Proof
Synthesis..30

6.1 Objective..30
6.2 Data... 30
6.3 Method...31
6.4 Results...34

7. Experiment-3: Fine-tuning a Mixture-of-Experts Model on Math and Lean Datasets..... 35
7.1 Objective..36
7.2 Data... 36
7.3 Setups..36
7.4 Results...37

8. Conclusion... 40
9. References... 41

Enhancing LLM's Math and Theorem Proving Abilities

1.​Introduction
LLMs have transformed natural language processing (NLP) by generating human-like

text and automating various language tasks. Hendrycks et al. proposed that they still have room

to grow in mathematics and theorem-proving because LLMs are mostly trained on internet data,

which lacks the reasoning needed for mathematical calculations and multi-step deductions.

Although they generate correct-sounding answers, they fall short in terms of the factual

correctness of their outputs, because they prioritize sounding "right" over being correct. This

project explores different ways to improve LLM performance with the help of specialized training

and data centric fine-tuning techniques.

Mathematics and logic play an important role in many fields, ranging from scientific

research to business. The domain of formal theorem proving is a fairly understudied and

challenging area for many LLMs. Hence, we explore various ways to improve LLM performance

on this domain, like fine-tuning with structured datasets that strengthen Chain-of-Thought [10],

incorporating symbolic reasoning software, and experimenting with post-training techniques like

SFT and GRPO. Ultimately, our goal is to help the model go beyond just mimicking answers and

to improve its mathematical capabilities.

​

​ This report shares the progress made over three semesters in improving how LLMs

handle mathematical problems, especially in theorem proving. It starts with a Preliminary Work

section, which explains the foundational studies from the first phase. In this stage, we laid the

groundwork by fine-tuning a smaller LLM, GPT-2 [17], using mathematics datasets like MATH

and GSM8k. We also incorporated symbolic tools (Mathics) and formal proof assistants (LEAN)

through LangChain to see how these resources could improve the LLM’s workflow. Based on

the observations and learnings in this phase, we conducted more advanced experiments in the

next phase.

We also talk about the technical setup behind our evaluation process in the

Infrastructure and Setup section. To make model evaluation easier, we built a server and

designed an interactive web interface to compare all model versions side by side. This allowed

us to clearly see how each approach performed throughout the project

1

Enhancing LLM's Math and Theorem Proving Abilities

The main body of the report details three experiments conducted in the second phase.

Experiment 1 focuses on scaling up the fine-tuning process to a larger model architecture

(Llama-3.2-3B). This compares various data supervision styles using extensive theorem-proving

datasets and post-training strategies. For Experiment 2, we apply an advanced OBT-style

pipeline, designed to help the model generate Lean4 proofs from natural language input more

reliably. In experiment 3, we investigate the implications of two finetuning regimes and their

effects on catastrophic forgetting, basing our experiments on a Mixture of Experts (MoE) model.

2

Enhancing LLM's Math and Theorem Proving Abilities

2.​ Background and Literature Review

2.1. ​​Limits of LLMs on Mathematics and Theorem Proving

LLMs are mostly trained on large natural language datasets, so they produce answers

that look convincing but lack a formal understanding of the underlying domain. This is pretty

evident from their weak arithmetic and reasoning skills. Even when tested on special math

benchmarks such as MATH and GSM8K, these models often produce fluent but incorrect chains

of reasoning, especially when multistep derivations or symbolic transformations are required [1],

[2]. These mistakes happen due to a few reasons: a mismatch between pretraining data and the

downstream symbolic domains [16], weak inductive biases for formal manipulation, and they’re

not very good at checking their own steps.

2.2. Datasets for Mathematical Reasoning

MATH provides 12.5k competition style problems with stepwise solutions across topics

(algebra, geometry, number theory, etc.) and is widely used for supervised finetuning and

evaluation [1]. GSM8K targets grade school word problems requiring multi-step arithmetic and is

commonly used to assess reasoning with natural-language problem statements [2]. These

corpora complement each other: MATH stresses formal derivation depth and GSM8K stresses

compositional reasoning in natural language.

Alongside MATH and GSM8K, this project leverages three additional corpora covering

process supervision, formal proof, and symbolic logic:

1.​ OpenR1-Math-220k (open-r1/OpenR1-Math-220k): curated long-form math problems

with stepwise rationales aligned to “Open-R1” style reasoning traces. Useful for process

supervision and stabilizing multi-step derivations in arithmetic/algebra/geometry word

problems.

2.​ DeepSeek-Prover-V1 (deepseek-ai/DeepSeek-Prover-V1): theorem/proof pairs,

Lean-style statements, and tactic-level supervision suitable for theorem proving and

learning proof trajectories. No natural language Chain of thought (CoT)

3.​ Open Bootstrapped Theorem (RickyDeSkywalker/OpenBootstrappedTheorem): Lean

4-Natural Language aligned and bootstrapped dataset for training a Lean4 LLM expert.

Includes Chain of thought

3

Enhancing LLM's Math and Theorem Proving Abilities

2.3. Parameter-Efficient Fine-Tuning (PEFT) Techniques

LLMs usually consist of billions of tunable weights. In order to train such huge models

from scratch, a lot of computational resources and time are required. PEFT techniques are

clever methods for adapting such large models to downstream tasks without having to retrain

the entire model from scratch, while achieving the same result. They freeze the entire model

weights and focus only on a subset of them to cut down on the compute, memory, and training

time. This approach makes them more feasible for tasks with limited resources. The idea comes

from the fact that a pre-trained language model can be adapted for specific tasks by only

changing a few parameters [3]. In this project, we used two popular PEFT techniques, Low

Rank Adaptation (LoRA) and Decomposed Low Rank Adaptation (DoRA), to fine-tune GPT-2.

2.3.1 Low-Rank Adaptation (LoRA)

LoRA is a clever parameter efficient fine-tuning method that introduces a pair of low-rank

decomposition matrices (denoted by A and B in Fig. 1) to update the underlying model's

weights. LoRA updates only these small matrices instead of updating all the weights. This

reduces the total trainable parameters to fine-tune the model on new datasets. Edward Hu, et

al's work fine-tunes GPT-2 transformer on MATH and GSM8k datasets by applying LoRA on

self-attention layers.

Fig 1: LoRA architecture

4

Enhancing LLM's Math and Theorem Proving Abilities

2.3.2 Decomposed Low-Rank Adaptation (DoRA)

​ Although low-rank adaptation reduces the memory footprint by freezing the underlying
model, we often observe a gap when compared to full training. DoRA tries to close this gap by
introducing one more matrix decomposition step by breaking down the original weight matrix W
into two component matrices Magnitude (M) and Direction (D), and then applies LoRA only on
the Direction matrix [4]. The intuition behind this decomposition is that Direction of the weights
adapts to the new task, but the magnitude can remain the same.

Fig 2: DoRA Architecture. Courtesy: NVIDIA’s blog post

2.4. Mixture of Experts (MoE) Architecture

Instead of a single network processing all information, a Mixture of Experts (MoE)

architecture consists of many smaller "experts" and a "gating network" (or router) [15] [16]. The

router’s job is to pick a small subset of experts (top k) to process any given token. This way, the

model can grow large with lots of experts, yet maintain a small workload for each input.

Because this sparse architecture activates fewer experts to generate a token, it requires fewer

resources and mitigates catastrophic forgetting.

5

Enhancing LLM's Math and Theorem Proving Abilities

Fig 3: Mixture of Experts (MoE) architecture

2.5. Post-Training Techniques

Pre-trained LLMs are good at predicting the next word, but not at following human

instructions or engaging in a conversation. We apply post-training techniques to transform these

models into capable assistants as they align a model's general knowledge with its ability to

apply that knowledge in a useful and reliable manner. The primary methods used in our project

are illustrated in the diagram below.

6

Enhancing LLM's Math and Theorem Proving Abilities

​

Fig 4: A diagram illustrating three steps in the Post-training phase [23]

2.5.1 Supervised Fine-Tuning (SFT)

SFT is usually the first phase in the post-training process, and its purpose is to adapt a

model to behave like a helpful assistant. In this phase, the model is trained on a high-quality

dataset consisting of prompt and response pairs that demonstrate the desired behavior. It

teaches the model an appropriate tone for conversation and to reason thoroughly. Datasets like

MATH and GSM8k are perfect for this because they include detailed solutions forcing the model

to replicate the reasoning process. This way, SFT helps the model become both understandable

and reliable in its responses.

2.5.2 Reinforcement Learning and Preference Alignment

After SFT, a model's behavior is further refined using feedback on its outputs. While

traditional Reinforcement Learning from Human Feedback (RLHF) usually trains a reward model

separately, recent advances introduced methods that offer greater stability and efficiency.

7

Enhancing LLM's Math and Theorem Proving Abilities

●​ Direct Preference Optimization (DPO): DPO is a technique that trains the model directly

on a dataset of preferred and rejected responses. It uses a special loss function that

directly pushes the model to favour the probability of generating the preferred response

over the rejected one, instead of a separate reward function.

●​ Group Relative Policy Optimization (GRPO): GRPO is a newer RL technique based on

rejection sampling. During training, the model generates multiple candidate responses

for a given prompt and a reward model or another heuristic then scores these

responses. The model is fine-tuned only on the highest-scoring or winning response.

DeepSeek-R1 technical report demonstrates that this feedback loop allows the model to

incrementally improve its correctness [22].

2.5.3 Model Distillation

Model distillation is a "student-teacher" technique where knowledge from a large,

powerful "teacher" model is transferred to a smaller and faster "student" model. This is achieved

by having the teacher generate a large, high-quality synthetic dataset, which is then used to

fine-tune the student. This process is one of the main principles used in the open-r1 project as it

applies the reasoning skills of the larger model to create a smaller model that mimics the same

outputs. It provides a way to build small models that are still powerful enough for real-world use

[22] instead of training models from scratch.

2.6. Tool-Augmented Reasoning

 Language models aren't always exact or reliable with their facts, as they can't look up

information instantly. They tend to make mistakes with complex numerical calculations and

struggle to follow strict logic. Tool-Augmented Reasoning is another strategy for overcoming

these fundamental limitations.

This technique utilizes LLM as a brain that can delegate tasks to specialized software.

When the model recognizes that a task exceeds its own capabilities, it issues a query for the

appropriate tool and then consumes the tool's output back into its reasoning process to

generate a final answer. It combines the LLM's wider understanding of the language with the

accuracy of specialized software tools. Some of the tools are listed below:

8

Enhancing LLM's Math and Theorem Proving Abilities

●​ Computer Algebra System (CAS): These are special software tools for manipulating

algebraic expressions and calculus instead of just performing mathematical calculations.

Mathics [8], an open-source Mathematica-like CAS, is used to offload tasks like solving

complex equations or computing integrals.

●​ Proof Assistants: For tasks that need formal verification, proof assistants can carefully

check the proof steps or tactics generated by an LLM. We used Lean4 [5], a dependent

type theory proof assistant, to make sure all generated proofs are valid.

●​ Code Interpreters: For executing code, performing complex simulations, or handling data

analysis.

●​ Information Retrieval Systems: To access proprietary information from external sources

like search engines, databases, or APIs.

Agentic frameworks help coordinate how the LLM interacts with different tools. They

make it easier to define tools, understand when the LLM wants to use a tool, and manage the

process of executing those tools. In this project, we use LangChain [9] to create the agent and

to communicate with external Mathics and Lean tools.

9

Enhancing LLM's Math and Theorem Proving Abilities

3. Preliminary Work

3.1 Objective

This first phase of the project validates three core hypotheses for enhancing LLM

reasoning on a small scale: (i) that a base LLM's mathematical abilities could be improved via

PEFT on specialized datasets; (ii) an LLM could be augmented with a symbolic computation

engine for performing algerbic calculations and (iii) an the proofs that it generates could be

verified using a proof assistant software.

3.2 Methods

Model and PEFT

We implemented DoRA, an advanced PEFT technique, to fine-tune GPT-2 on subsets of

the MATH and GSM8k datasets. A learning rate of 5e-5 and a small batch size were used in the

training process. The resulting fine-tuned models were published to the Hugging Face Hub as

rkumar1999/gpt2-fine-tuned-math and rkumar1999/gpt2-fine-tuned-gsm8k.

Integration With External Tools

We built a unified pipeline by integrating Mathics, a symbolic computation tool, and

LEAN, a formal proof assistant, to solve complex mathematical word problems. Our main goal

was to show how combining these tools with LLMs can enhance their ability to tackle problems

that require symbolic understanding and theorem proving.

3.3 GSM8K/MATH Fine-tuning

3.3.1 Datasets

1.​ MATH dataset is a compilation of 12,500 high-school-level math problems with varying

difficulty levels ranging from 1 to 5 and is used to evaluate the mathematical

problem-solving abilities of machine learning models. 7,500 problems are designated for

training, and 5,000 for testing. It covers topics such as Prealgebra, Algebra, Number

Theory, Counting and Probability, Geometry, Intermediate Algebra, and Precalculus.

10

Enhancing LLM's Math and Theorem Proving Abilities

Each problem is formatted in LaTeX with visual elements generated using the Asymptote

vector graphics language. Solutions include step-by-step derivations and a boxed final

answer, facilitating interpretability and learning using Chain of thought , as proposed by

Jason Wei et al.

2.​ The GSM8k (Grade School Math 8K) is another high quality dataset that consists of

8500 grade school math problems that need multiple reasoning steps to be solved. It

presents unique challenges as it requires the model to clearly understand problem

statements and engage in step-by-step reasoning to find the right solutions [2].

11

Enhancing LLM's Math and Theorem Proving Abilities

3.3.2 Results

​

​ ​ ​ ​ ​ Fig 5: Fine tuning on MATH dataset​
​

12

Enhancing LLM's Math and Theorem Proving Abilities

Fig 6: Fine tuning on GSM8K dataset

3.4. Integrating Mathics and LEAN with LLM

3.4.1. Mathics

​ Mathics is an open source computer algebra system. It is a free alternative to

Mathematica and supports a variety of features such as algebraic manipulations, calculus,

13

Enhancing LLM's Math and Theorem Proving Abilities

plotting, and also handles symbolic computations, function definitions, and data visualization.

Mathics provides a flexible way for collaborating with LLMs using a command line interface [8].

3.4.2. LEAN

​ LEAN provides formal verification to mathematical statements. We choose LEAN as it is

an open source software and used by many mathematicians to build and verify proofs [5]. The

user writes tactics to transform the goal into sub-goals, and LEAN kernel validates these tactics.

The LEAN proof below shows the existence of infinite primes.

​

import Mathlib.Data.Nat.Factorial.Basic​
import Mathlib.Data.Nat.Prime.Defs​
import Mathlib.Order.Bounds.Basic​
namespace Nat

 -- Theorem: For any `n`, there exists a prime `p` such that `n ≤ p`.​
theorem exists_infinite_primes (n : ℕ) : ∃ p, n ≤ p ∧ Prime p :=

 -- Let `p` be the smallest prime factor of `n! + 1`.​
 let p := minFac (Nat.factorial n + 1)

 -- `n! + 1` is not 1 (since `n! + 1 > 1`).​
 have f1 : n! + 1 ≠ 1 := ne_of_gt <| succ_lt_succ <| factorial_pos _

 -- `p` is prime by definition of `minFac` (since `n! + 1 ≠ 1`).​
 have pp : Prime p := minFac_prime f1

 -- We need to show `n ≤ p`. Proof by contradiction:
 have np : n ≤ p := by
 -- Assume `p < n` for contradiction.​
 apply le_of_not_ge fun h =>

 -- If `p < n`, then `p` divides `n!` (from definition of factorial).​
 have h1 : p ∣ Nat.factorial n := dvd_factorial (minFac_pos _) h

 -- `p` divides `n! + 1` (by definition of `minFac`).

 -- If `p` divides `n!` and `n! + 1`, it must divide their difference 1​
 have h2 : p ∣ 1 := (Nat.dvd_add_iff_right h1).2 (minFac_dvd _)

 -- But a prime `p` cannot divide `1`. This is a contradiction.​
 exact pp.not_dvd_one h2

-- combine p and properties (n ≤ p, Prime p), to complete the exists goal.​
 (p, np, pp)​
​
end Nat

14

Enhancing LLM's Math and Theorem Proving Abilities

Proof to demonstrate that for any natural number n, there exists a prime p≥n by considering the

smallest prime factor of n!+1. It uses the fact that n!+1 cannot be divisible by any prime ≤n.

3.4.3 Integration using Langchain

1.​ Mathics was invoked through a LangChain agent using its MathicsSession class to

handle symbolic computations. For example, queries like "Find the integral of sin²(x)

from 0 to π/2" were passed to Mathics, which returned correct results.

2.​ We created a custom Proof Assistant tool to work with LEAN. It uses a pre-trained

sequence-to-sequence model [6] that can generate a variety of tactics based on a proof

state. Some key components are:

●​ Proof Initialization: We used LEAN’s read eval print loop (REPL) to define initial

an initial proof state and placeholders for any unresolved steps

●​ Tactic Generation: We used a sequence-to-sequence model to generate several

potential tactics for each proof state, which are iterated over to recursively search

valid paths

●​ Proof Validation: We used LEAN to provide feedback on unresolved goals and

verify each step to ensure correctness.

15

Enhancing LLM's Math and Theorem Proving Abilities

Algorithm for PROOFSEARCH(thm)​
​
Input: thm: Lean4 theorem declaration with a 'sorry' goal​
Output: A sequence of tactics that discharges all goals, or FAIL​
​
Procedure PROOFSEARCH(thm):​
 P ← LaunchREPL()​
 DefineWithSorry(P, import Mathlib; open Real; open Nat; open

BigOperators)​
 (s₀, g₀) ← DefineWithSorry(P, thm, env = 0)​
 if (s₀, g₀) is None then​
 return FAIL​
 return DFS(g₀, s₀, 0, []) // Initial call to DFS (g₀: initial goals, s₀:

initial score, 0: initial depth, []: initial proof)​
​
Function DFS(g, s, d, π):​
 if d ≥ DEPTH_LIMIT then​
 return None // Exceeded depth limit​
 T ← GenerateTactics(g, k = NUM_CANDIDATES)​
 for each t in T do​
 (s', g', M) ← ApplyTactic(P, s, t)​
​
 if (s', g', M) is None then​
 // syntax/type error, etc.​
 continue // Try the next tactic​
 end if​
​
 if |G'| = 0 then​
 return π appended with t // Success: goals discharged​
 end if​
​
 if s' = s + 1 and |G'| > 0 then​
 g' ← G'[0] // Focus on the first remaining goal​
 // Recursively search deeper​
 π' ← DFS(g', s', d + 1, π appended with t)​
 if π' ≠ None then​
 return π' // Proof found in a deeper search​
 end if​
 end if​
 end for​
 return None // No successful path found at this depth

16

Enhancing LLM's Math and Theorem Proving Abilities

​

Fig 9: Using Tool class of langchain to invoke Mathics and LEAN

3.4.4. Results

​ The pipeline integrates an LLM with both the Mathics and LEAN tools, enabling it to

accomplish tasks that would be too complex for the model to solve on its own. The LLM figures

out that it has to call a specific tool by looking into the tool’s description expressed as

docstrings. The image below shows a pipeline invocation where we simultaneously added two

numbers using “perform_math” and verified the correctness of the result using the

“perform_lean” Proof Search tool.

17

Enhancing LLM's Math and Theorem Proving Abilities

​ Fig 10: Invoking the Langchain pipeline to solve multiple tasks at once

The experiments in the initial phase were promising, but they pointed out the limitations

of a recursive approach to solving a proof, which was both time-consuming and computationally

infeasible. To better achieve our main goal of improving formal theorem proving, we scaled up to

larger LLM architectures and adopted more advanced training techniques.

18

Enhancing LLM's Math and Theorem Proving Abilities

4. Infrastructure and Setup
In this whole project, we produced multiple fine-tuned checkpoints and adapters. To

easily evaluate and compare them, we built an interactive user interface and chat application.

This section describes the underlying technical framework to help users compare model

evaluations. It uses the high-performance Text Generation Inference (TGI) for GPU-accelerated

deployment.

4.1. Text Generation Inference (TGI)

TGI is an open-source project created by Hugging Face to deploy large language

models smoothly in production-grade settings. It is optimized for GPU performance [15] and

offers several benefits for our project.

We achieved GPU acceleration through CUDA kernels and smart memory management

to maximize throughput on NVIDIA GPUs. For robust evaluation, we set up Model Serving by

configuring every fine-tuned variant (base, SFT, GRPO, OBT) as its own isolated Docker

container running on a different port, allowing us to query them all concurrently without

interference.

TGI automatically manages Dynamic Batching, which combines multiple inference

requests to keep the GPU busy while maintaining high throughput. Also, the Docker container

handles all dependency management (like installing Flash-Attention and PyTorch), simplifying

our setup. All TGI instances expose a REST API with a standard /generate endpoint. We

deployed these TGI containers on cloud GPU instances (Lightning.ai with H200 GPUs), with

each model hosted on separate ports starting from 8080.

4.2. Chat Application

We built a chat application and inference engine to evaluate our different finetuned

models created during this project.

The frontend is a React.js based application for a user-friendly interface. It includes

model selection dropdowns, a chat box for submitting prompts, and a split-pane view showing

responses from two models for side-by-side comparison. Users can also adjust generation

settings like max tokens and see live updates on the status of the TGI endpoints.

19

Enhancing LLM's Math and Theorem Proving Abilities

The backend uses FastAPI server as a middleware whose role is to track all TGI

endpoints and provide RESTful APIs to direct incoming requests to the correct port. The

inference layer manages model inference using Docker containers deployed on cloud instances

with access to GPUs. Each container loads a specific model checkpoint along with all necessary

parameters, such as port number and temperature, and operates independently.​

Fig 11: Chat application and inference engine

4.2.1 Usage in Experiments

This infrastructure played a key role in conducting the experiments 1-3 smoothly. In Experiment

1, we used our interface to put the base Llama-3.2-3B model up against fine-tuned versions

using SFT and GRPO, focusing on how well they could generate Lean4 proofs. The

side-by-side comparison made it clear how each model differed in their proof structure, choice of

tactics, and how they handled tricky edge cases.

20

Enhancing LLM's Math and Theorem Proving Abilities

For Experiment 2, we compared OBT-style fine-tuned model versus the base version on

theorem proving tasks. The interface displayed Lean4 code with syntax highlighting along with

its thought process (or CoT), making it easy for users to check the accuracy and style of each

proof in an interactive fashion.

Experiment 3 showed the effects of different training regimes (mixing of tasks vs sequential

training) while fine-tuning a Mixture-of-Experts (MoE) model by comparing the outputs

side-by-side on the interface. This experiment showed some common mistakes to avoid

catastrophic forgetting when we are fine-tuning on multiple tasks.

This infrastructure provided a user-friendly framework for model evaluation throughout the

project. It separates concerns across three architectural layers: presentation, orchestration, and

inference. We were able to compare the outputs of different models on identical prompts and

also experiment with hyperparameters like the number of tokens, temperature, etc.

21

Enhancing LLM's Math and Theorem Proving Abilities

5. Experiment-1: Finetuning Llama-3.2-3B using

open-r1

5.1 Objective

This experiment explored the effects of different data supervision styles and post-training

techniques on an LLM’s ability to generate formal proofs. We fine-tuned a mid-sized model,

meta-llama/Llama-3.2-3B-Instruct, across two distinct data regimes using SFT+GRPO pipeline

from the Hugging Face open-r1 handbook [24]:

1.​ Formal-Only Supervision: Training on Lean theorem statements and their corresponding

formal proofs without natural language chain of thoughts.

2.​ Text-Guided Supervision: Training on Lean statements and proofs, along with their

natural language explanations and step-by-step reasoning behind choosing each tactic.

The hypothesis is that text-guided supervision will substantially improve the model's

correctness, logical stability, and ability to generate valid Lean4 proofs compared to training on

just the formal code.

5.2 Data

Two datasets were used to create the different supervision regimes:

1.​ deepseek-ai/DeepSeek-Prover-V1: This dataset constitutes pairs of Lean theorem

statements and their raw proof code. It provides formal-only supervision with little to no

natural language rationale.

2.​ Cartinoe5930/DeepSeek-Prover-V2-generation: This dataset contains synthetic

mathematical problems accompanied by step-by-step natural language solutions and

their corresponding Lean proofs.

5.3 Method

We conducted the experiments using sft.py and grpo.py scripts from the Hugging Face

Alignment Handbook and open-r1 repositories [24]. A custom chat template based on the Llama

22

Enhancing LLM's Math and Theorem Proving Abilities

3 format was used to structure the prompts with special tokens (<|start_header_id|>, etc.),

ensuring the model received a consistent system prompt along with conversational history.

5.3.1 Prompt Format

We used Llama 3 chat template to help the model follow conversations more effectively.

This template structures the input as a series of messages, each marked with special control

tokens that indicate turns and when a message ends. It has special token to guide the

conversation flow. The prompt starts with a <|begin_of_text|> to mark the start of a

conversation, followed by a series of messages where cach role—system, user, or assistant—is

wrapped between <|start_header_id|> and <|end_header_id|>. <|eot_id|> marks the end of a

message. The add_generation_prompt flag ensures that the final <|start_header_id|> assistant

<|end_header_id|> tokens are appended, prompting the model to begin its turn. This

token-based structure helps instruction-tuned models to produce clear outputs by distinguishing

between instruction, user questions, and the previous context.

{%- if messages and messages[0]['role'] == 'system' -%}​
<|start_header_id|>system<|end_header_id|>​
{{ messages[0]['content'] }}​
<|eot_id|>​
{%- else -%}​
<|start_header_id|>system<|end_header_id|>​
{{ default_system }}​
<|eot_id|>​
{%- endif -%}​
​
{%- for m in messages -%}​
 {%- if not (loop.first and m.role == 'system') -%}​
<|start_header_id|>{{ m.role }}<|end_header_id|>​
{{ m.content }}​
<|eot_id|>​
 {%- endif -%}​
{%- endfor -%}​
​
{# When generation is requested, open the assistant header #}​
{%- if add_generation_prompt -%}​
<|start_header_id|>assistant<|end_header_id|>​
{%- endif -%}

23

Enhancing LLM's Math and Theorem Proving Abilities

5.3.2 GRPO Custom Reward Function

​ We developed a custom GRPO reward function that evaluates each generated proof

against its corresponding ground-truth solution. It assigns a perfect score of 1.0 for an exact

match and a partial score based on the Jaccard similarity between tokens. It also penalizes

incomplete proofs if they contain keywords like "sorry".

Algorithm for Lean Proof Reward Function​
​
Input: Model completion C, Gold proof G​
Output: Reward score s ∈ [-1, 1]​
​
1. Extraction and Normalization:​
 C_code ← ExtractLastLeanBlock(C)​
 G_code ← ExtractLastLeanBlock(G) (if applicable, else use G directly)​
 C_norm ← Normalize(C_code) // Remove comments and collapse whitespace​
 G_norm ← Normalize(G_code)​
​
2. Scoring Logic:​
 if C_norm is empty then​
 return -0.8 // Penalize for no proof generation​
 end if​
​
 if C_norm = G_norm then​
 return 1.0 // Perfect score for exact match​
 end if​
​
 --- Partial Credit Calculation​
​
 s_sim ← 0.7 × JaccardSimilarity(C_norm, G_norm) // Score based on

token overlap​
 s_format ← 0.1 if C has a Lean code block, else 0.0​
 s_penalty ← -0.5 if C_norm contains 'sorry', 'admit', or 'by skip',

else 0.0​
​
 s ← s_sim + s_format + s_penalty​
 return max(-1.0, min(1.0, s)) // Clip final score to the range [-1, 1]

24

Enhancing LLM's Math and Theorem Proving Abilities

5.3.3 Training Hyperparameters

The following hyperparameters were used to fine-tune the base llama model:

1.​ Epochs = 2, LR = 3e-4 with cosine schedule, weight decay = 0.0.

2.​ Per-device batch size = 2, gradient accumulation steps = 8 (effective batch = 16).

3.​ Warmup ratio = 0.03; log steps = 10; save each epoch (or ≥ 5k steps).

4.​ Seeding and TF32/bf16 enabled for throughput; Flash-Attention v2 for attention kernels.

5.​ QLoRA: 4-bit NF4 quantization (bitsandbytes), bf16 compute, LoRA adapters (rank = 16,

α = 32, dropout = 0.05) on causal-LM projections.

6.​ Context: model_max_length = 8192

7.​ Optimizations: Flash Attention v2 kernel.

8.​ Setup: H200 GPU by lightning.ai

5.4 Results

The fine-tuning process produced three distinct model artifacts, which are publicly available on
the Hugging Face Hub.

1.​ SFT-1 (Non natural language guided): rkumar1999/Llama3.2-3B-Prover-openr1-SFT
2.​ SFT-2 (Natural language guided data):

rkumar1999/Llama3.2-3B-Prover-openr1-distill-SFT
3.​ GRPO (RL finetuned after SFT-2): rkumar1999/Llama3.2-3B-Prover-openr1-distill-GRPO

5.4.1 Evaluation Rubric

To measure performance, a rubric was developed to score each model's output on a scale of
100. It focuses on proof validity, efficiency, explanation quality, and structural integrity.

Main Category
Sub-Criterion and
Metric Max Points Scoring Breakdown

Proof Score (60)
Validation Score
(Pass / Fail) 40

Measures if the proof is valid and correct.
• 40 pts: Pass (100% syntactically valid and
logically correct).
• 20 pts: Partial Credit (Correct strategy but
contains a minor, fixable error).
• 5 pts: Fail (Syntactically valid but logically
wrong).
• 0 pts: Fail (Syntactically invalid,
incomplete, or non-existent).

25

Enhancing LLM's Math and Theorem Proving Abilities

Efficiency Score
Δ = |Generated Lines -
Ideal Lines|​
Max (0, 20-Δ) 20

Measures the deviation of proof length from
ideal proof length

Explanation Score (25)
Component Checklist
(Checklist) 15

Measures if the explanation is complete and
accurate.
5 pts: Goal Identification (Accurately states
the theorem).
 5 pts: Strategy Outline (Describes a valid
high-level plan).
5 pts: Logical Soundness (Free of major
factual errors).

Quality Checklist
(Checklist) 10

Measures if the explanation is relevant and
well-formed.
• 5 pts: Proof Alignment (The explained
strategy matches the generated code).
• 5 pts: Conciseness (Zero "thought loops"
or significant verbal repetition).

Format and Integrity
Score (15)

Structural Checklist
(Checklist) 10

Measures if the output follows the required
format.
• 5 pts: Explanation Present (An
explanation section exists).
• 5 pts: Code Block Present (A fenced Lean
4 code block exists).

Generation Integrity
(Pass / Fail) 5

Measures against catastrophic failures.
• 5 pts: Pass (No severe repetition,
gibberish, or truncation).
• 0 pts: Fail (A severe generation error is
detected).

Table 1: Scoring rubric for evaluating models.

26

Enhancing LLM's Math and Theorem Proving Abilities

5.4.3. Evaluation Results

The models were evaluated on a set of benchmark theorem-proving tasks. The table below
shows the scores for the base model and each fine-tuned variant.

Prompt
Base Model
(Llama-3.2-3B)

Scor
e

SFT-1
(Non NL
dataset)

Scor
e SFT-2 (NL dataset)

Scor
e GRPO+SFT

Scor
e

theorem
imp_chain
(a b c d e f :
Prop)
(h₁ : a → b) (h₂ :
b → c)
(h₃ : c → d) (h₄ :
d → e)
(h₅ : e → f) :
a → f :=

by
intro a
assume h : a
induction h on h
generalizing b c
d e
{ h : a =>
induction' h on h
generalizing e f
{ h : a => ... }
...
(Enters a
severe
repetitive loop) 5

intro h
simp_all
only [h₁, h₂,
h₃, h₄, h₅,
true_and]
tauto 10

have h_main : a → f
:= by
intro ha
have hb : b := h₁ ha
have hc : c := h₂ hb
have hd : d := h₃ hc
have he : e := h₄ hd
have hf : f := h₅ he
exact hf
exact h_main 93

have h_main : a → f
:= by
 intro ha
 have hb : b := h₁ ha
 have hc : c := h₂ hb
 have hd : d := h₃ hc
 have he : e := h₄ hd
 have hf : f := h₅ he
 exact hf
 exact h_mai 93

theorem
succ25_mem_of
_zero_and_succ
_closed
(N : Nat →
Prop)
(h0 : N 0)
(hS : ∀ {x}, N x
→ N x.succ) :
N 25 :=

by induction on
x in 25...;
case zero => by
assumption;
case succ x' =>
hS (succ x') (hS
x') 40

intro h
simp [h0,
hS, h]
aesop 10

by
have h1 : N 1 := by
...
have h2 : N 2 := by
...
...
have h19 : N 19 :=
by
have h19_1 : N 18 :=
h18
have h19_2 : N 19 :=
hS 18 h19_1
exact h19_2
(Correct but
truncated by token
limit) 55

by
have h1 : N 1 := by ...
...
have h24 : N 24 := by
have h24_1 : N 24 :=
hS 23 h23
exact h24_1
have h25 : N 25 := by
have h25_1 : N 25 :=
hS 24 h24
exact h25_1
exact h25 80

27

Enhancing LLM's Math and Theorem Proving Abilities

theorem
add_zero_eq_s
elf (n : ℕ) :
n + 0 = n :=

by
induction n with
(0 | succ n) =>
| 0 => -- Base
case: 0 + 0 = 0
by simp
| succ n => --
Inductive step
by simp 40

intro h
simp [h] 10

have h : n + 0 = n :=
by
simp
exact h 98

have h : n + 0 = n :=
by
rfl
exact h 98

theorem
succ_add_one_
eq_add_two (n :
ℕ) :
n.succ + 1 = n +
2 :=

by
apply
succ_add_one_
eq_add_two_in
d
induction n
| base n => rfl
| succ n ih => by
induction n
... 40

intro n
simp
[n.succ_ad
d_one_eq_
add_two] 10

have h_main ... := by
simp
[Nat.succ_eq_add_o
ne]
<;> ring
<;> simp_all
<;> ring
<;> simp_all
<;> ring 40

have h_main ... := by
simp
[Nat.succ_eq_add_on
e]
<;> ring
<;> simp_all
<;> ring
<;> simp_all
<;> ring 40

theorem
succ_pred_self
(n : ℕ) (h : n > 0)
:
(n - 1).succ = n
:=

import Lean
theorem ... :=
by
have n.succ = n
+ 1, ...
-- ...
have (n -
1).succ = n, ...
(Enters a deep
repetitive loop
of
self-correction) 5

intro h
simp [h] 10

have h_main ... := by
cases n with
| zero => ...
| succ n =>
simp [...]
<;> (try omega) <;>
(try simp_all ...)
<;> (try { cases n
with ... }) ...
(Full "kitchen sink" of
broken tactics) 40

have h_main ... := by
cases n with
| zero => contradiction
| succ n =>
cases n with
| zero =>
simp
[Nat.succ_eq_add_on
e] <;> norm_num
| succ n =>
simp_all [...] <;>
ring_nf at * <;>
omega 45

theorem
two_divides_do
uble (n : ℕ) :
2 ∣ n + n :=

by (reflexive n)
and (or (n % 2 =
0) (n % 2 ≠ 0))
and (if n % 2 =
0 then 2 ∣ n
else 2 ∣ n + 1) 10

intro h
simpa
using h 10

(Enters a repetitive
thought-loop in the
explanation, failing to
produce a final proof
block) 5

have h_main ... := by
use n
-- We need to show
that 2 * n = 2 * n
<;> simp [mul_comm]
<;> ring
<;> omega
exact h_main 94

28

Enhancing LLM's Math and Theorem Proving Abilities

theorem
two_divides_do
uble (n : ℕ) :
2 ∣ n + n :=

begin
assume n : ℕ,
have n_is_even
: n + n = 2 * n :=
by ring,
have
two_divides_n :
2 ∣ 2 * n := by
ring,
have
two_divides_do
uble : 2 ∣ n + n
:= by
from
two_divides_n,
end 40

intro h
simpa
using h 0 10

have h_main ... := by
rw
[Nat.dvd_iff_mod_eq
_zero]
simp [...]
<;> induction n with
| zero => simp
| succ n ih =>
simp [...] at ih ⊢
<;> omega
(Incorrect use of
induction) 45

have h_main ... := by
have h : n + n = 2 * n
:= by
ring
rw [h]
simp
[Nat.dvd_iff_mod_eq_
zero, Nat.mul_mod,
Nat.add_mod]
<;> omega
exact h_main 93

Table 2: Scoring 1. Base Model, 2. SFT over Non-CoT data, 3. SFT over CoT data, 4.

GRPO+SFT

29

Enhancing LLM's Math and Theorem Proving Abilities

6. Experiment-2: OpenBootstrappedTheorem (OBT)

Style Finetuning for Lean 4 Proof Synthesis

6.1 Objective

For this experiment, we implemented a fine-tuning pipeline on the OBT dataset [14]. This

dataset consists of examples that have natural language explanations embedded into formal

proofs. We trained a Llama 3 instruction model using two concepts introduced in TheoremLlama

research paper [13]. The goals were to (i) improve end-to-end Lean proof synthesis quality, (ii)

reduce syntax errors, and (iii) stabilize long tactics via few-shot block training and curriculum

sorting.

Fig 13: TheoremLlama fine-tuning process

6.2 Data

Primary dataset: OpenBootstrappedTheorem

(RickyDeSkywalker/OpenBootstrappedTheorem)[14], containing natural-language (NL)

statements+proof rationales paired with Lean statements, commented/bootstrapped Lean

proofs, and raw Lean code.

Schema mapping: Instead of splitting the natural-language blob, we kept the entire “informal

statement and proof” text as a single field (nl_text) to preserve global context. A normalization

pass mapped heterogeneous column names (e.g., Generated_informal_statement_and_proof,

Statement, Proof, Commented_proof) to a consistent schema {name, nl_text, lean_statement,

lean_proof_raw, lean_bootstrapped, ...}.

30

Enhancing LLM's Math and Theorem Proving Abilities

6.3 Method

6.3.1 Prompt Format

We adopted manual prompt format using reserved special tokens:

<|start_header_id|>system<|end_header_id|> ... <|eot_id|>, then

<|start_header_id|>user<|end_header_id|> ... <|eot_id|>, then

<|start_header_id|>assistant<|end_header_id|>

Few-shot block training: each block contained a solved example with:

●​ Natural language version of the theorem and proof

●​ Lean statement in a fenced code block

●​ Lean theorem and proof in a fenced code block

6.3.2 Curriculum Sorting

We calculated a difficulty score for all the examples using the formula: d = length of

lean_bootstrapped + 50 × (number of tactic tokens). Then, we sorted the examples from easiest

to hardest. During training, each item picked its few-shot examples from a sliding window to

gradually increase difficulty and avoid sudden jumps in challenge.

31

Enhancing LLM's Math and Theorem Proving Abilities

6.3.3 Pseudocode

Algorithm: OBT Data Preparation Pipeline​
Input: Raw Dataset D_raw, Few-shot count k​
Output: Formatted Examples E_formatted​
1. Schema Unification:​
 R ← new list of records​
 for each row in D_raw do​
 r ← StandardizeSchema(row)​
 R.append(r)​
 end for

​
2. Curriculum Sorting:​
 for each record r_i in R do​
 d_i ← EstimateDifficulty(r_i.lean_bootstrapped) // Score on

length and tactic count​
 end for​
 O ← SortIndicesByDifficulty(d_0, d_1, ...) // array of indices from

easy -> hard

​
3. Few-Shot Prompt Construction:​
 E_formatted ← new list of examples​
 for each index i in the sorted order O do​
 // Select k easier examples from the curriculum​
 P_prior_indices ← GetPriorExamples(i, O, k)​
​
 // Build the multi-turn prompt​
 prompt_messages ← BuildFewShotPrompt(SystemPrompt,

P_prior_indices, R[i])​
 // Define the target for completion-only loss

​
 completion ← R[i].lean_bootstrapped​
 if completion is not empty then​
 E_formatted.append({'messages': prompt_messages, 'completion':

completion})​
 end if​
 end for

​
 return E_formatted

32

Enhancing LLM's Math and Theorem Proving Abilities

6.3.3 Completion-Only Loss with TRL
We used TRL’s SFTTrainer (≥ 0.21) with its prompt–completion API. The completion

column is the Lean proof (prefer lean_bootstrapped, fallback to lean_proof_raw). We relied on

TRL to infer completion-only loss without a custom data collator. This focused learning on the

proof generation region and avoided diluting gradients on the prompt side.

6.3.5 Training Hyperparameters

1.​ Epochs = 2, LR = 2e-4 (cosine schedule), weight decay = 0.0.

2.​ Per-device batch = 1, grad accumulation = 16 (effective batch = 16).

3.​ Warmup ratio = 0.03; logging every 10 steps; save each epoch (or ≥ 5k steps).

4.​ Eval split = last 1% of curriculum-ordered examples (small sanity set).

5.​ Seeding and TF32/bf16 enabled for throughput; Flash-Attention v2 for attention kernels.

6.​ QLoRA: 4-bit NF4 quantization (bitsandbytes), bf16 compute, LoRA adapters (rank = 16,

α = 32, dropout = 0.05) on causal-LM projections.

7.​ Context: model_max_length = 8192 to accommodate long NL proof rationales + multiple

few-shot blocks.

6.3.6 Implementation Summary

We first performed schema unification with map_row_schema, which selected the first

available field among multiple candidate keys to robustly handle dataset variants. We then

ordered examples by an easy→hard curriculum using a difficulty heuristic that combined

sequence length with counts of common Lean tactic tokens (e.g., simp, rw, apply, aesop,

linarith) to approximate complexity. For few-shot conditioning, we built a prior few-shot pool from

a few-shot window of earlier (easier) items in the curriculum and sample block_k solved

examples (typically 3) to prepend as demonstration blocks. Prompt rendering used

render_example_block for each solved example and then appends the current item with your

exact section headers and terminators, preserving the manual <|start_header_id|>…<|eot_id|>

format. Training was run with TRL’s SFTTrainer using

dataset_kwargs={"prompt_column":"prompt","completion_column":"completion"}, enforcing

completion-only loss with no chat_template and no custom collator

Outputs: https://huggingface.co/rkumar1999/llama3.2-3b-obt

33

https://huggingface.co/rkumar1999/llama3.2-3b-obt

Enhancing LLM's Math and Theorem Proving Abilities

6.4 Results

The fine-tuning process produced the resultant model available publicly on huggingface:
rkumar1999/llama3.2-3b-obt

6.4.1
The same evaluation rubric in 7.4.1 was used to score and compare the resultant model

Prompt Base Model
(Llama-3.2-3b)

Score Finetuned Model
(rkumar1999/llama3.2-3b-obt)

Score

Lean4 version of
theorem statement:
```lean 
theorem imp_chain 
  (a b c d e f : Prop) 
  (h₁ : a → b) (h₂ : b → c) 
(h₃ : c → d) (h₄ : d → e) 
(h₅ : e → f) : 
  a → f := 

 by 
  { assume a, 
    have h₁ a, 
    have h₂ h₁ a, 
    have h₃ h₂ a, 
    have h₄ h₃ a, 
    have h₅ h₄ a, 
    apply h₅ }​
​
 

35    ⟨h₁, h₂, h₃, h₄, h₅⟩ 50 

### Lean4 version of 
theorem statement 
(explicit 25 iterations, no 
induction): 
```lean 
theorem
succ25_mem_of_zero_
and_succ_closed
 (N : Nat → Prop)
 (h0 : N 0)
 (hS : ∀ {x}, N x → N
x.succ) : N 25 :=

-- initial induction
induction N on 25 -- base
case | 0 => h0 | succ i =>
hS (N i)

20 -- 25 iterations of N x → N

x.succ and N 0 | 0, h => h 0 | 1, h
=> h 1 | 2, h => h 2 | 3, h => h 3 |
4, h => h 4 | 5, h => h 5 | 6, h =>
h 6 | 7, h => h 7 | 8, h => h 8 | 9,
h => h 9 | 10, h => h 10 | 11, h =>
h 11 | 12, h => h 12 | 13, h => h
13 | 14, h => h 14 | 15, h => h 15
| 16, h => h 16 | 17, h => h 17 |
18, h => h 18 | 19, h => h 19 |
20, h => h 20 | 21, h => h 21 |
22, h => h 22 | 23, h => h 23 |
24, h => h 24 | 25, h => h 25

40

Lean4 version of
theorem statement:
```lean 
theorem 
add_zero_eq_self (n : 
ℕ) : n + 0 = n : 

by 
    induction n with 
      | 0 => sorry 
      | n.succ => by 
        contradiction 

5 add_comm n 0 ▸ add_zero 55 

### Lean4 version of 
theorem statement: 
```lean 
theorem

by { assume h : n.succ +
1 = n + 2; -- assume that
the theorem is true for
some n

10 -- This theorem states that the
successor of a natural number
plus one is equal to the natural
number plus two

100

34

Enhancing LLM's Math and Theorem Proving Abilities

succ_add_one_eq_add
_two (n : ℕ) : n.succ + 1
= n + 2 :=

 -- we want to show that
the theorem is true for
n.succ
 assumption h }

rfl

Lean4 version of
theorem statement:
```lean 
theorem succ_pred_self 
(n : ℕ) (h : n > 0) : (n - 
1).succ = n := 

by 
  { apply succ_pred_def, 
    apply h, 
    exact (n - 1)} 

5 -- Proof that the successor of a 
natural number is equal to the 
number itself. 
  -- This theorem is used to prove 
the well-foundedness of the 
natural numbers. 
 
  Nat.add_sub_self _ 
(Nat.succ_pos_iff.2 h) h. 

20 

Natural language 
version of theorem and 
proof: 
two_divides_double 
Twice any natural 
number is divisible by 2. 
 
For any n, the number n 
+ n equals 2 * n, so 2 
divides n + n with 
witness n. 
 
### Lean4 version of 
theorem statement: 
```lean 
theorem
two_divides_double (n :
ℕ) : 2 ∣ n + n :=

by
 { assume h : n + n = 2 *
n }

 by simp [add_comm]

 -- show that 2 divides n + n by
using the commutative property
of addition

Lean4 version of
theorem statement:
```lean 
theorem 
two_divides_double (n : 
ℕ) : 2 ∣ n + n := 

by 
  (refl : 2 ∣ 2) => 
  (refl : n + n = 2 * n) => 
  (by symmetry => refl : 2 
∣ 2 * n) 

5 -- This theorem states that 2 
divides the sum of a number and 
itself. 
  -- In other words, if n is a 
multiple of 2, then n + n is also a 
multiple of 2. 
 
  two_divides_add n n 

25 

 

Table 3: Scoring 1. Base Model, 2. SFT finetuned model over OBT dataset 

 

35 



Enhancing LLM's Math and Theorem Proving Abilities 

7. Experiment-3: Fine-tuning a Mixture-of-Experts 

Model on Math and Lean Datasets 

7.1 Objective 

This experiment quantified the trade-offs between mixed fine-tuning and sequential 

(curriculum) fine-tuning on two adjacent but different domains, natural-language math reasoning 

and formal Lean proofs using a Mixture-of-Experts (MoE) backbone. We tested the hypothesis 

that mixed training better preserved performance across domains, while sequential training 

risked catastrophic forgetting on the earlier domain. 

7.2 Data 

1.​ Math (NL, stepwise): rkumar1999/Mixture-of-Thoughts-math-cleaned 

(cleaned subset from open-r1/Mixture-of-Thoughts; max sequence ≤4096 tokens) 

2.​ Lean (formal proofs): rkumar1999/DeepSeek-Prover-V2-chat-cleaned 

(filtered from Cartinoe5930/DeepSeek-Prover-V2-generation; max sequence ≤4096 tokens) 

Both corpora were length-bounded to fit the model’s context window and avoid overflow during 

SFT. 

7.3 Setups 

We held architecture, optimizer, and PEFT settings constant and vary only the data curriculum: 

●​ Regime A: Mixed (Joint) Fine-Tuning:​

Train on a 50/50 interleaved mixture of Math and Lean examples per batch (or per 

epoch) with temperature-based sampling if desired to smooth domain imbalance. 

Goal: learn both domains concurrently and minimize interference. 

 

●​ Regime B: Sequential (Math → Lean): 

Stage 1: fine-tune on Math only → checkpoint A₁. 

Stage 2: continue from A₁ and fine-tune on Lean only → checkpoint A₂. 

Goal: measure forgetting in Math after adapting to Lean. 

36 



Enhancing LLM's Math and Theorem Proving Abilities 

Backbone: MoE model (microsoft/phi-tiny-moe-instruct) with identical PEFT/QLoRA settings 

across both regimes for a fair comparison. 

7.4 Results 

7.4.1 Outputs 
The fine-tuning process resulted in three distinct model artifacts, each representing a 

different training regime or stage. These models are publicly available on the Hugging Face Hub 
and serve as the basis for the comparative evaluation in the following section. 
 

1.​ Mixed-Domain Model (rkumar1999/Phi-mini-MoE-Mix-Prover-openr1-distill-SFT) This 
model is the result of Regime A (Joint Fine-Tuning). It was trained on an interleaved 
mixture of the Math and Lean datasets, designed to learn both domains concurrently and 
minimize interference between them. 

 
2.​ Lean-Specialized Checkpoint (rkumar1999/Phi-mini-MoE-Prover-openr1-distill-SFT) This 

model represents the intermediate output from Stage 1 of the sequential fine-tuning 
process. It was fine-tuned exclusively on the formal Lean proof dataset 
(rkumar1999/DeepSeek-Prover-V2-chat-cleaned). 

 
3.​ Sequential Fine-Tuned Model (Lean -> Math) 

(rkumar1999/Phi-mini-MoE-Prover-Math-openr1-distill-SFT) This is the final model from 
the sequential curriculum. It was initialized from the Lean-Specialized Checkpoint and 
then further fine-tuned exclusively on the natural-language math dataset 
(rkumar1999/Mixture-of-Thoughts-math-cleaned). This artifact is used to measure the 
catastrophic forgetting of the initial Lean domain. 

 
Evaluate both checkpoints (Mixed and Sequential-final) on two held-out test sets: 

1.​ Math Test (NL) – accuracy on final answers, chain-quality (self-consistency), and 

verbosity penalties. 

2.​ Lean Test (Formal) – proof validity (kernel pass/fail), syntax correctness, and proof 

efficiency (|gen_lines – ideal_lines|). 

 

37 



Enhancing LLM's Math and Theorem Proving Abilities 

7.4.2 Results - Lean4 prompts 

Prompt 

BASE 
(microsoft/Phi-mini-MoE-ins
truct) Score FT - mixed data Score 

FT - Sequential 
data Score 

theorem 
imp_chain (a b c 
d e f : Prop) (h₁ : 
a → b) (h₂ : b → 
c) (h₃ : c → d) (h₄ 
: d → e) (h₅ : e → 
f) : a → f := 

lean4 
begin 
intro a, 
have b := h₁ a, 
have c := h₂ b, 
have d := h₃ c, 
have e := h₄ d, 
have f := h₅ e, 
end 35 

lean4 
by 
have h_main : a → f := 
by 
intro h 
have h₆ : b := by 
have h₆₁ : a → b := h₁ 
…. 
have h₇₂ : b := h₆ 
exact h₇₁ h₇₂exact h₁₀ 
exact h_main 84 

(Catastrophic 
failure: The model 
entered a severe 
"thought loop" and 
produced no Lean 
code.) 5 

theorem 
succ25_mem_of_
zero_and_succ_c
losed (N : Nat → 
Prop) (h0 : N 0) 
(hS : ∀ {x}, N x 
→ N x.succ) : N 
25 := 

lean4 
begin 
intro h0, 
induction hS, 
cases h0, 
cases hS, 
apply hS, 
apply hS, 
... 
end 20 

lean4 
by 
have h_main : N 25 := 
by 
have h1 : N 0 := h0 
have h2 : N 1 := hS ⟨0, 
by simp⟩ h1 
have h3 : N 2 := hS ⟨1, 
by simp⟩ h2 
... 
have h26 : N 25 := hS 
⟨24, by simp⟩ h25 
exact h26 
exact h_main 60 

(Catastrophic 
failure: The model 
entered a severe 
"thought loop" and 
produced no Lean 
code.) 5 

theorem 
add_zero_eq_sel
f (n : ℕ) : n + 0 = 
n := 

lean4 
begin 
rw [n + 0 = n], 
Qed. 
(The model got stuck in a 
repetitive loop of 
self-correction before 
outputting this invalid 
proof.) 5 

lean4 
by 
have h : n + 0 = n := by 
simp 
<;> rfl 
exact h 97 

(Catastrophic 
failure: The model 
entered a severe 
"thought loop" and 
produced no Lean 
code.) 0 

38 



Enhancing LLM's Math and Theorem Proving Abilities 

theorem 
succ_add_one_e
q_add_two (n : ℕ) 
: n.succ + 1 = n + 
2 := 

lean4 
begin 
cases n, 
{ 
rw [n.succ + 1 := 0 + 1], 
rw [0 + 1 := 0 + 2], 
}, 
assume h : k.succ + 1 = k + 
2,...(Enters a repetitive loop 
of invalid rw tactics.) 0 

lean4 
by 
have h_main : n.succ + 
1 = n + 2 := by 
rw 
[Nat.succ_eq_add_one] 
<;> ring 
<;> omega 
exact h_main 96 

(The model 
produced a long 
explanation but 
failed to generate 
a final Lean code 
block.) 30 

theorem 
succ_pred_self (n : 
ℕ) (h : n > 0) : (n - 
1).succ = n := 

lean4 
begin 
rw h, 
rw (n + 1), 
exact (pred (n + 1)).succ = n, 
end 
 
(Uses hallucinated pred 
function and invalid rw tactics.) 5 

lean4 
by 
have h_main : (n - 1).succ 
= n := by 
have h₁ : n ≥ 1 := by 
linarith 
have h₂ : (n - 1).succ = n := 
by 
have h₃ : n - 1 ≥ 0 := by 
omega 
have h₄ : (n - 1).succ = n := 
by 
rw [Nat.succ_eq_add_one] 
<;> omega 
exact h₄ 
exact h₂ 
exact h_main 92 

(Catastrophic 
failure: The model 
entered a severe 
"thought loop" and 
produced no Lean 
code.) 5 

 
Table 4: Scoring 1. Base Model, 2. Fine-tuned model on mixed data, 3. Fine-tuned model on 

sequential data 

 

 

39 



Enhancing LLM's Math and Theorem Proving Abilities 

8. Conclusion 
This project explored different ways to improve Large Language Models’ mathematical 

capabilities in the challenging area of formal theorem proving. We found that the limitations of 

general-purpose LLMs in solving formal proofs can be improved through targeted training on 

specialized datasets, smart fine-tuning techniques, and the use of external tools. 

 

We tested our approach on a smaller GPT-2 model through parameter-efficient 

fine-tuning on specialized math datasets. We also explored a hybrid solution where we 

integrated the model with symbolic tools like Mathics and LEAN to perform complex calculations 

and recursively search for a proof, respectively. 

 

Our main experiments scaled up to more powerful architectures and showed significant 

insights. Fine-tuning of Llama-3.2-3B demonstrated that natural language guided datasets are 

more effective than training on formal code alone. The GRPO-aligned model achieved highest 

performance of 95+ (scored out of 100) on LEAN4 proof generation, followed by a plain SFT 

finetuned model (85+). Furthermore, the OpenBootstrappedTheorem (OBT) experiment 

confirmed that combining curriculum-learning and few-shot prompting approaches can help 

models handle longer proofs. We compared two different fine-tuning regimes, mixed and 

sequential, on a Mixture of Experts (MoE) model. Fine-tuning the model on a mixed dataset 

increased the model performance to 90+, while sequential fine-tuning resulted in forgetting the 

original knowledge visible in its low performance of < 20 for many examples. 

 

Our findings show the value of chain-of-thought reasoning and fine-tuning techniques in 

creating models that provide well-reasoned solutions rather than generating text plainly. Future 

work could extend these findings by scaling to larger models like DeepSeek, exploring more 

advanced reinforcement learning techniques for tactic selection. These directions aim to shift 

models from text generation machines toward robust thinking agents. 

 

40 



Enhancing LLM's Math and Theorem Proving Abilities 

9. References 
 

[1] Hendrycks, D., Burns, C., Kadavath, S., Arora, A., Basart, S., Tang, E., Song, D., & 

Steinhardt, J. (2021). Measuring Mathematical Problem Solving With the MATH Dataset. arXiv 

preprint arXiv:2103.03874. https://doi.org/10.48550/arXiv.2103.03874 

 

[2] Cobbe, K., Kosaraju, V., Bavarian, M., Chen, M., Jun, H., Kaiser, Ł., Plappert, M., Tworek, J., 

Hilton, J., Nakano, R., Hesse, C., & Schulman, J. (2021). Training Verifiers to Solve Math Word 

Problems. arXiv preprint arXiv:2110.14168. https://doi.org/10.48550/arXiv.2110.14168 

 

[3] Hu, E. J., Shen, Y., Wallis, P., Allen-Zhu, Z., Li, Y., Wang, S., Wang, L., & Chen, W. (2021). 

LoRA: Low-Rank Adaptation of Large Language Models. arXiv preprint arXiv:2106.09685. 

https://doi.org/10.48550/arXiv.2106.09685 

 

[4] Liu, S.-Y., Wang, C.-Y., Yin, H., Molchanov, P., Wang, Y.-C. F., Cheng, K.-T., & Chen, M.-H. 

(2024). DoRA: Weight-Decomposed Low-Rank Adaptation. arXiv preprint arXiv:2402.09335. 

https://doi.org/10.48550/arXiv.2402.09335 

 

[5] de Moura, L., Kong, S., Avigad, J., van Doorn, F., & von Raumer, J. (Year). The Lean 

Theorem Prover (System Description). Microsoft Research and Carnegie Mellon University. 

 

[6] Yang, K., Swope, A. M., Gu, A., Chalamala, R., Song, P., Yu, S., Godil, S., Prenger, R., & 

Anandkumar, A. (Year). LeanDojo: Theorem Proving with Retrieval-Augmented Language 

Models. Caltech, NVIDIA, MIT, UC Santa Barbara, UT Austin. Retrieved from 

https://leandojo.org 

 

[7] leanprover-community. (n.d.). repl: A simple REPL for Lean 4. GitHub repository. Retrieved 

December 9, 2024, from https://github.com/leanprover-community/repl 

 

[8] (2022). Mathics: Open-Source Alternative to Mathematica. Retrieved December 9, 2024, 

from https://mathics.org/ 

 

41 

https://doi.org/10.48550/arXiv.2103.03874
https://doi.org/10.48550/arXiv.2110.14168
https://doi.org/10.48550/arXiv.2106.09685
https://doi.org/10.48550/arXiv.2402.09335
https://leandojo.org
https://leandojo.org
https://github.com/leanprover-community/repl
https://mathics.org/


Enhancing LLM's Math and Theorem Proving Abilities 

[9] LangChain. (2024). LangChain Documentation. Retrieved December 9, 2024, from 

https://python.langchain.com/docs/introduction/ 

 

[10] Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E. H., Le, Q. V., & 

Zhou, D. (2016). Chain-of-Thought Prompting Elicits Reasoning in Large Language Models. 

Google Research, Brain Team. arXiv:2201.11903v6 

 

[11] Brown, T. B., Mann, B., Ryder, N., Subbiah, M., Kaplan, J., Dhariwal, P., Neelakantan, A., 

Shyam, P., Sastry, G., Askell, A., Agarwal, S., Herbert-Voss, A., Krueger, G., Henighan, T., 

Child, R., Ramesh, A., Ziegler, D. M., Wu, J., Winter, C., Hesse, C., Chen, M., Sigler, E., Litwin, 

M., Gray, S., Chess, B., Clark, J., Berner, C., McCandlish, S., Radford, A., Sutskever, I., & 

Amodei, D. (2020). Language Models are Few-Shot Learners. 34th Conference on Neural 

Information Processing Systems (NeurIPS 2020), Vancouver, Canada 

 

[12] Hendrycks, D., Burns, C., Kadavath, S., Arora, A., Basart, S., Tang, E., Song, D., & 

Steinhardt, J. (2021). Measuring Mathematical Problem Solving With the MATH Dataset. 

NeurIPS. Retrieved December 9, 2024, from https://github.com/hendrycks/math 

 

[13] Ruida Wang H, Jipeng Zhang, Yizhen Jia, Rui Pan (2024). TheoremLlama: Transforming 

General-Purpose LLMs into Lean4 Experts. https://arxiv.org/html/2407.03203v1 

 

[14] Open Bootstrapped Theorem Dataset. Huggingface dataset card. 

https://huggingface.co/datasets/RickyDeSkywalker/OpenBootstrappedTheorem 

 

[15] Omar Sanseviero, Lewis Tunstall, Philipp Schmid, Sourab Mangrulkar, Younes Belkada 

(2023). Mixture of Experts Explained. https://huggingface.co/blog/moe 

 

[16] A. Vaswani et al., “Attention Is All You Need,” in Advances in Neural Information Processing 

Systems, 2017. https://doi.org/10.48550/arXiv.1706.03762 

 

[17] A. Radford et al., “Language Models are Unsupervised Multitask Learners” OpenAI Blog, 

2019. https://api.semanticscholar.org/CorpusID:160025533 

 

42 

https://python.langchain.com/docs/introduction/
https://github.com/hendrycks/math
https://arxiv.org/html/2407.03203v1
https://huggingface.co/datasets/RickyDeSkywalker/OpenBootstrappedTheorem
https://huggingface.co/blog/moe
https://doi.org/10.48550/arXiv.1706.03762
https://api.semanticscholar.org/CorpusID:160025533


Enhancing LLM's Math and Theorem Proving Abilities 

[18] L. Ouyang et al., Training language models to follow instructions with human feedback. 

2022. https://doi.org/10.48550/arXiv.2203.02155 

 

[19] W. Fedus, B. Zoph, and N. Shazeer, “Switch Transformers: Scaling to Trillion Parameter 

Models with Simple and Efficient Sparsity” Journal of Machine Learning Research, vol. 23, no. 

120, pp. 1–39, 2022. https://doi.org/10.48550/arXiv.2101.03961 

 

[20] Hugging Face, “Text Generation Inference,” GitHub Repository. 

https://github.com/huggingface/text-generation-inference 

 

[21] Hugging Face, “TRL - Transformer Reinforcement Learning,” GitHub Repository. 

https://github.com/huggingface/trl 

 

[22] DeepSeek-AI, "DeepSeek-R1: A Reasoning Language Model," arXiv preprint 

arXiv:2407.12484, 2024. 

 

[23] Ouyang et.al., “Training language models to follow instructions with human feedback”, 

2022. https://arxiv.org/abs/2203.02155 

 

[24] Hugging face, Open R1: A fully open reproduction of DeepSeek-R1. 

https://github.com/huggingface/open-r1 

 

 

43 

https://doi.org/10.48550/arXiv.2203.02155
https://doi.org/10.48550/arXiv.2101.03961
https://github.com/huggingface/text-generation-inference
https://github.com/huggingface/text-generation-inference
https://github.com/huggingface/trl
https://github.com/huggingface/trl
http://et.al
https://arxiv.org/abs/2203.02155
https://github.com/huggingface/open-r1

	Abstract 
	 
	1.​Introduction 
	2.​ Background and Literature Review 
	2.1. ​​Limits of LLMs on Mathematics and Theorem Proving 
	2.2. Datasets for Mathematical Reasoning 
	2.3. Parameter-Efficient Fine-Tuning (PEFT) Techniques 
	2.3.1 Low-Rank Adaptation (LoRA) 
	2.3.2 Decomposed Low-Rank Adaptation (DoRA) 

	2.4. Mixture of Experts (MoE) Architecture  
	2.5. Post-Training Techniques 
	2.5.1 Supervised Fine-Tuning (SFT) 
	2.5.2 Reinforcement Learning and Preference Alignment 
	2.5.3 Model Distillation 

	2.6. Tool-Augmented Reasoning 

	3. Preliminary Work 
	3.1 Objective 
	3.2 Methods 
	Model and PEFT 
	Integration With External Tools  

	3.3 GSM8K/MATH Fine-tuning 
	3.3.1 Datasets 
	3.3.2 Results​​​​​​Fig 5: Fine tuning on MATH dataset​​ 

	3.4. Integrating Mathics and LEAN with LLM 
	3.4.1. Mathics 
	3.4.2. LEAN 
	3.4.3 Integration using Langchain 
	3.4.4. Results 


	4. Infrastructure and Setup 
	4.1. Text Generation Inference (TGI) 
	4.2. Chat Application 
	4.2.1 Usage in Experiments 


	5. Experiment-1: Finetuning Llama-3.2-3B using open-r1 
	5.1 Objective 
	5.2 Data 
	5.3 Method  
	5.3.1 Prompt Format 
	5.3.2 GRPO Custom Reward Function 
	5.3.3 Training Hyperparameters  

	5.4 Results 
	5.4.1 Evaluation Rubric 
	 
	5.4.3. Evaluation Results 


	 
	6. Experiment-2: OpenBootstrappedTheorem (OBT) Style Finetuning for Lean 4 Proof Synthesis 
	6.1 Objective 
	6.2 Data 
	6.3 Method 
	6.3.1 Prompt Format 
	6.3.2 Curriculum Sorting 
	 
	6.3.3 Pseudocode 
	6.3.3 Completion-Only Loss with TRL 
	6.3.5 Training Hyperparameters  
	6.3.6 Implementation Summary 

	6.4 Results 
	6.4.1 


	7. Experiment-3: Fine-tuning a Mixture-of-Experts Model on Math and Lean Datasets 
	7.1 Objective 
	7.2 Data 
	7.3 Setups 
	7.4 Results 
	7.4.1 Outputs 
	 
	7.4.2 Results - Lean4 prompts 
	 
	 


	8. Conclusion 
	 
	9. References 

