
 

Enhancing LLM’s Mathematical and Theorem Proving Abilities 

 

 

 

A Project 

Presented to: 

The Faculty of the Department of Computer Science 

San Jose State University 

 

 

 

In Partial Fulfillment 

of the Requirements for the Degree 

Master of Science 

 

 

 

 

 

 

Presented By: 

Naga Rohan Kumar Bayya 

November, 2025 
​

 

 



Enhancing LLM's Math and Theorem Proving Abilities 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

© 2025  

Naga Rohan Kumar Bayya  

ALL RIGHTS RESERVED  

 



Enhancing LLM's Math and Theorem Proving Abilities 

The Designated Project Committee Approves the Project Titled  

Enhancing LLM's Math and Theorem Proving Abilities 

 

 

By 

Naga Rohan Kumar Bayya 
 

 

APPROVED FOR THE DEPARTMENT OF COMPUTER SCIENCE 

 

 

SAN JOSÉ STATE UNIVERSITY  

 

 

November 2025 

 

 

 

Dr. Chris Pollett                                 Department of Computer Science 

Dr. Navrati Saxena                            Department of Computer Science  

Prasanna Nikhil Sathwik Vadlamani  Software Engineer Glass Imaging

 



Enhancing LLM's Math and Theorem Proving Abilities 

Abstract 
Enhancing LLM's Math and Theorem Proving Abilities 

By Naga Rohan Kumar Bayya 

 

Large language models (LLMs) are good at natural language tasks but are not up to the 

mark when it comes to mathematics and theorem-proving, as they rely on language patterns 

instead of understanding the problem and thinking through the solution. This project addresses 

issues such as a lack of exposure to structured datasets, difficulty with generating outputs that 

require multi-step reasoning, and limitations of short context. We fine-tune pre-trained LLMs on 

structured datasets like MATH, GSM8k, open-r1, deepseek-prover, and 

OpenBootstrappedTheorem. We integrate two software tools, Mathics and LEAN, and enhance 

reasoning through Chain-of-Thought (CoT). Additionally, we conduct the experiments using 

state of the art Mixture of Experts (MoE) and parameter efficient fine-tuning (PEFT) techniques 

such as LoRA and DoRA. The outcomes of this project are better model performance on 

complex math problems, and particularly on formal theorem-proving datasets, which is a 

comparatively understudied domain in recent LLM research. This takes a step toward 

developing and fine-tuning models that can handle challenging mathematical and logical 

domains. 

 

Keywords: Large Language Models, LLMs, Mathics, Lean, Chain-of-Thought prompting, 
Deepseek, Post-tuning  
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1.​Introduction 
LLMs have transformed natural language processing (NLP) by generating human-like 

text and automating various language tasks. Hendrycks et al. proposed that they still have room 

to grow in mathematics and theorem-proving because LLMs are mostly trained on internet data, 

which lacks the reasoning needed for mathematical calculations and multi-step deductions. 

Although they generate correct-sounding answers, they fall short in terms of the factual 

correctness of their outputs, because they prioritize sounding "right" over being correct. This 

project explores different ways to improve LLM performance with the help of specialized training 

and data centric fine-tuning techniques. 

 

Mathematics and logic play an important role in many fields, ranging from scientific 

research to business. The domain of formal theorem proving is a fairly understudied and 

challenging area for many LLMs. Hence, we explore various ways to improve LLM performance 

on this domain, like fine-tuning with structured datasets that strengthen Chain-of-Thought [10], 

incorporating symbolic reasoning software, and experimenting with post-training techniques like 

SFT and GRPO. Ultimately, our goal is to help the model go beyond just mimicking answers and 

to improve its mathematical capabilities. 

​

​ This report shares the progress made over three semesters in improving how LLMs 

handle mathematical problems, especially in theorem proving. It starts with a Preliminary Work 

section, which explains the foundational studies from the first phase. In this stage, we laid the 

groundwork by fine-tuning a smaller LLM, GPT-2 [17], using mathematics datasets like MATH 

and GSM8k. We also incorporated symbolic tools (Mathics) and formal proof assistants (LEAN) 

through LangChain to see how these resources could improve the LLM’s workflow. Based on 

the observations and learnings in this phase, we conducted more advanced experiments in the 

next phase. 

 

We also talk about the technical setup behind our evaluation process in the 

Infrastructure and Setup section. To make model evaluation easier, we built a server and 

designed an interactive web interface to compare all model versions side by side. This allowed 

us to clearly see how each approach performed throughout the project 

1 
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The main body of the report details three experiments conducted in the second phase. 

Experiment 1 focuses on scaling up the fine-tuning process to a larger model architecture 

(Llama-3.2-3B). This compares various data supervision styles using extensive theorem-proving 

datasets and post-training strategies. For Experiment 2, we apply an advanced OBT-style 

pipeline, designed to help the model generate Lean4 proofs from natural language input more 

reliably. In experiment 3, we investigate the implications of two finetuning regimes and their 

effects on catastrophic forgetting, basing our experiments on a Mixture of Experts (MoE) model.

2 
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2.​ Background and Literature Review 

2.1. ​​Limits of LLMs on Mathematics and Theorem Proving 

LLMs are mostly trained on large natural language datasets, so they produce answers 

that look convincing but lack a formal understanding of the underlying domain. This is pretty 

evident from their weak arithmetic and reasoning skills. Even when tested on special math 

benchmarks such as MATH and GSM8K, these models often produce fluent but incorrect chains 

of reasoning, especially when multistep derivations or symbolic transformations are required [1], 

[2]. These mistakes happen due to a few reasons: a mismatch between pretraining data and the 

downstream symbolic domains [16], weak inductive biases for formal manipulation, and they’re 

not very good at checking their own steps. 

2.2. Datasets for Mathematical Reasoning 

MATH provides 12.5k competition style problems with stepwise solutions across topics 

(algebra, geometry, number theory, etc.) and is widely used for supervised finetuning and 

evaluation [1]. GSM8K targets grade school word problems requiring multi-step arithmetic and is 

commonly used to assess reasoning with natural-language problem statements [2]. These 

corpora complement each other: MATH stresses formal derivation depth and GSM8K stresses 

compositional reasoning in natural language. 

Alongside MATH and GSM8K, this project leverages three additional corpora covering 

process supervision, formal proof, and symbolic logic: 

1.​ OpenR1-Math-220k (open-r1/OpenR1-Math-220k): curated long-form math problems 

with stepwise rationales aligned to “Open-R1” style reasoning traces. Useful for process 

supervision and stabilizing multi-step derivations in arithmetic/algebra/geometry word 

problems. 

2.​ DeepSeek-Prover-V1 (deepseek-ai/DeepSeek-Prover-V1): theorem/proof pairs, 

Lean-style statements, and tactic-level supervision suitable for theorem proving and 

learning proof trajectories. No natural language Chain of thought (CoT) 

3.​ Open Bootstrapped Theorem (RickyDeSkywalker/OpenBootstrappedTheorem): Lean 

4-Natural Language aligned and bootstrapped dataset for training a Lean4 LLM expert. 

Includes Chain of thought 

3 
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2.3. Parameter-Efficient Fine-Tuning (PEFT) Techniques 

LLMs usually consist of billions of tunable weights. In order to train such huge models 

from scratch, a lot of computational resources and time are required. PEFT techniques are 

clever methods for adapting such large models to downstream tasks without having to retrain 

the entire model from scratch, while achieving the same result. They freeze the entire model 

weights and focus only on a subset of them to cut down on the compute, memory, and training 

time. This approach makes them more feasible for tasks with limited resources. The idea comes 

from the fact that a pre-trained language model can be adapted for specific tasks by only 

changing a few parameters [3]. In this project, we used two popular PEFT techniques, Low 

Rank Adaptation (LoRA) and Decomposed Low Rank Adaptation (DoRA), to fine-tune GPT-2. 

2.3.1 Low-Rank Adaptation (LoRA) 

LoRA is a clever parameter efficient fine-tuning method that introduces a pair of low-rank 

decomposition matrices (denoted by A and B in Fig. 1) to update the underlying model's 

weights. LoRA updates only these small matrices instead of updating all the weights. This 

reduces the total trainable parameters to fine-tune the model on new datasets. Edward Hu, et 

al's work fine-tunes GPT-2 transformer on MATH and GSM8k datasets by applying LoRA on 

self-attention layers. 

 

Fig 1: LoRA architecture 

4 
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2.3.2 Decomposed Low-Rank Adaptation (DoRA) 

​ Although low-rank adaptation reduces the memory footprint by freezing the underlying 
model, we often observe a gap when compared to full training. DoRA tries to close this gap by 
introducing one more matrix decomposition step by breaking down the original weight matrix W 
into two component matrices Magnitude (M) and Direction (D), and then applies LoRA only on 
the Direction matrix [4]. The intuition behind this decomposition is that Direction of the weights 
adapts to the new task, but the magnitude can remain the same. 
 

 

Fig 2: DoRA Architecture. Courtesy: NVIDIA’s blog post 

2.4. Mixture of Experts (MoE) Architecture  

Instead of a single network processing all information, a Mixture of Experts (MoE) 

architecture consists of many smaller "experts" and a "gating network" (or router) [15] [16]. The 

router’s job is to pick a small subset of experts (top k) to process any given token. This way, the 

model can grow large with lots of experts, yet maintain a small workload for each input. 

Because this sparse architecture activates fewer experts to generate a token, it requires fewer 

resources and mitigates catastrophic forgetting. 

5 
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Fig 3: Mixture of Experts (MoE) architecture 

2.5. Post-Training Techniques 

Pre-trained LLMs are good at predicting the next word, but not at following human 

instructions or engaging in a conversation. We apply post-training techniques to transform these 

models into capable assistants as they align a model's general knowledge with its ability to 

apply that knowledge in a useful and reliable manner. The primary methods used in our project 

are illustrated in the diagram below. 

6 
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​

Fig 4: A diagram illustrating three steps in the Post-training phase [23] 

2.5.1 Supervised Fine-Tuning (SFT) 

SFT is usually the first phase in the post-training process, and its purpose is to adapt a 

model to behave like a helpful assistant. In this phase, the model is trained on a high-quality 

dataset consisting of prompt and response pairs that demonstrate the desired behavior. It 

teaches the model an appropriate tone for conversation and to reason thoroughly. Datasets like 

MATH and GSM8k are perfect for this because they include detailed solutions forcing the model 

to replicate the reasoning process. This way, SFT helps the model become both understandable 

and reliable in its responses. 

2.5.2 Reinforcement Learning and Preference Alignment 

After SFT, a model's behavior is further refined using feedback on its outputs. While 

traditional Reinforcement Learning from Human Feedback (RLHF) usually trains a reward model 

separately, recent advances introduced methods that offer greater stability and efficiency. 

 

7 
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●​ Direct Preference Optimization (DPO): DPO is a technique that trains the model directly 

on a dataset of preferred and rejected responses. It uses a special loss function that 

directly pushes the model to favour the probability of generating the preferred response 

over the rejected one, instead of a separate reward function. 

●​ Group Relative Policy Optimization (GRPO): GRPO is a newer RL technique based on 

rejection sampling. During training, the model generates multiple candidate responses 

for a given prompt and a reward model or another heuristic then scores these 

responses. The model is fine-tuned only on the highest-scoring or winning response. 

DeepSeek-R1 technical report demonstrates that this feedback loop allows the model to 

incrementally improve its correctness [22]. 

2.5.3 Model Distillation 

Model distillation is a "student-teacher" technique where knowledge from a large, 

powerful "teacher" model is transferred to a smaller and faster "student" model. This is achieved 

by having the teacher generate a large, high-quality synthetic dataset, which is then used to 

fine-tune the student. This process is one of the main principles used in the open-r1 project as it 

applies the reasoning skills of the larger model to create a smaller model that mimics the same 

outputs. It provides a way to build small models that are still powerful enough for real-world use 

[22] instead of training models from scratch. 

2.6. Tool-Augmented Reasoning 

 Language models aren't always exact or reliable with their facts, as they can't look up 

information instantly. They tend to make mistakes with complex numerical calculations and 

struggle to follow strict logic. Tool-Augmented Reasoning is another strategy for overcoming 

these fundamental limitations. 

 

This technique utilizes LLM as a brain that can delegate tasks to specialized software. 

When the model recognizes that a task exceeds its own capabilities, it issues a query for the 

appropriate tool and then consumes the tool's output back into its reasoning process to 

generate a final answer. It combines the LLM's wider understanding of the language with the 

accuracy of specialized software tools. Some of the tools are listed below: 
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●​ Computer Algebra System (CAS): These are special software tools for manipulating 

algebraic expressions and calculus instead of just performing mathematical calculations. 

Mathics [8], an open-source Mathematica-like CAS, is used to offload tasks like solving 

complex equations or computing integrals. 

●​ Proof Assistants: For tasks that need formal verification, proof assistants can carefully 

check the proof steps or tactics generated by an LLM. We used Lean4 [5], a dependent 

type theory proof assistant, to make sure all generated proofs are valid. 

●​ Code Interpreters: For executing code, performing complex simulations, or handling data 

analysis. 

●​ Information Retrieval Systems: To access proprietary information from external sources 

like search engines, databases, or APIs. 

 

Agentic frameworks help coordinate how the LLM interacts with different tools. They 

make it easier to define tools, understand when the LLM wants to use a tool, and manage the 

process of executing those tools. In this project, we use LangChain [9] to create the agent and 

to communicate with external Mathics and Lean tools. 
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3. Preliminary Work 

3.1 Objective 

This first phase of the project validates three core hypotheses for enhancing LLM 

reasoning on a small scale: (i) that a base LLM's mathematical abilities could be improved via 

PEFT on specialized datasets; (ii) an LLM could be augmented with a symbolic computation 

engine for performing algerbic calculations and (iii) an the proofs that it generates could be 

verified using a proof assistant software. 

3.2 Methods 

Model and PEFT 

We implemented DoRA, an advanced PEFT technique, to fine-tune GPT-2 on subsets of 

the MATH and GSM8k datasets. A learning rate of 5e-5 and a small batch size were used in the 

training process. The resulting fine-tuned models were published to the Hugging Face Hub as 

rkumar1999/gpt2-fine-tuned-math and rkumar1999/gpt2-fine-tuned-gsm8k. 

Integration With External Tools  

We built a unified pipeline by integrating Mathics, a symbolic computation tool, and 

LEAN, a formal proof assistant, to solve complex mathematical word problems. Our main goal 

was to show how combining these tools with LLMs can enhance their ability to tackle problems 

that require symbolic understanding and theorem proving. 

3.3 GSM8K/MATH Fine-tuning 

3.3.1 Datasets 

1.​ MATH dataset is a compilation of 12,500 high-school-level math problems with varying 

difficulty levels ranging from 1 to 5 and is used to evaluate the mathematical 

problem-solving abilities of machine learning models. 7,500 problems are designated for 

training, and 5,000 for testing. It covers topics such as Prealgebra, Algebra, Number 

Theory, Counting and Probability, Geometry, Intermediate Algebra, and Precalculus. 

10 
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Each problem is formatted in LaTeX with visual elements generated using the Asymptote 

vector graphics language. Solutions include step-by-step derivations and a boxed final 

answer, facilitating interpretability and learning using Chain of thought , as proposed by 

Jason Wei et al.  

2.​ The GSM8k (Grade School Math 8K) is another high quality dataset that consists of 

8500 grade school math problems that need multiple reasoning steps to be solved. It 

presents unique challenges as it requires the model to clearly understand problem 

statements and engage in step-by-step reasoning to find the right solutions [2]. 

11 
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3.3.2 Results

​

​ ​ ​ ​ ​ Fig 5: Fine tuning on MATH dataset​
​

12 
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Fig 6: Fine tuning on GSM8K dataset 

3.4. Integrating Mathics and LEAN with LLM 

3.4.1. Mathics 

​ Mathics is an open source computer algebra system. It is a free alternative to 

Mathematica and supports a variety of features such as algebraic manipulations, calculus, 

13 
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plotting, and also handles symbolic computations, function definitions, and data visualization. 

Mathics provides a flexible way for collaborating with LLMs using a command line interface [8]. 

3.4.2. LEAN 

​ LEAN provides formal verification to mathematical statements. We choose LEAN as it is 

an open source software and used by many mathematicians to build and verify proofs [5]. The 

user writes tactics to transform the goal into sub-goals, and LEAN kernel validates these tactics. 

The LEAN proof below shows the existence of infinite primes. 

​  

import Mathlib.Data.Nat.Factorial.Basic​
import Mathlib.Data.Nat.Prime.Defs​
import Mathlib.Order.Bounds.Basic​
namespace Nat 

 -- Theorem: For any `n`, there exists a prime `p` such that `n ≤ p`.​
theorem exists_infinite_primes (n : ℕ) : ∃ p, n ≤ p ∧ Prime p := 

  -- Let `p` be the smallest prime factor of `n! + 1`.​
  let p := minFac (Nat.factorial n + 1) 

 

  -- `n! + 1` is not 1 (since `n! + 1 > 1`).​
  have f1 : n! + 1 ≠ 1 := ne_of_gt <| succ_lt_succ <| factorial_pos _ 
 

   -- `p` is prime by definition of `minFac` (since `n! + 1 ≠ 1`).​
  have pp : Prime p := minFac_prime f1 

 

 -- We need to show `n ≤ p`. Proof by contradiction: 
  have np : n ≤ p := by 
     -- Assume `p < n` for contradiction.​
    apply le_of_not_ge fun h => 

     -- If `p < n`, then `p` divides `n!` (from definition of factorial).​
    have h1 : p ∣ Nat.factorial n := dvd_factorial (minFac_pos _) h 

     -- `p` divides `n! + 1` (by definition of `minFac`).  

     -- If `p` divides `n!` and `n! + 1`, it must divide their difference 1​
    have h2 : p ∣ 1 := (Nat.dvd_add_iff_right h1).2 (minFac_dvd _) 

     -- But a prime `p` cannot divide `1`. This is a contradiction.​
    exact pp.not_dvd_one h2 

-- combine p and properties (n ≤ p, Prime p), to complete the exists goal.​
  (p, np, pp)​
​
end Nat 

 

14 
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Proof to demonstrate that for any natural number n, there exists a prime  p≥n by considering the 

smallest prime factor of n!+1. It uses the fact that  n!+1 cannot be divisible by any prime ≤n. 

3.4.3 Integration using Langchain 

1.​ Mathics was invoked through a LangChain agent using its MathicsSession class to 

handle symbolic computations. For example, queries like "Find the integral of sin²(x) 

from 0 to π/2" were passed to Mathics, which returned correct results. 

 

2.​ We created a custom Proof Assistant tool to work with LEAN. It uses a pre-trained 

sequence-to-sequence model [6] that can generate a variety of tactics based on a proof 

state. Some key components are: 

●​ Proof Initialization: We used LEAN’s read eval print loop (REPL) to define initial 

an initial proof state and placeholders for any unresolved steps 

●​ Tactic Generation: We used a sequence-to-sequence model to generate several 

potential tactics for each proof state, which are iterated over to recursively search 

valid paths 

●​ Proof Validation: We used LEAN to provide feedback on unresolved goals and 

verify each step to ensure correctness.  

15 
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Algorithm for PROOFSEARCH(thm)​
​
Input: thm: Lean4 theorem declaration with a 'sorry' goal​
Output: A sequence of tactics that discharges all goals, or FAIL​
​
Procedure PROOFSEARCH(thm):​
    P ← LaunchREPL()​
    DefineWithSorry(P, import Mathlib; open Real; open Nat; open 

BigOperators)​
    (s₀, g₀) ← DefineWithSorry(P, thm, env = 0)​
    if (s₀, g₀) is None then​
        return FAIL​
    return DFS(g₀, s₀, 0, [])  // Initial call to DFS (g₀: initial goals, s₀: 

initial score, 0: initial depth, []: initial proof)​
​
Function DFS(g, s, d, π):​
    if d ≥ DEPTH_LIMIT then​
        return None  // Exceeded depth limit​
    T ← GenerateTactics(g, k = NUM_CANDIDATES)​
    for each t in T do​
        (s', g', M) ← ApplyTactic(P, s, t)​
​
        if (s', g', M) is None then​
            // syntax/type error, etc.​
            continue  // Try the next tactic​
        end if​
​
        if |G'| = 0 then​
            return π appended with t // Success: goals discharged​
        end if​
​
        if s' = s + 1 and |G'| > 0 then​
            g' ← G'[0]  // Focus on the first remaining goal​
            // Recursively search deeper​
            π' ← DFS(g', s', d + 1, π appended with t)​
            if π' ≠ None then​
                return π'  // Proof found in a deeper search​
            end if​
        end if​
    end for​
    return None  // No successful path found at this depth 

16 
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​

Fig 9: Using Tool class of langchain to invoke Mathics and LEAN 

 

3.4.4. Results 

​ The pipeline integrates an LLM with both the Mathics and LEAN tools, enabling it to 

accomplish tasks that would be too complex for the model to solve on its own. The LLM figures 

out that it has to call a specific tool by looking into the tool’s description expressed as 

docstrings. The image below shows a pipeline invocation where we simultaneously added two 

numbers using “perform_math” and verified the correctness of the result using the 

“perform_lean” Proof Search tool.  

17 
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​ Fig 10: Invoking the Langchain pipeline to solve multiple tasks at once 

 

The experiments in the initial phase were promising, but they pointed out the limitations 

of a recursive approach to solving a proof, which was both time-consuming and computationally 

infeasible. To better achieve our main goal of improving formal theorem proving, we scaled up to 

larger LLM architectures and adopted more advanced training techniques. 

 

18 
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4. Infrastructure and Setup 
In this whole project, we produced multiple fine-tuned checkpoints and adapters. To 

easily evaluate and compare them, we built an interactive user interface and chat application. 

This section describes the underlying technical framework to help users compare model 

evaluations. It uses the high-performance Text Generation Inference (TGI) for GPU-accelerated 

deployment. 

4.1. Text Generation Inference (TGI) 

TGI is an open-source project created by Hugging Face to deploy large language 

models smoothly in production-grade settings. It is optimized for GPU performance [15] and 

offers several benefits for our project.  

We achieved GPU acceleration through CUDA kernels and smart memory management 

to maximize throughput on NVIDIA GPUs. For robust evaluation, we set up Model Serving by 

configuring every fine-tuned variant (base, SFT, GRPO, OBT) as its own isolated Docker 

container running on a different port, allowing us to query them all concurrently without 

interference. 

TGI automatically manages Dynamic Batching, which combines multiple inference 

requests to keep the GPU busy while maintaining high throughput. Also, the Docker container 

handles all dependency management (like installing Flash-Attention and PyTorch), simplifying 

our setup. All TGI instances expose a REST API with a standard /generate endpoint. We 

deployed these TGI containers on cloud GPU instances (Lightning.ai with H200 GPUs), with 

each model hosted on separate ports starting from 8080. 

4.2. Chat Application 

We built a chat application and inference engine to evaluate our different finetuned 

models created during this project.  

The frontend is a React.js based application for a user-friendly interface. It includes 

model selection dropdowns, a chat box for submitting prompts, and a split-pane view showing 

responses from two models for side-by-side comparison. Users can also adjust generation 

settings like max tokens and see live updates on the status of the TGI endpoints. 

19 
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The backend uses FastAPI server as a middleware whose role is to track all TGI 

endpoints and provide RESTful APIs to direct incoming requests to the correct port. The 

inference layer manages model inference using Docker containers deployed on cloud instances 

with access to GPUs. Each container loads a specific model checkpoint along with all necessary 

parameters, such as port number and temperature, and operates independently.​

 

 

Fig 11: Chat application and inference engine 

4.2.1 Usage in Experiments 

This infrastructure played a key role in conducting the experiments 1-3 smoothly. In Experiment 

1, we used our interface to put the base Llama-3.2-3B model up against fine-tuned versions 

using SFT and GRPO, focusing on how well they could generate Lean4 proofs. The 

side-by-side comparison made it clear how each model differed in their proof structure, choice of 

tactics, and how they handled tricky edge cases. 

20 
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For Experiment 2, we compared OBT-style fine-tuned model versus the base version on 

theorem proving tasks. The interface displayed Lean4 code with syntax highlighting along with 

its thought process (or CoT), making it easy for users to check the accuracy and style of each 

proof in an interactive fashion. 

 

Experiment 3 showed the effects of different training regimes (mixing of tasks vs sequential 

training) while fine-tuning a Mixture-of-Experts (MoE) model by comparing the outputs 

side-by-side on the interface. This experiment showed some common mistakes to avoid 

catastrophic forgetting when we are fine-tuning on multiple tasks. 

 

This infrastructure provided a user-friendly framework for model evaluation throughout the 

project. It separates concerns across three architectural layers: presentation, orchestration, and 

inference. We were able to compare the outputs of different models on identical prompts and 

also experiment with hyperparameters like the number of tokens, temperature, etc.  

21 
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5. Experiment-1: Finetuning Llama-3.2-3B using 

open-r1 

5.1 Objective 

This experiment explored the effects of different data supervision styles and post-training 

techniques on an LLM’s ability to generate formal proofs. We fine-tuned a mid-sized model, 

meta-llama/Llama-3.2-3B-Instruct, across two distinct data regimes using SFT+GRPO pipeline 

from the Hugging Face open-r1 handbook [24]: 

1.​ Formal-Only Supervision: Training on Lean theorem statements and their corresponding 

formal proofs without natural language chain of thoughts. 

2.​ Text-Guided Supervision: Training on Lean statements and proofs, along with their 

natural language explanations and step-by-step reasoning behind choosing each tactic.  

 

The hypothesis is that text-guided supervision will substantially improve the model's 

correctness, logical stability, and ability to generate valid Lean4 proofs compared to training on 

just the formal code. 

5.2 Data 

Two datasets were used to create the different supervision regimes: 

1.​ deepseek-ai/DeepSeek-Prover-V1: This dataset constitutes pairs of Lean theorem 

statements and their raw proof code. It provides formal-only supervision with little to no 

natural language rationale. 

2.​ Cartinoe5930/DeepSeek-Prover-V2-generation: This dataset contains synthetic 

mathematical problems accompanied by step-by-step natural language solutions and 

their corresponding Lean proofs. 

5.3 Method  

We conducted the experiments using sft.py and grpo.py scripts from the Hugging Face 

Alignment Handbook and open-r1 repositories [24]. A custom chat template based on the Llama 
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3 format was used to structure the prompts with special tokens (<|start_header_id|>, etc.), 

ensuring the model received a consistent system prompt along with conversational history. 

5.3.1 Prompt Format 

We used Llama 3 chat template to help the model follow conversations more effectively. 

This template structures the input as a series of messages, each marked with special control 

tokens that indicate turns and when a message ends. It has special token to guide the 

conversation flow. The prompt starts with a <|begin_of_text|> to mark the start of a 

conversation, followed by a series of messages where cach role—system, user, or assistant—is 

wrapped between <|start_header_id|> and <|end_header_id|>. <|eot_id|> marks the end of a 

message. The add_generation_prompt flag ensures that the final <|start_header_id|> assistant 

<|end_header_id|> tokens are appended, prompting the model to begin its turn. This 

token-based structure helps instruction-tuned models to produce clear outputs by distinguishing 

between instruction, user questions, and the previous context. 

 

{%- if messages and messages[0]['role'] == 'system' -%}​
<|start_header_id|>system<|end_header_id|>​
{{ messages[0]['content'] }}​
<|eot_id|>​
{%- else -%}​
<|start_header_id|>system<|end_header_id|>​
{{ default_system }}​
<|eot_id|>​
{%- endif -%}​
​
{%- for m in messages -%}​
  {%- if not (loop.first and m.role == 'system') -%}​
<|start_header_id|>{{ m.role }}<|end_header_id|>​
{{ m.content }}​
<|eot_id|>​
  {%- endif -%}​
{%- endfor -%}​
​
{# When generation is requested, open the assistant header #}​
{%- if add_generation_prompt -%}​
<|start_header_id|>assistant<|end_header_id|>​
{%- endif -%} 
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5.3.2 GRPO Custom Reward Function 

​ We developed a custom GRPO reward function that evaluates each generated proof 

against its corresponding ground-truth solution. It assigns a perfect score of 1.0 for an exact 

match and a partial score based on the Jaccard similarity between tokens. It also penalizes 

incomplete proofs if they contain keywords like "sorry". 

 

Algorithm for Lean Proof Reward Function​
​
Input: Model completion C, Gold proof G​
Output: Reward score s ∈ [-1, 1]​
​
1. Extraction and Normalization:​
    C_code ← ExtractLastLeanBlock(C)​
    G_code ← ExtractLastLeanBlock(G) (if applicable, else use G directly)​
    C_norm ← Normalize(C_code) // Remove comments and collapse whitespace​
    G_norm ← Normalize(G_code)​
​
2. Scoring Logic:​
    if C_norm is empty then​
        return -0.8 // Penalize for no proof generation​
    end if​
​
    if C_norm = G_norm then​
        return 1.0 // Perfect score for exact match​
    end if​
​
    --- Partial Credit Calculation​
​
    s_sim ← 0.7 × JaccardSimilarity(C_norm, G_norm) // Score based on 

token overlap​
    s_format ← 0.1 if C has a Lean code block, else 0.0​
    s_penalty ← -0.5 if C_norm contains 'sorry', 'admit', or 'by skip', 

else 0.0​
​
    s ← s_sim + s_format + s_penalty​
    return max(-1.0, min(1.0, s)) // Clip final score to the range [-1, 1] 
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5.3.3 Training Hyperparameters  

The following hyperparameters were used to fine-tune the base llama model: 
 

1.​ Epochs = 2, LR = 3e-4 with cosine schedule, weight decay = 0.0. 

2.​ Per-device batch size = 2, gradient accumulation steps = 8 (effective batch = 16). 

3.​ Warmup ratio = 0.03; log steps = 10; save each epoch (or ≥ 5k steps). 

4.​ Seeding and TF32/bf16 enabled for throughput; Flash-Attention v2 for attention kernels. 

5.​ QLoRA: 4-bit NF4 quantization (bitsandbytes), bf16 compute, LoRA adapters (rank = 16, 

α = 32, dropout = 0.05) on causal-LM projections. 

6.​ Context: model_max_length = 8192 

7.​ Optimizations: Flash Attention v2 kernel. 

8.​ Setup: H200 GPU by lightning.ai 

5.4 Results 

The fine-tuning process produced three distinct model artifacts, which are publicly available on 
the Hugging Face Hub. 

1.​ SFT-1 (Non natural language guided): rkumar1999/Llama3.2-3B-Prover-openr1-SFT 
2.​ SFT-2 (Natural language guided data): 

rkumar1999/Llama3.2-3B-Prover-openr1-distill-SFT 
3.​ GRPO (RL finetuned after SFT-2): rkumar1999/Llama3.2-3B-Prover-openr1-distill-GRPO 

 

5.4.1 Evaluation Rubric 

To measure performance, a rubric was developed to score each model's output on a scale of 
100. It focuses on proof validity, efficiency, explanation quality, and structural integrity. 

Main Category 
Sub-Criterion and 
Metric Max Points Scoring Breakdown 

Proof Score (60) 
Validation Score 
(Pass / Fail) 40 

Measures if the proof is valid and correct. 
• 40 pts: Pass (100% syntactically valid and 
logically correct). 
• 20 pts: Partial Credit (Correct strategy but 
contains a minor, fixable error). 
• 5 pts: Fail (Syntactically valid but logically 
wrong). 
• 0 pts: Fail (Syntactically invalid, 
incomplete, or non-existent). 
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Efficiency Score 
Δ = |Generated Lines - 
Ideal Lines|​
Max (0, 20-Δ) 20 

Measures the deviation of proof length from 
ideal proof length 

Explanation Score (25) 
Component Checklist 
(Checklist) 15 

Measures if the explanation is complete and 
accurate. 
5 pts: Goal Identification (Accurately states 
the theorem). 
 5 pts: Strategy Outline (Describes a valid 
high-level plan). 
5 pts: Logical Soundness (Free of major 
factual errors). 

 
Quality Checklist 
(Checklist) 10 

Measures if the explanation is relevant and 
well-formed. 
• 5 pts: Proof Alignment (The explained 
strategy matches the generated code). 
• 5 pts: Conciseness (Zero "thought loops" 
or significant verbal repetition). 

Format and Integrity 
Score (15) 

Structural Checklist 
(Checklist) 10 

Measures if the output follows the required 
format. 
• 5 pts: Explanation Present (An 
explanation section exists). 
• 5 pts: Code Block Present (A fenced Lean 
4 code block exists). 

 
Generation Integrity 
(Pass / Fail) 5 

Measures against catastrophic failures. 
• 5 pts: Pass (No severe repetition, 
gibberish, or truncation). 
• 0 pts: Fail (A severe generation error is 
detected). 

 

Table 1: Scoring rubric for evaluating models. 
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5.4.3. Evaluation Results 

The models were evaluated on a set of benchmark theorem-proving tasks. The table below 
shows the scores for the base model and each fine-tuned variant. 

Prompt 
Base Model 
(Llama-3.2-3B) 

Scor
e 

SFT-1 
(Non NL 
dataset) 

Scor
e SFT-2 (NL dataset) 

Scor
e GRPO+SFT 

Scor
e 

theorem 
imp_chain 
(a b c d e f : 
Prop) 
(h₁ : a → b) (h₂ : 
b → c) 
(h₃ : c → d) (h₄ : 
d → e) 
(h₅ : e → f) : 
a → f := 

by 
intro a 
assume h : a 
induction h on h 
generalizing b c 
d e 
{ h : a => 
induction' h on h 
generalizing e f 
{ h : a => ... } 
... 
(Enters a 
severe 
repetitive loop) 5 

intro h 
simp_all 
only [h₁, h₂, 
h₃, h₄, h₅, 
true_and] 
tauto 10 

have h_main : a → f 
:= by 
intro ha 
have hb : b := h₁ ha 
have hc : c := h₂ hb 
have hd : d := h₃ hc 
have he : e := h₄ hd 
have hf : f := h₅ he 
exact hf 
exact h_main 93 

have h_main : a → f 
:= by 
    intro ha 
    have hb : b := h₁ ha 
    have hc : c := h₂ hb 
    have hd : d := h₃ hc 
    have he : e := h₄ hd 
    have hf : f := h₅ he 
    exact hf 
  exact h_mai 93 

theorem 
succ25_mem_of
_zero_and_succ
_closed 
(N : Nat → 
Prop) 
(h0 : N 0) 
(hS : ∀ {x}, N x 
→ N x.succ) : 
N 25 := 

by induction on 
x in 25...; 
case zero => by 
assumption; 
case succ x' => 
hS (succ x') (hS 
x') 40 

intro h 
simp [h0, 
hS, h] 
aesop 10 

by 
have h1 : N 1 := by 
... 
have h2 : N 2 := by 
... 
... 
have h19 : N 19 := 
by 
have h19_1 : N 18 := 
h18 
have h19_2 : N 19 := 
hS 18 h19_1 
exact h19_2 
(Correct but 
truncated by token 
limit) 55 

by 
have h1 : N 1 := by ... 
... 
have h24 : N 24 := by 
have h24_1 : N 24 := 
hS 23 h23 
exact h24_1 
have h25 : N 25 := by 
have h25_1 : N 25 := 
hS 24 h24 
exact h25_1 
exact h25 80 
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theorem 
add_zero_eq_s
elf (n : ℕ) : 
n + 0 = n := 

by 
induction n with 
(0 | succ n) => 
| 0 => -- Base 
case: 0 + 0 = 0 
by simp 
| succ n => -- 
Inductive step 
by simp 40 

intro h 
simp [h] 10 

have h : n + 0 = n := 
by 
simp 
exact h 98 

have h : n + 0 = n := 
by 
rfl 
exact h 98 

theorem 
succ_add_one_
eq_add_two (n : 
ℕ) : 
n.succ + 1 = n + 
2 := 

by 
apply 
succ_add_one_
eq_add_two_in
d 
induction n 
| base n => rfl 
| succ n ih => by 
induction n 
... 40 

intro n 
simp 
[n.succ_ad
d_one_eq_
add_two] 10 

have h_main ... := by 
simp 
[Nat.succ_eq_add_o
ne] 
<;> ring 
<;> simp_all 
<;> ring 
<;> simp_all 
<;> ring 40 

have h_main ... := by 
simp 
[Nat.succ_eq_add_on
e] 
<;> ring 
<;> simp_all 
<;> ring 
<;> simp_all 
<;> ring 40 

theorem 
succ_pred_self 
(n : ℕ) (h : n > 0) 
: 
(n - 1).succ = n 
:= 

import Lean 
theorem ... := 
by 
have n.succ = n 
+ 1, ... 
-- ... 
have (n - 
1).succ = n, ... 
(Enters a deep 
repetitive loop 
of 
self-correction) 5 

intro h 
simp [h] 10 

have h_main ... := by 
cases n with 
| zero => ... 
| succ n => 
simp [...] 
<;> (try omega) <;> 
(try simp_all ...) 
<;> (try { cases n 
with ... }) ... 
(Full "kitchen sink" of 
broken tactics) 40 

have h_main ... := by 
cases n with 
| zero => contradiction 
| succ n => 
cases n with 
| zero => 
simp 
[Nat.succ_eq_add_on
e] <;> norm_num 
| succ n => 
simp_all [...] <;> 
ring_nf at * <;> 
omega 45 

theorem 
two_divides_do
uble (n : ℕ) : 
2 ∣ n + n := 

by (reflexive n) 
and (or (n % 2 = 
0) (n % 2 ≠ 0)) 
and (if n % 2 = 
0 then 2 ∣ n 
else 2 ∣ n + 1) 10 

intro h 
simpa 
using h 10 

(Enters a repetitive 
thought-loop in the 
explanation, failing to 
produce a final proof 
block) 5 

have h_main ... := by 
use n 
-- We need to show 
that 2 * n = 2 * n 
<;> simp [mul_comm] 
<;> ring 
<;> omega 
exact h_main 94 
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theorem 
two_divides_do
uble (n : ℕ) : 
2 ∣ n + n := 

begin 
assume n : ℕ, 
have n_is_even 
: n + n = 2 * n := 
by ring, 
have 
two_divides_n : 
2 ∣ 2 * n := by 
ring, 
have 
two_divides_do
uble : 2 ∣ n + n 
:= by 
from 
two_divides_n, 
end 40 

intro h 
simpa 
using h 0 10 

have h_main ... := by 
rw 
[Nat.dvd_iff_mod_eq
_zero] 
simp [...] 
<;> induction n with 
| zero => simp 
| succ n ih => 
simp [...] at ih ⊢ 
<;> omega 
(Incorrect use of 
induction) 45 

have h_main ... := by 
have h : n + n = 2 * n 
:= by 
ring 
rw [h] 
simp 
[Nat.dvd_iff_mod_eq_
zero, Nat.mul_mod, 
Nat.add_mod] 
<;> omega 
exact h_main 93 

 

Table 2: Scoring 1. Base Model, 2. SFT over Non-CoT data, 3. SFT over CoT data, 4. 

GRPO+SFT 
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6. Experiment-2: OpenBootstrappedTheorem (OBT) 

Style Finetuning for Lean 4 Proof Synthesis 

6.1 Objective 

For this experiment, we implemented a fine-tuning pipeline on the OBT dataset [14]. This 

dataset consists of examples that have natural language explanations embedded into formal 

proofs. We trained a Llama 3 instruction model using two concepts introduced in TheoremLlama 

research paper [13]. The goals were to (i) improve end-to-end Lean proof synthesis quality, (ii) 

reduce syntax errors, and (iii) stabilize long tactics via few-shot block training and curriculum 

sorting. 

 

Fig 13: TheoremLlama fine-tuning process 

6.2 Data 

Primary dataset: OpenBootstrappedTheorem 

(RickyDeSkywalker/OpenBootstrappedTheorem)[14], containing natural-language (NL) 

statements+proof rationales paired with Lean statements, commented/bootstrapped Lean 

proofs, and raw Lean code. 

 

Schema mapping: Instead of splitting the natural-language blob, we kept the entire “informal 

statement and proof” text as a single field (nl_text) to preserve global context. A normalization 

pass mapped heterogeneous column names (e.g., Generated_informal_statement_and_proof, 

Statement, Proof, Commented_proof) to a consistent schema {name, nl_text, lean_statement, 

lean_proof_raw, lean_bootstrapped, ...}. 
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6.3 Method 

6.3.1 Prompt Format 

We adopted manual prompt format using reserved special tokens: 

<|start_header_id|>system<|end_header_id|> ... <|eot_id|>, then 

<|start_header_id|>user<|end_header_id|> ... <|eot_id|>, then 

<|start_header_id|>assistant<|end_header_id|> 

 

Few-shot block training: each block contained a solved example with: 

●​ Natural language version of the theorem and proof 

●​ Lean statement in a fenced code block 

●​ Lean theorem and proof in a fenced code block 

6.3.2 Curriculum Sorting 

We calculated a difficulty score for all the examples using the formula: d = length of 

lean_bootstrapped + 50 × (number of tactic tokens). Then, we sorted the examples from easiest 

to hardest. During training, each item picked its few-shot examples from a sliding window to 

gradually increase difficulty and avoid sudden jumps in challenge. 
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6.3.3 Pseudocode 

Algorithm: OBT Data Preparation Pipeline​
Input: Raw Dataset D_raw, Few-shot count k​
Output: Formatted Examples E_formatted​
1. Schema Unification:​
    R ← new list of records​
    for each row in D_raw do​
        r ← StandardizeSchema(row)​
        R.append(r)​
    end for 

​
2. Curriculum Sorting:​
    for each record r_i in R do​
        d_i ← EstimateDifficulty(r_i.lean_bootstrapped)  // Score on 

length and tactic count​
    end for​
    O ← SortIndicesByDifficulty(d_0, d_1, ...)  // array of indices from 

easy -> hard 

​
3. Few-Shot Prompt Construction:​
    E_formatted ← new list of examples​
    for each index i in the sorted order O do​
        // Select k easier examples from the curriculum​
        P_prior_indices ← GetPriorExamples(i, O, k)​
​
        // Build the multi-turn prompt​
        prompt_messages ← BuildFewShotPrompt(SystemPrompt, 

P_prior_indices, R[i])​
        // Define the target for completion-only loss 

​
        completion ← R[i].lean_bootstrapped​
        if completion is not empty then​
            E_formatted.append({'messages': prompt_messages, 'completion': 

completion})​
        end if​
    end for 

​
    return E_formatted 

32 



Enhancing LLM's Math and Theorem Proving Abilities 

6.3.3 Completion-Only Loss with TRL 
We used TRL’s SFTTrainer (≥ 0.21) with its prompt–completion API. The completion 

column is the Lean proof (prefer lean_bootstrapped, fallback to lean_proof_raw). We relied on 

TRL to infer completion-only loss without a custom data collator. This focused learning on the 

proof generation region and avoided diluting gradients on the prompt side. 

6.3.5 Training Hyperparameters  

1.​ Epochs = 2, LR = 2e-4 (cosine schedule), weight decay = 0.0. 

2.​ Per-device batch = 1, grad accumulation = 16 (effective batch = 16). 

3.​ Warmup ratio = 0.03; logging every 10 steps; save each epoch (or ≥ 5k steps). 

4.​ Eval split = last 1% of curriculum-ordered examples (small sanity set). 

5.​ Seeding and TF32/bf16 enabled for throughput; Flash-Attention v2 for attention kernels. 

6.​ QLoRA: 4-bit NF4 quantization (bitsandbytes), bf16 compute, LoRA adapters (rank = 16, 

α = 32, dropout = 0.05) on causal-LM projections. 

7.​ Context: model_max_length = 8192 to accommodate long NL proof rationales + multiple 

few-shot blocks. 

6.3.6 Implementation Summary 

We first performed schema unification with map_row_schema, which selected the first 

available field among multiple candidate keys to robustly handle dataset variants. We then 

ordered examples by an easy→hard curriculum using a difficulty heuristic that combined 

sequence length with counts of common Lean tactic tokens (e.g., simp, rw, apply, aesop, 

linarith) to approximate complexity. For few-shot conditioning, we built a prior few-shot pool from 

a few-shot window of earlier (easier) items in the curriculum and sample block_k solved 

examples (typically 3) to prepend as demonstration blocks. Prompt rendering used 

render_example_block for each solved example and then appends the current item with your 

exact section headers and terminators, preserving the manual <|start_header_id|>…<|eot_id|> 

format. Training was run with TRL’s SFTTrainer using 

dataset_kwargs={"prompt_column":"prompt","completion_column":"completion"}, enforcing 

completion-only loss with no chat_template and no custom collator 

Outputs: https://huggingface.co/rkumar1999/llama3.2-3b-obt 
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6.4 Results 

The fine-tuning process produced the resultant model available publicly on huggingface: 
rkumar1999/llama3.2-3b-obt 

6.4.1 
The same evaluation rubric in 7.4.1 was used to score and compare the resultant model 
 

Prompt Base Model 
(Llama-3.2-3b) 

Score Finetuned Model 
(rkumar1999/llama3.2-3b-obt) 

Score 

### Lean4 version of 
theorem statement: 
```lean 
theorem imp_chain 
  (a b c d e f : Prop) 
  (h₁ : a → b) (h₂ : b → c) 
(h₃ : c → d) (h₄ : d → e) 
(h₅ : e → f) : 
  a → f := 

 by 
  { assume a, 
    have h₁ a, 
    have h₂ h₁ a, 
    have h₃ h₂ a, 
    have h₄ h₃ a, 
    have h₅ h₄ a, 
    apply h₅ }​
​
 

35    ⟨h₁, h₂, h₃, h₄, h₅⟩ 50 

### Lean4 version of 
theorem statement 
(explicit 25 iterations, no 
induction): 
```lean 
theorem 
succ25_mem_of_zero_
and_succ_closed 
    (N : Nat → Prop) 
    (h0 : N 0) 
    (hS : ∀ {x}, N x → N 
x.succ) : N 25 := 

-- initial induction 
induction N on 25 -- base 
case | 0 => h0 | succ i => 
hS (N i) 

20 -- 25 iterations of N x → N  
 
x.succ and N 0 | 0, h => h 0 | 1, h 
=> h 1 | 2, h => h 2 | 3, h => h 3 | 
4, h => h 4 | 5, h => h 5 | 6, h => 
h 6 | 7, h => h 7 | 8, h => h 8 | 9, 
h => h 9 | 10, h => h 10 | 11, h => 
h 11 | 12, h => h 12 | 13, h => h 
13 | 14, h => h 14 | 15, h => h 15 
| 16, h => h 16 | 17, h => h 17 | 
18, h => h 18 | 19, h => h 19 | 
20, h => h 20 | 21, h => h 21 | 
22, h => h 22 | 23, h => h 23 | 
24, h => h 24 | 25, h => h 25 

40 

### Lean4 version of 
theorem statement: 
```lean 
theorem 
add_zero_eq_self (n : 
ℕ) : n + 0 = n : 

by 
    induction n with 
      | 0 => sorry 
      | n.succ => by 
        contradiction 

5 add_comm n 0 ▸ add_zero 55 

### Lean4 version of 
theorem statement: 
```lean 
theorem 

by { assume h : n.succ + 
1 = n + 2;  -- assume that 
the theorem is true for 
some n 

10 -- This theorem states that the 
successor of a natural number 
plus one is equal to the natural 
number plus two 

100 
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succ_add_one_eq_add
_two (n : ℕ) : n.succ + 1 
= n + 2 := 

    -- we want to show that 
the theorem is true for 
n.succ 
    assumption h } 

 
rfl 

### Lean4 version of 
theorem statement: 
```lean 
theorem succ_pred_self 
(n : ℕ) (h : n > 0) : (n - 
1).succ = n := 

by 
  { apply succ_pred_def, 
    apply h, 
    exact (n - 1)} 

5 -- Proof that the successor of a 
natural number is equal to the 
number itself. 
  -- This theorem is used to prove 
the well-foundedness of the 
natural numbers. 
 
  Nat.add_sub_self _ 
(Nat.succ_pos_iff.2 h) h. 

20 

Natural language 
version of theorem and 
proof: 
two_divides_double 
Twice any natural 
number is divisible by 2. 
 
For any n, the number n 
+ n equals 2 * n, so 2 
divides n + n with 
witness n. 
 
### Lean4 version of 
theorem statement: 
```lean 
theorem 
two_divides_double (n : 
ℕ) : 2 ∣ n + n := 

by 
  { assume h : n + n = 2 * 
n } 

 by simp [add_comm] 
 
 -- show that 2 divides n + n by 
using the commutative property 
of addition 

 

### Lean4 version of 
theorem statement: 
```lean 
theorem 
two_divides_double (n : 
ℕ) : 2 ∣ n + n := 

by 
  (refl : 2 ∣ 2) => 
  (refl : n + n = 2 * n) => 
  (by symmetry => refl : 2 
∣ 2 * n) 

5 -- This theorem states that 2 
divides the sum of a number and 
itself. 
  -- In other words, if n is a 
multiple of 2, then n + n is also a 
multiple of 2. 
 
  two_divides_add n n 

25 

 

Table 3: Scoring 1. Base Model, 2. SFT finetuned model over OBT dataset 
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7. Experiment-3: Fine-tuning a Mixture-of-Experts 

Model on Math and Lean Datasets 

7.1 Objective 

This experiment quantified the trade-offs between mixed fine-tuning and sequential 

(curriculum) fine-tuning on two adjacent but different domains, natural-language math reasoning 

and formal Lean proofs using a Mixture-of-Experts (MoE) backbone. We tested the hypothesis 

that mixed training better preserved performance across domains, while sequential training 

risked catastrophic forgetting on the earlier domain. 

7.2 Data 

1.​ Math (NL, stepwise): rkumar1999/Mixture-of-Thoughts-math-cleaned 

(cleaned subset from open-r1/Mixture-of-Thoughts; max sequence ≤4096 tokens) 

2.​ Lean (formal proofs): rkumar1999/DeepSeek-Prover-V2-chat-cleaned 

(filtered from Cartinoe5930/DeepSeek-Prover-V2-generation; max sequence ≤4096 tokens) 

Both corpora were length-bounded to fit the model’s context window and avoid overflow during 

SFT. 

7.3 Setups 

We held architecture, optimizer, and PEFT settings constant and vary only the data curriculum: 

●​ Regime A: Mixed (Joint) Fine-Tuning:​

Train on a 50/50 interleaved mixture of Math and Lean examples per batch (or per 

epoch) with temperature-based sampling if desired to smooth domain imbalance. 

Goal: learn both domains concurrently and minimize interference. 

 

●​ Regime B: Sequential (Math → Lean): 

Stage 1: fine-tune on Math only → checkpoint A₁. 

Stage 2: continue from A₁ and fine-tune on Lean only → checkpoint A₂. 

Goal: measure forgetting in Math after adapting to Lean. 
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Backbone: MoE model (microsoft/phi-tiny-moe-instruct) with identical PEFT/QLoRA settings 

across both regimes for a fair comparison. 

7.4 Results 

7.4.1 Outputs 
The fine-tuning process resulted in three distinct model artifacts, each representing a 

different training regime or stage. These models are publicly available on the Hugging Face Hub 
and serve as the basis for the comparative evaluation in the following section. 
 

1.​ Mixed-Domain Model (rkumar1999/Phi-mini-MoE-Mix-Prover-openr1-distill-SFT) This 
model is the result of Regime A (Joint Fine-Tuning). It was trained on an interleaved 
mixture of the Math and Lean datasets, designed to learn both domains concurrently and 
minimize interference between them. 

 
2.​ Lean-Specialized Checkpoint (rkumar1999/Phi-mini-MoE-Prover-openr1-distill-SFT) This 

model represents the intermediate output from Stage 1 of the sequential fine-tuning 
process. It was fine-tuned exclusively on the formal Lean proof dataset 
(rkumar1999/DeepSeek-Prover-V2-chat-cleaned). 

 
3.​ Sequential Fine-Tuned Model (Lean -> Math) 

(rkumar1999/Phi-mini-MoE-Prover-Math-openr1-distill-SFT) This is the final model from 
the sequential curriculum. It was initialized from the Lean-Specialized Checkpoint and 
then further fine-tuned exclusively on the natural-language math dataset 
(rkumar1999/Mixture-of-Thoughts-math-cleaned). This artifact is used to measure the 
catastrophic forgetting of the initial Lean domain. 

 
Evaluate both checkpoints (Mixed and Sequential-final) on two held-out test sets: 

1.​ Math Test (NL) – accuracy on final answers, chain-quality (self-consistency), and 

verbosity penalties. 

2.​ Lean Test (Formal) – proof validity (kernel pass/fail), syntax correctness, and proof 

efficiency (|gen_lines – ideal_lines|). 
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7.4.2 Results - Lean4 prompts 

Prompt 

BASE 
(microsoft/Phi-mini-MoE-ins
truct) Score FT - mixed data Score 

FT - Sequential 
data Score 

theorem 
imp_chain (a b c 
d e f : Prop) (h₁ : 
a → b) (h₂ : b → 
c) (h₃ : c → d) (h₄ 
: d → e) (h₅ : e → 
f) : a → f := 

lean4 
begin 
intro a, 
have b := h₁ a, 
have c := h₂ b, 
have d := h₃ c, 
have e := h₄ d, 
have f := h₅ e, 
end 35 

lean4 
by 
have h_main : a → f := 
by 
intro h 
have h₆ : b := by 
have h₆₁ : a → b := h₁ 
…. 
have h₇₂ : b := h₆ 
exact h₇₁ h₇₂exact h₁₀ 
exact h_main 84 

(Catastrophic 
failure: The model 
entered a severe 
"thought loop" and 
produced no Lean 
code.) 5 

theorem 
succ25_mem_of_
zero_and_succ_c
losed (N : Nat → 
Prop) (h0 : N 0) 
(hS : ∀ {x}, N x 
→ N x.succ) : N 
25 := 

lean4 
begin 
intro h0, 
induction hS, 
cases h0, 
cases hS, 
apply hS, 
apply hS, 
... 
end 20 

lean4 
by 
have h_main : N 25 := 
by 
have h1 : N 0 := h0 
have h2 : N 1 := hS ⟨0, 
by simp⟩ h1 
have h3 : N 2 := hS ⟨1, 
by simp⟩ h2 
... 
have h26 : N 25 := hS 
⟨24, by simp⟩ h25 
exact h26 
exact h_main 60 

(Catastrophic 
failure: The model 
entered a severe 
"thought loop" and 
produced no Lean 
code.) 5 

theorem 
add_zero_eq_sel
f (n : ℕ) : n + 0 = 
n := 

lean4 
begin 
rw [n + 0 = n], 
Qed. 
(The model got stuck in a 
repetitive loop of 
self-correction before 
outputting this invalid 
proof.) 5 

lean4 
by 
have h : n + 0 = n := by 
simp 
<;> rfl 
exact h 97 

(Catastrophic 
failure: The model 
entered a severe 
"thought loop" and 
produced no Lean 
code.) 0 
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theorem 
succ_add_one_e
q_add_two (n : ℕ) 
: n.succ + 1 = n + 
2 := 

lean4 
begin 
cases n, 
{ 
rw [n.succ + 1 := 0 + 1], 
rw [0 + 1 := 0 + 2], 
}, 
assume h : k.succ + 1 = k + 
2,...(Enters a repetitive loop 
of invalid rw tactics.) 0 

lean4 
by 
have h_main : n.succ + 
1 = n + 2 := by 
rw 
[Nat.succ_eq_add_one] 
<;> ring 
<;> omega 
exact h_main 96 

(The model 
produced a long 
explanation but 
failed to generate 
a final Lean code 
block.) 30 

theorem 
succ_pred_self (n : 
ℕ) (h : n > 0) : (n - 
1).succ = n := 

lean4 
begin 
rw h, 
rw (n + 1), 
exact (pred (n + 1)).succ = n, 
end 
 
(Uses hallucinated pred 
function and invalid rw tactics.) 5 

lean4 
by 
have h_main : (n - 1).succ 
= n := by 
have h₁ : n ≥ 1 := by 
linarith 
have h₂ : (n - 1).succ = n := 
by 
have h₃ : n - 1 ≥ 0 := by 
omega 
have h₄ : (n - 1).succ = n := 
by 
rw [Nat.succ_eq_add_one] 
<;> omega 
exact h₄ 
exact h₂ 
exact h_main 92 

(Catastrophic 
failure: The model 
entered a severe 
"thought loop" and 
produced no Lean 
code.) 5 

 
Table 4: Scoring 1. Base Model, 2. Fine-tuned model on mixed data, 3. Fine-tuned model on 

sequential data 
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8. Conclusion 
This project explored different ways to improve Large Language Models’ mathematical 

capabilities in the challenging area of formal theorem proving. We found that the limitations of 

general-purpose LLMs in solving formal proofs can be improved through targeted training on 

specialized datasets, smart fine-tuning techniques, and the use of external tools. 

 

We tested our approach on a smaller GPT-2 model through parameter-efficient 

fine-tuning on specialized math datasets. We also explored a hybrid solution where we 

integrated the model with symbolic tools like Mathics and LEAN to perform complex calculations 

and recursively search for a proof, respectively. 

 

Our main experiments scaled up to more powerful architectures and showed significant 

insights. Fine-tuning of Llama-3.2-3B demonstrated that natural language guided datasets are 

more effective than training on formal code alone. The GRPO-aligned model achieved highest 

performance of 95+ (scored out of 100) on LEAN4 proof generation, followed by a plain SFT 

finetuned model (85+). Furthermore, the OpenBootstrappedTheorem (OBT) experiment 

confirmed that combining curriculum-learning and few-shot prompting approaches can help 

models handle longer proofs. We compared two different fine-tuning regimes, mixed and 

sequential, on a Mixture of Experts (MoE) model. Fine-tuning the model on a mixed dataset 

increased the model performance to 90+, while sequential fine-tuning resulted in forgetting the 

original knowledge visible in its low performance of < 20 for many examples. 

 

Our findings show the value of chain-of-thought reasoning and fine-tuning techniques in 

creating models that provide well-reasoned solutions rather than generating text plainly. Future 

work could extend these findings by scaling to larger models like DeepSeek, exploring more 

advanced reinforcement learning techniques for tactic selection. These directions aim to shift 

models from text generation machines toward robust thinking agents. 
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