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The Problem: 
LLMs vs. Formal 
Reasoning
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Formal Reasoning
● Large Language Models (LLMs) are trained 

on linguistic patterns, not formal reasoning.
● They produce plausible-sounding but often 

incorrect answers for math and logic.
● Struggle with multi-step deductions and 

symbolic manipulation.
● Lack the ability to verify the correctness of 

their own steps.

The Problem:
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Project Goal & 
Objectives
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To bridge the gap between 
language models and 
formal mathematical 
reasoning.

Primary Focus

● Enhance LLM capabilities 
in formal theorem 
proving, a comparatively 
under-studied domain.

Preliminary Objectives

● Improve mathematical 
problem-solving through 
specialized fine-tuning.

● Integrate symbolic tools 
(Mathics, Lean) to ensure 
correctness.

Experiments

● Investigate advanced 
architectures (MoE) and 
training methods (OBT, 
GRPO, SFT, etc).
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Background: Key 
Concepts
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● Fine-tune models efficiently without retraining all parameters.

○ LoRA (Low-Rank Adaptation): Freezes original weights and 

trains small "adapter" matrices. Drastically reduces memory 

and compute.

○ DoRA (Decomposed Low-Rank Adaptation): An 

improvement upon LoRA to achieve better accuracy..

Parameter-Efficient 
Fine-Tuning (PEFT)
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● Freezes the original, large pre-trained weights (W)
● Injects two small, trainable "low-rank" matrices (A and 

B)
● W_new = W + B.A

LoRA
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● Achieves performance closer to full fine-tuning
● Splits original weight (W) in 2 parts: magnitude(m) and 

direction (D)
● LoRA is applied only to D

DoRA
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● Analogy: A team of specialists, not a single generalist.
● A "gating network" routes each input token to a few specialized "expert" 

subnetworks.
● Allows for a massive number of total parameters with low computational 

cost.
● Theoretically more resistant to catastrophic forgetting.

Mixture-of-Experts (MoE) 
Architecture
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Post-Training Techniques
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Model Distillation
● Student-teacher technique for transferring knowledge to smaller model
● Working

○ Teacher Model: A large, highly capable (often proprietary) LLM
○ Teacher generates a massive, high-quality dataset with CoT
○ Student is fine-tued on dataset

● Efficient, cost effective, and fast
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Chain-of-Thought (CoT) 
Prompting

● Break down complex problems into intermediate steps
● Improved reasoning and transparency
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An LLM acts as an orchestrator, offloading tasks to reliable 
external tools.

Tool-Augmented 
Reasoning

LLM (Brain)

For precise symbolic 

math

Mathics 
(Calculator)

Parses the problem For ensuring logical 

correctness of proofs.

Lean (Verifier)
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Mathics Tool



17

Preliminary Work
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Validate core hypotheses 
using a small model 

● Fine-tuned GPT-2 on MATH and GSM8k datasets 
using PEFT

● Implemented LEAN Proof search algorithm 
● Prototyped a LangChain pipeline to integrate Mathics 

and Lean proof search

Small-Scale Validation



Proof Search
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● PEFT successfully improved mathematical formatting and 
basic reasoning. ✅

● LLMs show learning capabilities when finetuned on 
different modalities ✅

● Basic tool integration was not robust enough/feasible for 
conversational use. ❌

● GPT-2's small size was a major bottleneck for complex 
problems. ❌

Key Findings & Learnings
Promising Results, Clear 
Limitations
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● Move from GPT-2 to more capable models like 
Llama-3.2-3B and Phi-tiny-MoE 

● Focus on theorem proving domain
● Implement more sophisticated training pipelines inspired 

by TheoremLlama and open-r1. 

Transition to Main 
Experiments
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Experiment-1

Open-r1 + data supervision

Quarter Month Year
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● Checkpoint-1 SFT (Supervised Fine-Tuning) 
with Distillation: Teach the model the basic task 
on text-guided data.

● Checkpoint-2 GRPO: Refine the model. It 
generates multiple proofs, a custom reward 
function picks the "best" one, and the model is 
trained only on that winner.

SFT and GRPO
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GRPO
● Group Relative Policy Optimization
● Samples a group of outputs <reasoning, answer>
● Assigns reward to outputs

○ Accuracy
○ Format
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GRPO - Custom Reward Fn
● Normalization

○ Extracts code block from model's completion and 
gold-standard proof

○ Removes comments and normalizes whitespace
● Jaccard similarity between the tactics
● Penalties: sorry, by skip, etc
● Format bonus: <think> tags
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● Regime 1 (Formal-Only): Fine-tuned on 
DeepSeek-Prover-V1 (Lean code only).

● Regime 2 (Text-Guided): Fine-tuned on 
DeepSeek-Prover-V2-generation (NL rationale + 
Lean code).

The Impact of Data 
Supervision Style
Does the style of training data matter for 
theorem proving?





Results
Theorem Base Model

SFT-Non CoT 
dataset SFT-CoT dataset

GRPO+SF
T

imp_chain 5 10 93 93

succ25_mem_of_zero_and
_succ_closed 40 10 55 80

add_zero_eq_self 40 10 98 98

succ_add_one_eq_add_two 40 5 40 40

succ_pred_self 5 10 40 45

two_divides_double 
(Prompt 1) 10 5 5 94

two_divides_double 
(Prompt 2) 40 10 45 93

Main Category Max Points
Proof Score 60
Explanation 
Score 25
Format and 
Integrity Score 15
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Experiment-2

TheoremLlama style Fine-tuning
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● Lean 4 code with NL reasoning
● Extraction & Retrieval
● Informalization
● Bootstrapping

Open Bootstrapped Theorems 
Dataset
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● OBT: Open Bootstrapped Theorems
● Curriculum Sorting

○ Train on examples from easy to hard.
○ Prevents the model from being overwhelmed

● Few-Shot Block Training
○ Provide the model with 3 solved examples in the prompt before 

asking it to solve the current problem.
○ The model learns to generate more concise and human-like proofs.

Advanced Training with OBT Data



Results

Main Category Max Points
Proof Score 60
Explanation 
Score 25
Format and 
Integrity Score 15

Theorem Statement 
(Simplified) Base Model Score OBT-Finetuned Model Score

theorem imp_chain 35 50
theorem 
succ25_mem_of_ze
ro... 20 40
theorem 
add_zero_eq_self 5 55
theorem 
succ_add_one_eq_
add... 10 100
theorem 
succ_pred_self 5 20
theorem 
two_divides_double 5 25
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Experiment-3

MoE and Catastrophic Forgetting

Quarter Month Year
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● Backbone: microsoft/phi-mini-moe-instruct
● Two fine tuning regimes

○ Sequential
○ Mixed

● Catastrophic forgetting

Sequential vs Mixed 
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Sequential

Finetune
Mixture-of-Thoughts-math

Base Model 

Finetune
DeepSeek-Prover-V2-chat

Final chckpt

Intermediate chkpt 

dataset-2
Mixture-of-Thoughts-math

Base Model 

dataset-1
DeepSeek-Prover-V2-chat

Final chckpt

Finetune
Combined dataset

Mixed



Results

Theorem Base Model Mixed FT Sequential FT

imp_chain 35 84 5

succ25_mem_of_zero_and
_succ_closed 20 60 5

add_zero_eq_self 5 97 0

succ_add_one_eq_add_two 0 96 30

succ_pred_self 5 92 5

Main Category Max Points
Proof Score 60
Explanation 
Score 25
Format and 
Integrity Score 15
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Infrastructure: 
Evaluation 
Framework
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Tech Stack

02.

01.

03.

Infrastructure 
for Systematic 
Evaluation

Backend (FastAPI)
An orchestration layer to route requests to the 
correct model

Inference Layer (TGI on H200 GPUs)
High-performance model serving using 
Text Generation Inference.

Frontend (React)
chat UI for side-by-side model comparison
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The UI in Action
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Conclusion

● Data-centric fine-tuning is a powerful 
strategy.

● Training pipelines like OBT and GRPO are 
key in niche domains like formal theorem 
proving.

● Training implications on catastrophic 
forgetting
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Any 
questions? 
Ask away!
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Thank you


