Evaluating BLIP Models for
Image Captioning

Sai Anoushka K
CS298 Dr. Chris Pollett

Why Model Selection matters?

Real-time captioning requires a balance between:

- Accuracy (Descriptive & Contextually Relevant Captions)
- Speed (Low Latency for Immediate User Feedback)
- Scalability (Handling Multiple APl Requests Efficiently)

Trade-offs:

- More complex models are slower but provide better captions
- Faster models may compromise on descriptive accuracy

BLIP Model Architecture

e BLIP (Bootstrapped Language-Image Pretraining) is a multimodal model designed for
vision-language tasks, including image captioning.

e Thearchitecture integrates three core objectives:
- Image-Text Contrastive (ITC) - Aligns images and text in a shared representation space.
- Image-Text Matching (ITM) - Determines whether an image and text pair are semantically
related.
- Language Modeling (LM) - Generates descriptive captions based on visual input.

d)
q D
I
Cross Attention Cross Attention
odel Architecture .. T
Encoder -

Image-grounded Image-grounded
Text encoder “(Encode] +()" Text decoder “IDecode] +()"
)

Encoder

“fews) +

“alittle girl holding a kitten next to a blue fence”

Model Components
- Image Encoder: Uses self-attention and feed-forward layers to extract feature representations from the input
image.

- Text Encoder: Processes text using a transformer-based architecture, encoding words into meaningful
representations.

- Cross-Attention Mechanism: Enables interaction between the visual and textual modalities, refining
contextual understanding.

- Bi-directional and Causal Self-Attention Layers:

Bi-directional Self-Attention: Helps in joint learning of vision and language.

Causal Self-Attention: Used in the text decoder to generate captions word by word.

- Final Caption Generation: After encoding, the model decodes a meaningful sentence that best describes the
image.

Methodology

e Models Evaluated:
- BLIP-Base (Salesforce/blip-image-captioning-base)
- BLIP-Large (Salesforce/blip-image-captioning-large

e Evaluation Metrics:
- Caption Coherence & Accuracy (Descriptive quality)
- Inference Time (Speed of response)
- Model Suitability for VisionMate

e Test Setup:
- 4 sample images from Pexels
- Measured performance using Hugging Face’s transformers library

©

import time

import requests

import matplotlib.pyplot as plt

from PIL import Image

from transformers import BlipProcessor, BlipForConditionalGeneration

Load BLIP models (Base and Large)

processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-base")

model_base = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning—base")
model_large = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-large")

Sample images for testing

image_urls = [
"https://images.pexels.com/photos/1108099/pexels—photo-1108099. jpeg", # Dogs in a field
"https://images.pexels.com/photos/34950/pexels—photo.jpg", # train track
"https://images.pexels.com/photos/3777572/pexels—photo-3777572. jpeg", # man with a laptop
"https://images.pexels.com/photos/112326/pexels—photo-112326.jpeg" # Mountain Landscape

Function to process an image and generate captions

def generate_caption(image_url, model, processor):
response = requests.get(image_url, stream=True)
image = Image.open(response.raw).convert("RGB")

inputs = processor(images=image, return_tensors="pt")
start_time = time.time() # Measure inference time

output = model.generate(x*inputs)

caption = processor.decode(output[0], skip_special_tokens=True)

inference_time = time.time() - start_time # Compute time taken

return image, caption, inference_time

° # Display results
fig, axes = plt.subplots(len(image_urls), 3, figsize=(12, len(image_urls) * 4))

for i, image_url in enumerate(image_urls):

Generate captions
image, caption_base, time_base = generate_caption(image_url, model_base, processor)
_, caption_large, time_large = generate_caption(image_url, model_large, processor)

Plot images and captions

axes[i, 0].imshow(image)

axes[i, 0].axis("off")

axes[i, 0].set_title("Original Image", fontsize=10)

axes[i, 1].imshow(image)
axes[i, 1].axis("off")
axes[i, 1].set_title(f"Base: {caption_base}\n(Time: {time_base:.2f}s)", fontsize=10)

axes[i, 2].imshow(image)
axes[i, 2].axis("off")

axes[i, 2].set_title(f"Large: {caption_large}\n(Time: {time_large:.2f}s)", fontsize=10)

plt.tight_layout()
plt.show()

Results

BLIP-Base: "Two pup sitting in a field of flowers."
BLIP-Large: "There are two dogs sitting in the grass with flowers in the
background."
e Inference Time:
Base: 7.38s
Large: 13.64s

Base: two pup sitting in a field of flowetsrge: there are two dogs sitting in the grass with flowers in the background
(Time: 7.38s) (Time: 13.64s)

Original Image

Results

BLIP-Base: "A train track with trees and bushes in the background."

e BLIP-Large: "Thereis atrain track that is surrounded by trees and bushes."
e Inference Time:

Base: 5.30s
Large: 13.14s

Base: a train track with trees and bushes in the backgesgedthere is a train track that is surrounded by trees and bushes

Original Image (Time: 5.30s) (Time: 13.14s)

Performance Comparison

Criteria

Caption

Accuracy
Inference Time

Computational
Load

Suitability

BLIP Base

Generates clear and concise captions,

but may miss finer details.
Faster (5-7s per image)

Requires fewer resources, making it

efficient for real-time applications.

Ideal for real-time captioning due to

speed and efficiency.

BLIP Large

Captions are more detailed and

descriptive, especially for complex scenes.
Slower (12-15s per image)

Higher memory and processing power

requirements.

Better for offline or batch processing

where accuracy is the priority.

Conclusion

e BLIP-Base offers the best trade-off between accuracy and speed
e BLIP-Large, while more descriptive, is too slow for real-time use
e Next step: Setup Front-end

