
VisionMate: AI-Powered Image
Captioning Web Application

Master’s Defense
By Sai Anoushka Kokku

Advisor: Dr. Chris Pollett
Committee: Dr. Robert Chun
Committee: Dr. Thomas Austin

Outline

Introduction
Background
Model Research and Experimentation
System Architecture and Implementation
Deployment
Evolution of VisionMate
Testing, Evaluation and Results
Conclusion and Limitations
Future Work
References

Introduction

Problem Statement:
● Visually impaired users cannot interpret visual scenes
● Most daily tasks rely on image-based information
● Need: A fast, simple way to describe images aloud using AI

Project Goals:
● Real-time image captioning system
● Should run on both desktop and mobile browsers
● Must give spoken feedback — no visual-only results
● Lightweight, free to deploy, no installation required
● Leverage transformer-based models (via API, not locally)

Background: Related Work

Existing Assistive Tools:
● Seeing AI (Microsoft): Describes people, text, and scenes via mobile app
● Be My Eyes: Connects users with volunteers to describe visuals via video call

Both apps require installation and run only on mobile platforms
No real-time web-based alternative for spoken image captions

Background: Related Work

Seeing AI output

Background: Image Captioning Overview

• Image captioning = understanding an image + generating a sentence
• Combines computer vision (object recognition) + language generation
• Requires large datasets like COCO (image + caption pairs)
• Uses encoder-decoder architecture (e.g., CNN + RNN or Transformer-based)

Background: Vision-Language Models

● Early models used CNNs + RNNs (slow, sequential, low accuracy)
● Transformers process all inputs in parallel (faster, better long-range understanding)
● Vision-Language models = vision encoder + language decoder
● Examples:

BLIP: Efficient with limited data
GIT: Generative transformer, fluent sentence output
ViT-GPT2: Combines ViT and GPT2 for richer generation

BLIP-base vs BLIP-large – Architectural
Differences

BLIP (Bootstrapped Language-Image Pretraining) uses 3 key training objectives:
• ITC: Image-Text Contrastive alignment
• ITM: Image-Text Matching for semantic relevance
• LM: Language Modeling for caption generation
BLIP-base:
• Fewer parameters (~138M)
• Faster inference, smaller model size
• Suitable for devices with limited resources
BLIP-large:
• More layers (~370M+ parameters)
• Slower inference, high memory usage
• Generates more descriptive captions

BLIP Comparison – Performance & Output

Metric BLIP-base BLIP-large

Inference

Time
5s to 8s 13s to 16s

Avg. Caption

Length
8–12 words 11–15 words

Resource

Requirement
~3.6 GB RAM (Colab) ~7.8 GB RAM

Output Style Concise Detailed + Natural

Suitability Best for real-time use Slower, better for offline use

BLIP Comparison – Performance & Output

Why Switch to GIT?

● BLIP-base generated inaccurate captions in
some cases

Example: “Girl at a table with food” – no
food or table was present

● GIT models (from Microsoft) use generative
training (free-form captioning)

● Designed to mimic natural image-to-text
generation

● Pretrained on COCO & Conceptual Captions
datasets

● Better generalization and fewer hallucinations

GIT-base vs GIT-large – Key Differences

Metric GIT-base GIT-large

Inference Time 5–8 seconds 35–50 seconds

Caption Detail Moderate, accurate
Highly detailed (e.g.,

gestures)

Memory Use ~4.2 GB ~9+ GB

Output Example “A girl sitting in a library”

“A girl wearing a green T-shirt

and a black jacket sitting in a
Library”

Suitability Balanced real-time use Not suitable for web apps

Git-Base Examples

Git-Large Examples

GIT-base Architecture and Processing Flow – How
it works

Vision Encoder: ViT (Vision Transformer)
• Splits the image into fixed-size patches (e.g., 16×16)
• Adds position embeddings
• Passes through multi-head self-attention layers
• Outputs a sequence of visual tokens
Text Decoder: Transformer-based decoder
• Receives visual tokens as context (via cross-attention)
• Generates text token-by-token using masked self-attention
• Output is autoregressive (each word depends on previous output)

GIT-base Architecture and Processing Flow – How
it works

GIT-base Processing Pipeline

• Resize the input image to 224×224 (or as required by model config)
• Normalize pixel values to match pretrained weights
• Divide into patches (e.g., 14×14 = 196 total patches for 16×16 patch size)
• Flatten and project patches to a fixed embedding dimension (e.g., 768)
• Add positional encodings
• Pass into ViT encoder
• Feed encoded visual sequence into decoder
• Caption generation starts with a start token <bos>
• Generates next tokens until end-of-sequence <eos>

GIT-base Processing Pipeline

Training Details
• Pretrained on:

• COCO dataset: 120k+ images with 5 human-written captions each
• Conceptual Captions: 3.3M noisy web images with alt-text captions

• Uses cross-entropy loss during training for next-token prediction

Frontend- App.js

Technologies Used
• React.js (functional components + hooks)
• HTML5 Canvas API for capturing webcam frames
• Web Speech API for text-to-speech output
• JavaScript Events for keyboard and mobile tap interaction

Key Functionalities in App.js

Function What It Does

handleCapture() Captures image from webcam via <canvas>

sendToBackend() Sends image as blob to FastAPI /caption

speak(caption) Uses Web Speech API to speak caption

useEffect() Detects mobile or desktop and sets up camera

handleTap() Detects mobile tap for image capture

playSound(type)
Plays feedback sounds: capture, loading, success

Accessibility Features

• No instructions needed — app speaks to user on its own:
• “Tap anywhere to open the camera” (on mobile)
• “Tap anywhere to generate caption” (on Desktop)

• Voice Feedback via Web Speech API:
• Speaks welcome message
• Speaks when caption is being generated
• Speaks the final caption
• Speaks error messages if API fails

• Auditory Feedback:
• Beep = Image captured
• Ticking = Processing
• Ding = Caption ready

Accessibility Features

• Camera Auto-Config:
• Uses navigator.userAgent to detect

mobile/desktop
• Adjusts preview size accordingly

• Visual Feedback:
• Blue glowing outline around live video to

indicate camera is active
• Button flash or highlight when tapping screen

• Mobile-First Support:
• Tap anywhere to take photo
• Single-screen fullscreen mode
• No buttons needed for users with low vision

Backend – app.py

Backend Technology
• Framework: FastAPI (Python)
• Role: Acts as a lightweight bridge between frontend and Hugging Face
• Model Hosting: Offloaded to Hugging Face Inference API (microsoft/git-base-coco)
Processing Flow
1. Frontend sends captured image via a POST request to /caption/
2. FastAPI backend receives image in binary (bytes) format
3. Backend forwards image to Hugging Face model API with authorization token
4. Receives caption output as JSON from Hugging Face
5. Sends parsed caption back to frontend for voice + display

Backend – app.py

Security + Reliability
• Uses HF_TOKEN stored as environment variable (not hardcoded)
• Enables CORS middleware to allow cross-origin requests from frontend
• Error handling:

• Catches failed requests
• Sends clear error messages (e.g., “Image processing failed”)
• Tries to parse only valid JSON response

• Offloads heavy ML inference to Hugging Face cloud

Deployment – Frontend on Vercel

● React frontend deployed on Vercel
● Project pushed to GitHub → Linked with Vercel for auto-deployment
● Updated BACKEND_URL in frontend to point to live Render backend
● Ran npm run build for optimized production bundle
● Vercel auto-detected framework and used global CDN to serve app fast
● Publicly accessible at https://visionmate-theta.vercel.app/

● No login/authentication required
● Works on desktop and mobile (including slow networks)
● Instant response within a few seconds per caption

https://visionmate-theta.vercel.app/
https://visionmate-theta.vercel.app/
https://visionmate-theta.vercel.app/

Deployment – Frontend on Vercel

Deployment – Backend on Render

Backend built with FastAPI (app.py)
Initially tried model loading locally, but Render's 512MB RAM limit caused:
• Crashes
• Missing CPU instruction errors
Switched to API-based approach using Hugging Face's hosted model (git-base-coco)
Backend acts as a relay: receives image → forwards to Hugging Face → returns caption
Set HF_TOKEN as environment variable (not in code)
Enabled CORS for frontend communication
● Live API endpoint: https://visionmate-backend.onrender.com/caption/

Deployment – Backend on Render

Evolution of VisionMate

Desktop View

Evolution of VisionMate

Desktop View

Evolution of VisionMate

Desktop View

Evolution of VisionMate

Desktop View

Evolution of VisionMate

Desktop View

Evolution of VisionMate

Desktop View

Evolution of VisionMate

Mobile View

Evolution of VisionMate

Mobile View

Evolution of VisionMate

Mobile View

Evolution of VisionMate

Mobile View

Evolution of VisionMate

Mobile View

Testing and Performance Evaluation

What was tested?

• Camera capture response time
• Caption generation latency
• Speech output delay
• Device compatibility (Desktop + Mobile)
• Browser support: Chrome, Safari, Firefox
• Model performance: BLIP-base vs GIT-base

Testing and Performance Evaluation

Test Type Result

Average caption generation time 5–7 seconds (GIT-base via HF API)

Audio output delay ~0.5 seconds after caption response

Success rate (20 custom images) 18/20 images received relevant captions

Browser support Chrome, Firefox, Safari (Mobile/Desktop)

Caption accuracy (BLIP vs GIT) GIT-base was more consistent for real scenes

Limitations
Latency in First Request:
• Render’s free backend spins down after inactivity.
• First API call may take 20–40 seconds to respond.
Hugging Face API Rate Limits:
• Can break under heavy usage.
• Hugging Face has the ability to remove API inference anytime they please. Very

Dependent
Internet Dependency:
• Requires stable internet on both frontend and backend for full functionality.
• Not usable offline due to reliance on external model API.
Caption Ambiguity:
• GIT-base sometimes generates vague or overly broad descriptions (e.g., “a person in a

room”).
No Real-Time Video Support Yet:
• App only works on single images, not continuous frames or live streaming.
No Multilingual Support:
• Currently limited to English text and speech output.

Conclusion

• VisionMate enables image-based understanding using AI-generated captions, especially
designed for users with visual impairments.

• Combines a React.js frontend (camera, TTS, mobile/desktop support) with a FastAPI
backend connected to Hugging Face’s GIT-base model.

• Deployed using Vercel and Render, both on free plans.
• GIT-base selected for speed (5–8s avg.) and accuracy in real-world testing.

Future work

• Video Captioning Support:
• Modern videos are 30–50 frames per second (fps).
• VisionMate could be extended to capture keyframes from short videos (e.g., 1 frame

every second) and generate a caption per scene.
• Useful for summarizing scenes or assisting users in real-time visual navigation (e.g.,

short video clips, walking around a room).
• Custom Model Fine-Tuning:

• Train GIT or BLIP model on specific domains (e.g., indoor, educational settings)
• Multilingual Captioning:

• Add translations and voice output in multiple languages.

Future work

• Voice-Controlled Interaction:
• Let users say "capture", "read", or "exit" instead of tapping/clicking

• Better Accessibility Integration:
• Add semantic roles, and support for screen readers like VoiceOver and TalkBack

• Offline Functionality:
• Use small models or preloaded ML to run on-device without Internet

References

1] J. Li, et al., “BLIP: Bootstrapping Language-Image Pre-training for Unified Vision-Language

Understanding and Generation,” arXiv preprint arXiv:2201.12086, 2022. Available: https://

arxiv.org/abs/2201.12086

[2] L. H. Wang, et al., “GIT: A Generative Image-to-Text Transformer for Vision-to-Language

Pretraining,” arXiv preprint arXiv:2205.14100, 2022. Available: https://arxiv.org/abs/2205.14100

[3] T. Y. Lin, et al., “Microsoft COCO: Common Objects in Context,” ECCV, 2014. Available:

https://cocodataset.org/

[4] S. Ramírez, “FastAPI Documentation,” FastAPI, [Online]. Available: https://

fastapi.tiangolo.com/

[5] T. Wolf, et al., “Transformers: State-of-the-Art Natural Language Processing,” EMNLP, 2020.

Available: https://huggingface.co/docs/transformers/index

[6] S. Hochreiter and J. Schmidhuber, “Long Short-Term Memory,” Neural Computation, vol. 9, no.

8, pp. 1735–1780, 1997. Available: https://www.bioinf.jku.at/publications/older/2604.pdf

https://arxiv.org/abs/2205.14100
https://huggingface.co/docs/transformers/index

Questions?

Thank you !

	Slide 1: VisionMate: AI-Powered Image Captioning Web Application
	Slide 2: Outline
	Slide 3: Introduction
	Slide 4: Background: Related Work
	Slide 5: Background: Related Work
	Slide 6: Background: Image Captioning Overview
	Slide 7: Background: Vision-Language Models
	Slide 8: BLIP-base vs BLIP-large – Architectural Differences
	Slide 9: BLIP Comparison – Performance & Output
	Slide 10: BLIP Comparison – Performance & Output
	Slide 11: Why Switch to GIT?
	Slide 12: GIT-base vs GIT-large – Key Differences
	Slide 13: Git-Base Examples
	Slide 14: Git-Large Examples
	Slide 15: GIT-base Architecture and Processing Flow – How it works
	Slide 16: GIT-base Architecture and Processing Flow – How it works
	Slide 17: GIT-base Processing Pipeline
	Slide 18: GIT-base Processing Pipeline
	Slide 19: Frontend- App.js
	Slide 20: Key Functionalities in App.js
	Slide 21: Accessibility Features
	Slide 22: Accessibility Features
	Slide 23: Backend – app.py
	Slide 24: Backend – app.py
	Slide 25: Deployment – Frontend on Vercel
	Slide 26: Deployment – Frontend on Vercel
	Slide 27: Deployment – Backend on Render
	Slide 28: Deployment – Backend on Render
	Slide 29: Evolution of VisionMate
	Slide 30: Evolution of VisionMate
	Slide 31: Evolution of VisionMate
	Slide 32: Evolution of VisionMate
	Slide 33: Evolution of VisionMate
	Slide 34: Evolution of VisionMate
	Slide 35: Evolution of VisionMate
	Slide 36: Evolution of VisionMate
	Slide 37: Evolution of VisionMate
	Slide 38: Evolution of VisionMate
	Slide 39: Evolution of VisionMate
	Slide 40: Testing and Performance Evaluation
	Slide 41: Testing and Performance Evaluation
	Slide 42: Limitations
	Slide 43: Conclusion
	Slide 44: Future work
	Slide 45: Future work
	Slide 46: References
	Slide 47: Questions?

