
Understanding XGBoost: 

Its Role in Legal Case 

Prediction
BY ALISHA RATH

CS 298



Introduction to XGBoost

 XGBoost stands for Extreme Gradient Boosting.

 It is an efficient and scalable machine learning algorithm based on 

decision tree ensembles.

 Commonly used for both classification and regression tasks.

 Known for its speed, accuracy, and performance.





What Does XGBoost Do

 XGBoost builds multiple decision trees sequentially, improving accuracy 

step-by-step.

 It uses Gradient Boosting to minimize errors by focusing on misclassified 

data points.

 It combines predictions from multiple trees to generate a final prediction.





How XGBoost Works

 Step 1: Build an initial weak model (a single decision tree).

 Step 2: Calculate the residuals or errors in the first model.

 Step 3: Build a second tree to correct the errors.

 Step 4: Repeat this process iteratively, each time adjusting for previous 

mistakes.

 Step 5: Combine the output of all trees to generate the final prediction.





Features of XGBoost

 Regularization: Helps prevent overfitting by adding a penalty for complex 

models.

 Parallelization: Faster training due to parallel execution during tree 

construction.

 Handling Missing Data: Automatically handles missing values in data 

without preprocessing.

 Cross-validation: Built-in support for cross-validation during training.



Advantages of XGBoost

 High performance and predictive accuracy.

 Efficient handling of large datasets.

 Flexibility to use for both classification and regression tasks.

 Well-suited for imbalanced datasets (such as fraud detection, or legal 

case predictions).

 Robust to overfitting due to regularization techniques.



Feature XGBoost Random Forest Logistic Regression

Type of Algorithm Gradient Boosting Ensemble of Decision Trees Linear Model

Training Speed
Faster (due to parallelization 

and optimization techniques)

Slower (multiple decision trees 

need to be trained)

Fast (simple optimization 

of weights)

Model Complexity
High (ensemble of trees, 

boosting)
Moderate (ensemble of trees) Low (single linear model)

Handling of 

Overfitting

Can handle overfitting well with 

regularization (L1/L2)

Less prone to overfitting but 

can still overfit with many 

trees

Prone to overfitting with 

high-dimensional data

Performance with 

Large Data

Excellent (can handle large 

datasets efficiently)

Good (but slower with large 

datasets)

Good (but might 

underperform with non-

linear data)

Interpretability
Moderate (can be interpreted 

with SHAP, feature importance)

High (easier to understand 

individual trees)

High (coefficients are 

interpretable)

Handling Missing 

Values

Built-in handling of missing 

values

Handles missing values during 

tree splitting

Requires imputation 

before training



Feature XGBoost Random Forest Logistic Regression

Non-Linearity
Handles non-linear 
relationships well

Handles non-linear 
relationships with decision 
trees

Assumes linear 
relationship between 
variables

Tuning 
Complexity

High (requires tuning 
many hyperparameters 
like learning rate, depth)

Moderate (tuning number 
of trees and depth)

Low (tuning involves 
regularization, solver 
choice)

Use Cases
Highly effective for 
structured/tabular data, 
classification, regression

Effective for classification 
and regression on 
structured data

Effective for binary 
classification, particularly 
with linear relationships

Robustness to 
Noise

Robust to noisy data with 
appropriate regularization

Less robust to noise 
compared to XGBoost

Sensitive to noise, may 
require feature 
engineering



XGBoost in Legal Case Prediction

 XGBoost can predict case outcomes based on historical data such as 

case type, judge rulings, and party arguments.

 Feature Example: Case facts

 Helps in predicting whether the plaintiff or defendant is likely to win a case.

 Can assist lawyers and legal teams by providing probabilistic insights into 

case outcomes.



Why Use XGBoost for Legal Case 

Prediction?

 XGBoost’s accuracy and speed make it ideal for processing complex legal 

datasets.

 Ability to handle multivariate features (such as text data from court 

transcripts).

 Supports class imbalance in cases where one outcome (e.g., defendant 

wins) is much more frequent than the other (plaintiff wins).

 XGBoost provides feature importance, which can help identify key factors 

influencing case outcomes.



Conclusion

 XGBoost is a powerful algorithm for predictive modeling, especially when 

dealing with large datasets and high-dimensional features.

 It is widely used in various industries, including law, where accurate 

predictions can save time and costs.

 With its ability to handle complex and unstructured data, XGBoost can 

significantly aid legal professionals in predicting case outcomes and 

making informed decisions.


