
Fine-Tuning DistilBERT for Legal
Case Prediction

A Step-by-Step Guide with Practical
Example

Presented by: Alisha Rath

Introduction to DistilBERT

• What is DistilBERT?
- A distilled version of BERT (Bidirectional Encoder Representations

from Transformers).
- Lightweight, faster, and retains 97% of BERT's performance.
- Uncased: Ignores case sensitivity (e.g., 'law' and 'LAW' are

treated the same).

• Why Distillation?
- Reduces model size and training time.
- Ideal for resource-constrained environments.

Importance of Fine-Tuning for
Legal Case Prediction

• Why Fine-Tuning?

- Pre-trained models are trained on general
language corpora.

- Fine-tuning adapts the model to legal-specific
language and prediction tasks.

• Use Case: Predicting legal case outcomes.

- Predict outcomes of court cases based on legal
documents, charges, and evidence.

Understanding DistilBERT's
Architecture for Legal Text

• How DistilBERT Works:

- Transformer architecture with attention
mechanisms.

- Processes legal texts and understands context.

• Why Use DistilBERT?

- Faster inference for handling long legal
documents.

- Suitable for scaling to large legal datasets.

Pre-Training vs. Fine-Tuning

• Pre-Training:

- Trained on general language corpora.

• Fine-Tuning:

- Adapts the pre-trained model for specific
tasks like legal case prediction.

- Requires a labeled legal dataset to learn
task-specific knowledge.

Dataset for Fine-Tuning DistilBERT

• Dataset Example: Supreme Court Judgment
Prediction Dataset (Kaggle).

- Contains data on legal cases (charges,
descriptions, outcomes).

• Data Preprocessing:

- Clean legal text.

- Tokenize using DistilBERT’s tokenizer.

Example: Fine-Tuning DistilBERT for
Legal Case Prediction

• Steps:

1. Load the pre-trained DistilBERT model
using Hugging Face.

2. Tokenize legal documents.

3. Fine-tune the model to predict case
outcomes.

Code Example: Loading DistilBERT

from transformers import DistilBertTokenizer,
DistilBertForSequenceClassification, Trainer, TrainingArguments

Load pre-trained DistilBERT tokenizer and model
tokenizer = DistilBertTokenizer.from_pretrained('distilbert-base-
uncased')
model =
DistilBertForSequenceClassification.from_pretrained('distilbert-base-
uncased', num_labels=2)

Tokenize dataset
train_encodings = tokenizer(train_texts, truncation=True,
padding=True, max_length=512)
test_encodings = tokenizer(test_texts, truncation=True, padding=True,
max_length=512)

Code Example: Fine-Tuning with
Trainer API

Define training arguments
training_args = TrainingArguments(

output_dir='./results',
num_train_epochs=3,
per_device_train_batch_size=16,
per_device_eval_batch_size=16,
warmup_steps=500,
weight_decay=0.01,
logging_dir='./logs',
logging_steps=10,

)

Trainer for fine-tuning
trainer = Trainer(

model=model,
args=training_args,
train_dataset=train_dataset,
eval_dataset=eval_dataset

)

Fine-tune the model
trainer.train()

Model Evaluation for Legal Case
Prediction

• Evaluating the Model:

- Predict the outcome of unseen legal cases.

- Assess performance metrics: accuracy, precision, recall, F1-score.

• Example Code for Evaluation:

predictions = trainer.predict(test_dataset)
preds = np.argmax(predictions.predictions, axis=-1)
accuracy = np.mean(preds == test_labels)
print(f"Test Accuracy: {accuracy:.4f}")

Challenges in Fine-Tuning Legal
Models

• Domain-Specific Language:
- Legal texts contain complex language.

• Imbalanced Datasets:
- Legal outcomes may be skewed.

• Data Privacy:
- Legal datasets may include sensitive data.

Key Considerations for Fine-Tuning
Legal Models

• Hyperparameter Tuning:
- Optimize model performance.

• Preprocessing Legal Text:
- Clean and tokenize documents.

• Transfer Learning Challenges:
- Domain shift between general data and legal

texts.

Conclusion

• Fine-tuning DistilBERT adapts it for legal case
prediction.

• Next Steps:

- Optimize with more datasets and tasks (e.g.,
verdict prediction).

- Explore real-world deployment in legal firms.

