
Markdown Parsing
CS 297 - Aditya Prajapati

Introduction
Markdown

● A lightweight markup language for formatting text
● Commonly used for documentation, websites, and readme files

Parser

● Processes and interprets structured data
● Converts Markdown into HTML in this case

Elements
Basic syntax elements:

● Headings (e.g., # H1, ## H2, ...)
● Emphasis (e.g., *italic*, **bold**)
● Lists (e.g., - Unordered and 1. Ordered)
● Links (e.g., [title](url))
● Images (e.g., ![alt text](image_url))
● Code Blocks (e.g., `inline code` and multiline with triple backticks)

Parsing
Tokenization

● Break down Markdown text into identifiable tokens for each syntax type
○ Ex. Recognize # at the beginning of a line as a heading token

● Use regular expressions to identify patterns, like ^#{1,6}\s for headings or *.** for
emphasis.

Syntax Tree
● Organizes tokens hierarchically and preserves the structure of nested elements
● Each Markdown element (e.g., heading, list item, link) becomes a node
● Sub-elements, like list items within lists, are nested as child nodes

Parsing syntax tree to HTML
● Traverse the syntax tree and convert each node to HTML.

○ Example: Heading node <h1>Title</h1>, list node Item

● Nested elements: Properly manage lists, quotes, and other elements that can
contain multiple levels

Challenges
● Edge Cases and Ambiguities

○ Handle syntax errors and mixed formatting like # Heading with *italic*
● Security and HTML Escaping

○ Prevent injection attacks by escaping HTML
● Extensibility and Performance

○ Add support for more Markdown features (e.g., tables, footnotes) and optimize for large files

Tips and tricks
● Handle Elements in the Correct Order - order matters

○ Capture most specific -> most general : Parse headings, lists, and tables before paragraphs to avoid
unintended transformations

● Lazy Evaluation and Streaming
○ For large Markdown files, consider parsing with a streaming approach to handle content as it’s read,

rather than loading it all into memory.
● Store markdown in db and parse it when needed?
● Store HTML as a temporary file on server

○ Store name as hash of content, so no need to parse again if hash has not changed

