Data Visualization Techniques

1. t-Distributed Stochastic Neighbor Embedding
2. Scatter and Violin Plots
3. Scanpy Plots
t-Distributed Stochastic Neighbor Embedding (t-SNE)

- Non-linear dimensionality reduction for embedding high dimensional data in low dimensional space i.e., 2D or 3D
- Visualize high dimensional data – give each point a location in 2D or 3D map
- Randomized approach to reduce dimensionality non-linearly
- Retains local structure of data in lower dimension
- Algorithm – find patterns in data based on similarity of datapoints with features
- Convert high dimension Euclidean distances between data points into joint probabilities
- Similarity – calculate conditional probability that point A chooses point B as neighbour
- Minimize distance between conditional probabilities in higher dimensional and lower dimensional space to represent data points in lower dimension
t-Distributed Stochastic Neighbor Embedding (t-SNE)

- Reduce dimensionality, preserve most information in dataset
- Unsupervised algorithm
- Increase interpretability of data in lower dimension
- Minimize information loss due to dimensionality reduction

A two-dimensional t-SNE map of the MNIST data set, a collection of 60,000 images of handwritten digits.
Scatter Plots and Violin Plots

- **Scatter Plot**
 - Represent relationship among variables
 - Dots used to represent the relationship
 - Find correlation between variables
 - Demonstrate how change in one variable affects the other
 - `Scatter()` method in matplotlib library to draw scatter plots

Price vs Sales per day
Scatter Plots and Violin Plots

- **Violin Plot**
 - Statistical representation of numerical data
 - Shows quantitative data across one or more categorical variables
 - Distribution of data points after grouping by one or more variables
 - Effective and attractive to show multiple data at several units
 - violinplot() method in seaborn library to draw violin plots
Scanpy Plots

- Scanpy – scalable toolkit for analyzing single-cell gene expression data built jointly with anndata

- **Scatter plots for embeddings**

- In scanpy, scatter plots for t-SNE, UMAP and several other embeddings readily available using ‘sc.pl.tsne’, ‘sc.pl.umap’ etc. functions

- These functions access data stored in ‘adata.obsm’
Scanpy Plots

- Identification of clusters based on known marker genes
- Clusters need to be labelled using well known marker genes
- **Dotplot** – check expressions of genes per cluster
- Color represents mean expression within each category (cluster)
- Dot represents fraction of cells in categories expressing a gene
Scanpy Plots

- **Heatmaps**
- Find collinearity of data
- Each value in matrix is represented as a color
- Each cell is shown in a row
- Groupby information can be added
Scanpy Plots

- Tracksplot
- Same information as heatmap
- Instead of color scale, gene expression is represented as height
Scanpy Plots

- Dendrogram
- Tree like structure to visualize relationship among clusters
- Illustrates how each cluster is composed by drawing U-shaped link between non-singleton cluster and its children
- To arrange categories