
INTEGRATING CHATGPT WITH A-FRAME FOR USER-DRIVEN 3D MODELING

INTEGRATING CHATGPT WITH A-FRAME FOR USER-DRIVEN 3D MODELING

Project Report

Presented to

Dr. Chris Pollett

Department of Computer Science

San Jose State University

In Partial Fulfillment

Of the Requirements for the Class

CS 297

By

Ivan Hernandez

Fall 2023

INTEGRATING CHATGPT WITH A-FRAME FOR USER-DRIVEN 3D MODELING

ABSTRACT

ChatGPT has recently gained a significant amount of popularity as a large language model that

provides users with context-aware conversations and interactions. Along with this recent rise in

popularity, new opportunities for human-computer interactions have become possible. On the

other hand, some software, such as traditional 3D modeling applications with overwhelming user

interfaces, have lagged behind when it comes to improving their interactivity and ease of use.

Therefore, we can leverage ChatGPT’s natural language processing capabilities to enhance the

3D modeling experience. By integrating ChatGPT into A-Frame, an online framework for

creating virtual reality experiences, we can develop an immersive and interactive 3D modeling

environment where users can communicate their design intent through natural language

commands in virtual reality. For the first semester, we worked on four deliverables. The first and

second deliverables established the foundation of the project, which included the integration of

ChatGPT into A-Frame. In the third deliverable, we fine-tuned the model to behave like an

A-Frame assistant. Lastly, the fourth deliverable introduced voice interactions into the system.

By the end of the first semester, we have a project that combines the advanced language

processing power of ChatGPT and A-Frame’s immersive technology to create a more engaging

experience for 3D modeling with voice commands.

Index terms – ChatGPT, A-Frame, Virtual Reality, 3D modeling, Code Generation, Audio

Commands

i

INTEGRATING CHATGPT WITH A-FRAME FOR USER-DRIVEN 3D MODELING

TABLE OF CONTENTS

I. Introduction.. 1

II. Deliverable I: Basic A-Frame Virtual Reality Environment...3

III. Deliverable II: ChatGPT Integration Into A-Frame...6

IV. Deliverable III: ChatGPT Modeling Interpreter.. 9

V. Deliverable IV: Voice Command Integration.. 17

VI. Conclusion... 20

References..21

ii

INTEGRATING CHATGPT WITH A-FRAME FOR USER-DRIVEN 3D MODELING

I. INTRODUCTION

Over the past year, we have witnessed the rise of a cutting-edge large language model

called ChatGPT. While many individuals have used ChatGPT for contextually aware

conversations, its capabilities extend further beyond. An impressive application of ChatGPT is

code generation, where it is capable of creating programming code snippets in a variety of

programming languages [1]. People have also utilized ChatGPT as a chatbot or assistant capable

of engaging in back-and-forth conversations. This type of human-computer interaction is very

user-friendly and could be particularly beneficial for complex computer applications that may

not be intuitive for all users, such as current 3D modeling software applications. Integrating

natural language processing into the field of 3D modeling would not only improve the user

experience but also streamline the content creation process. We can combine ChatGPT’s

capabilities with A-Frame, an online framework that uses HTML and Javascript for building

Virtual Reality(VR) experiences[2], to create an immersive and interactive 3D modeling

environment. Therefore, the goal of this project is to develop a system that integrates ChatGPT

into an A-Frame-based VR environment, thus enabling users to create, modify, and interact with

3D models based on user-provided natural language descriptions. By leveraging ChatGPT’s

natural language understanding capabilities, this system can offer a more engaging experience

for users to guide and modify the 3D modeling process in real-time.

This report will cover the four deliverables that we completed within the first semester.

Each section will provide the following: a description of the deliverable, the approach,

implementation, and results. The first deliverable will focus on A-Frame, discussing its features,

advantages, disadvantages, and how it can be connected to Glitch. In the second deliverable, we

will explore ChatGPT and its API integration with A-Frame. The third deliverable involves the

1

INTEGRATING CHATGPT WITH A-FRAME FOR USER-DRIVEN 3D MODELING

full integration of ChatGPT into A-Frame, enabling users to provide modeling commands that

will be reflected in the 3D scene. The final deliverable introduces audio commands to add a new

modality input and improve the user experience within the VR environment. To conclude, we

will provide a project summary and discuss future developments.

2

INTEGRATING CHATGPT WITH A-FRAME FOR USER-DRIVEN 3D MODELING

II. DELIVERABLE I: BASIC A-FRAME VIRTUAL REALITY ENVIRONMENT

The goal of the first deliverable was to create a functional VR environment using

A-Frame and incorporate some simple 3D primitives into the scene. Afterwards, we compared

and contrasted the workflow between A-Frame and Unity3D to see the advantages and

disadvantages of A-Frame when it comes to 3D object positioning and manipulation.

The A-Frame documentation has a lot of useful information regarding A-Frame’s

entity-component system (ECS) along with simple example scenes that can be easily viewed

online. Many of these A-Frame scenes are hosted through Glitch, an online editor capable of

hosting A-Frame applications. For the first deliverable, we used the Glitch editor to write and

host a simple VR A-Frame scene with three primitives, each with different object properties.

Figure 1 shows the simple A-Frame scene along with the code in Glitch. We also wanted to

compare the workflows of A-Frame and Unity3D. To accomplish this, we needed to create a

basic virtual scene composed of a wall, table and functional door in both applications. The tools

used for this task were as follows: A-Frame(HTML/Javascript), Glitch(server host),

Unity3D(C#), and the Oculus Quest 2.

We first implemented the 3D scene in A-Frame. This entailed creating <a-entity> tags for

each object and positioning them appropriately. The workflow required a significant amount of

going back and forth between the 3D scene and HTML code to make sure that the objects were

positioned correctly. Textures were added to the objects to make the scene look more realistic.

Lastly, the door was given functionality so that it was interactable within the VR environment.

After creating the virtual scene in A-Frame, we then created the same scene in Unity3D. A

similar approach was followed for Unity3D. First, we built and positioned the objects in the 3D

3

INTEGRATING CHATGPT WITH A-FRAME FOR USER-DRIVEN 3D MODELING

editor. Then, we added the textures to the objects before incorporating some basic functionality

to the door.

The results can be viewed in Figure 2. We can observe that the scenes are very similar,

with the main difference being the lighting system of each software. For the workflow, we

encountered similar results as those reported in [2], where transforming primitives in A-Frame

becomes tedious and time consuming because of the back-and-forth attribute modifications. On

the other hand, Unity provides a visual editor that includes widgets to translate, rotate, and scale

objects, which makes it substantially easier to transform and align objects. In regards to

texturing, the process was relatively similar and easy to implement in both Unity and A-Frame.

Finally, for functionality, both Unity and A-Frame have an entity-component system architecture.

Therefore, when adding the door functionality, the implementation process was very similar in

both cases.

Fig 1. Glitch online editor and simple A-Frame scene.

4

INTEGRATING CHATGPT WITH A-FRAME FOR USER-DRIVEN 3D MODELING

Fig 2. Basic virtual scene in both A-Frame(above) and Unity3D(below)

5

INTEGRATING CHATGPT WITH A-FRAME FOR USER-DRIVEN 3D MODELING

III. DELIVERABLE II: CHATGPT INTEGRATION INTO A-FRAME

The goal of the second deliverable was to merge ChatGPT with the A-Frame

environment. In order to interact with the ChatGPT API, a temporary user interface was made

available, allowing users to input prompts and receive ChatGPT's responses. While later on we

implemented voice commands, this initial user interface was very useful for testing and

debugging during the initial parts of the project. Ultimately, we will not need the user interface,

as the voice commands will help ensure that the ChatGPT integration works seamlessly with the

virtual reality environment.

We first began our approach by learning more about ChatGPT and OpenAI’s API

documentation. This gave us a better understanding about the multiple models provided by

OpenAI’s API and the respective prices for using these models. Acquiring an OpenAI API key

granted us access not only to their GPT models but also to the audio models that we later used

for the fourth deliverable. Then, we designed a simple user interface to handle the prompt inputs.

This allowed us to make requests with the API and communicate with ChatGPT. After we send a

request to ChatGPT, we will get a response in the form of a json file, which we will then process

before displaying it on the user interface. Finally, to make sure that the API keeps track of the

conversation between the user and ChatGPT, we added context to the requests that we send to

ChatGPT.

For the implementation, using the API key, we send a POST request to the

‘https://api.openai.com/v1/chat/completions’ endpoint, which allows us to use the GPT model in

our project. Figure 3 shows the code for making the API calls. We also specify the particular

model we want to use and set specific values for the “temperature” and “max_tokens”

parameters. A lower “temperature” makes the model less random and more consistent. The

6

INTEGRATING CHATGPT WITH A-FRAME FOR USER-DRIVEN 3D MODELING

“max_tokens” determines the maximum number of tokens or words to generate in the response.

For the model, we initially started using the GPT-4 model, but soon after moved to their newest

and more powerful model GPT-4 Turbo, which introduces a much higher context window and is

cheaper than the previous model. Also shown in Figure 3 is the “messages” parameter. This

represents the conversation between the user and ChatGPT and is the information that we send in

the POST request. In order to keep the context of the full conversation, we make sure that the

“payload” variable records every message, including the user’s prompts and ChatGPT’s

responses. This allows the program to keep track of information from previous messages, which

is shown in Figure 4.

Once we send the request and get back the ChatGPT response, we extract the json file

and display the response on the simple user interface. Figure 4 demonstrates the user interface

working inside an A-Frame scene. This indicates that we were able to accomplish the task of

integrating ChatGPT into A-Frame. As a result, users can easily interact with the virtual

environment using natural language prompts, making the overall experience more intuitive and

engaging.

Fig 3. Post request to OpenAI’s ChatGPT model

7

INTEGRATING CHATGPT WITH A-FRAME FOR USER-DRIVEN 3D MODELING

Fig 4. Simple UI and example of ChatGPT working inside A-Frame

8

INTEGRATING CHATGPT WITH A-FRAME FOR USER-DRIVEN 3D MODELING

IV. DELIVERABLE III: CHATGPT MODELING INTERPRETER

The goal of the third deliverable was to ensure that the user inputs are converted into

actionable commands for the A-Frame environment. This process involved defining a command

structure for creating, modifying, and removing objects as well as establishing a foundation for

user interactions to be properly interpreted and transformed into modeling commands. Therefore,

the system needs to be robust, flexible, and capable of handling a wide range of user inputs.

Our first task was to define the specific instructions to fine-tune the system’s behavior so

that we get standardized ChatGPT outputs. These designed instructions will make ChatGPT an

A-Frame assistant capable of creating A-Frame primitives, modifying their object properties, and

removing them from the scene. Then, we will be able to extract the A-Frame code from the

ChatGPT response and process the code so that it is fully integrated into the A-Frame scene. To

test the system, we set up a series of test sets containing a variety of different commands,

including simple and complex inputs. We also include error handling instructions for the system

to recognize when there are invalid or ambiguous commands.

OpenAI provides API users the ability to customize the system’s behavior by indicating

particular rules. Figure 5 shows the set of instructions that we used for our system. Through these

instructions, we create a specialized artificial intelligence assistant that generates A-Frame code

based on the user’s prompt. Many of these instructions are designed so that ChatGPT focuses

only on providing A-Frame code that is formatted inside the <a-scene> tags and disregard extra

text that ChatGPT generally provides for context. Also, some instructions provide useful

information to ChatGPT, such as “The default user position: (0 0 0), facing -z axis. So, when

creating objects, place them in view of the user,” to ensure that it understands the setup and

context of the A-Frame environment. There are also other instructions for ChatGPT to handle

9

INTEGRATING CHATGPT WITH A-FRAME FOR USER-DRIVEN 3D MODELING

invalid and vague commands, so that such commands are immediately detected and properly

returned to be displayed as warning or clarification messages in the user interface. Once we get

the formatted responses back, we extract the code using regex strings and insert the A-Frame

code inside the main <a-scene> tag. This updates the A-Frame scene and reflects the changes

made by the user’s commands

Moreover, with these instructions, we were able to create an assistant that is capable of

handling simple and complex commands. Simple commands, such as “Create a red cube,” were

handled very well. On the other hand, the complex commands typically required follow-up

adjustments from the user. Figure 6 shows some examples from the complex commands test set.

We can observe that the system is able to understand objects very well, which is shown by the

couch example where it is able to distinguish between the couch and the cushions with different

colors. The two commands used to create the UFO in Figure 6 were as follows: “Create a cool

UFO in the scene” and “Add buttons to the inside and outside of the UFO.” For the UFO

animation shown as snapshots in Figure 7, we used the following command: “Animate the whole

UFO taking off to the sky at an angle away from me.” The end result really demonstrates the

power of ChatGPT, where it was not only able to recognize that the UFO should be moving away

from the user but also rotate as it was flying away, thus understanding that a UFO should behave

in a particular manner.

While the system yielded impressive results for the complex commands, we also tested

how consistent ChatGPT was when creating A-Frame code given simple commands. In [3], the

authors tested ChatGPT’s consistency with three different consistency types: negation, semantic,

and symmetric. We used the same consistency types, and presented the results in Figures 8, 9,

and 10 respectively. In Figure 8, we can see that all of the tests for negation consistency passed,

10

INTEGRATING CHATGPT WITH A-FRAME FOR USER-DRIVEN 3D MODELING

which is similar to what the authors in [3] found. Generally, ChatGPT is very good at

determining negation and contradictions. For the other types of consistencies, the system

performs well but each consistency has one test case where ChatGPT does not provide the

desired outcome. For semantic consistency, shown in Figure 9, the test 6 inputs have the same

meaning but are phrased differently, yet ChatGPT did not treat them as the same, so it was

inconsistent. Similarly, for the symmetric consistency results in Figure 10, the first test was

inconsistent as the order of the commands affected the output from ChatGPT. However, overall

ChatGPT does relatively well at providing consistent results for simple modeling commands.

Fig 5. Specific instructions given to ChatGPT to specialize its system

11

INTEGRATING CHATGPT WITH A-FRAME FOR USER-DRIVEN 3D MODELING

Fig 6. Results from complex input tests

12

INTEGRATING CHATGPT WITH A-FRAME FOR USER-DRIVEN 3D MODELING

Fig 7. Sequential snapshots of UFO animation in A-Frame

13

INTEGRATING CHATGPT WITH A-FRAME FOR USER-DRIVEN 3D MODELING

Test Input 1 Input 2 Equivalent

1 “Create a red cube” “Do not create a red cube” No

2 “Add a green sphere” “Avoid adding a green sphere” No

3 “Move the cube to the left” “Don’t move the cube to the
left”

No

4 “Move the sphere up” “Prevent the sphere form
moving up”

No

5 “Rotate the cube 45 degrees” “Do not rotate the cube 45
degrees”

No

6 “Scale the sphere to half the size” “Do not scale the sphere to half
its size”

No

7 “Change the cube’s color to blue” “Skip changing the cube’s color
to be blue”

No

8 “Delete the sphere” “Don’t delete the sphere” No

9 “Delete the cube” “Avoid deleting the cube” No

10 “Create a yellow cone” “Do not create a yellow cone” No

Fig 8. Negation consistency test set with an example of test 5.

14

INTEGRATING CHATGPT WITH A-FRAME FOR USER-DRIVEN 3D MODELING

Test Input 1 Input 2 Equivalent

1 “Create a red cube” “Generate a red cube” Yes

2 “Add a green sphere” “Include a green sphere” Yes

3 “Move the cube to the left” “Shift the cube to the left” Yes

4 “Move the sphere up” “Elevate the sphere” Yes

5 “Rotate the cube 45 degrees” “Turn the cube 45 degrees” Yes

6 “Scale the sphere to half the size” “Make the sphere half its size” No

7 “Change the cube’s color to blue” “Modify the cube to be blue” Yes

8 “Delete the sphere” “Eliminate the sphere” Yes

9 “Delete the cube” “Clear the box” Yes

10 “Create a yellow cone” “Craft a cone that is yellow” Yes

Fig 9. Semantic consistency test set with an example of test 6.

15

INTEGRATING CHATGPT WITH A-FRAME FOR USER-DRIVEN 3D MODELING

Test Input 1 Input 2 Equivalent

1 “Create a red cube”
“Add a green sphere”

“Add a green sphere”
“Create a red cube”

No

2 “Move the cube to the left”
“Move the sphere up”

“Move the sphere up”
“Move the cube to the left”

Yes

3 “Rotate the cube 45 degrees”
“Scale the sphere to half the size”

“Scale the sphere to half the
size”
“Rotate the cube 45 degrees”

Yes

4 “Change the cube’s color to blue”
“Delete the sphere”

“Delete the sphere”
“Change the cube’s color to
blue”

Yes

5 “Delete the cube”
“Create a yellow cone”

“Create a yellow cone”
“Delete the cube”

Yes

Fig 10. Symmetric consistency test set with an example of test 3.

16

INTEGRATING CHATGPT WITH A-FRAME FOR USER-DRIVEN 3D MODELING

V. DELIVERABLE IV: VOICE COMMAND INTEGRATION

The goal of deliverable four was to incorporate voice interactions into the virtual reality

environment. By introducing voice commands, we aim to create a more immersive and

user-friendly experience. This integration included voice recognition, speech-to-text

transcription, integration with ChatGPT, and vocal feedback responses. The overall focus was to

optimize user communication and to create a seamless experience within the virtual reality

environment.

We first started by going into the OpenAI documentation, where we found information

about OpenAI’s audio models, such as the Whisper and Text-To-Speech models. The Whisper

model allows users to transcribe audio into text. For our project, it allowed us to transcribe

captured speech from the Oculus Quest 2 headset. We recorded audio using the headset’s

microphone and then processed the audio before sending it to the Whisper API to transcribe it.

Afterwards, we sent the transcription to ChatGPT and got back the response, which we handled

like we did in the previous deliverables. Finally, we updated the A-Frame scene accordingly. On

top of this voice interaction, we also wanted to add vocal feedback after the user makes a

command. To accomplish this, we used the Text-To-Speech model provided by OpenAI.

Whenever the user provides a command, we have preset strings, such as “Processing request,”

that are turned into audio and played out loud for the user to receive vocal feedback and

confirmation.

For the implementation, we first created the controls to capture audio from the Oculus

Quest 2 headset. We mapped the “A” and “B” buttons to start and stop recording, respectively.

For clarity purposes, we included a small microphone icon as an indicator that the system is

currently recording the user’s audio. We then created a .wav audio file, which we sent in a POST

17

INTEGRATING CHATGPT WITH A-FRAME FOR USER-DRIVEN 3D MODELING

request to the Whisper model endpoint. The Whisper model returned the transcribed text which

we then sent to ChatGPT. Figure 11 shows this process of going through a run of the system.

These steps are very similar to the steps followed in [4], except that in this project we are using

ChatGPT for natural language processing and A-Frame as our virtual reality environment. Also,

something not indicated in the diagram is the use of the TTS model from OpenAI, which is used

right after the user provides the voice command and after ChatGPT returns a response.

Figure 12 shows a series of snapshots of a video demonstrating the results of this

deliverable. The video was taken using the Oculus Quest 2 headset, and we used its microphone

to record the audio. We used the following commands: “Add a light blue floor to the scene” and

“Add a light red box to the scene, and make it spin constantly.” These commands are

immediately transcribed before they are sent to ChatGPT. In these images, we can observe how

the project works within the virtual environment and how the users can provide modeling

commands without the use of a keyboard or user interface.

18

INTEGRATING CHATGPT WITH A-FRAME FOR USER-DRIVEN 3D MODELING

Fig 11. Process diagram of an example test run

Fig 12. Sequential snapshots of virtual reality video test

19

INTEGRATING CHATGPT WITH A-FRAME FOR USER-DRIVEN 3D MODELING

VI. CONCLUSION

Through these four deliverables we were able to create an application that leverages

ChatGPT’s power to provide a more immersive and user-friendly 3D modeling experience. The

first two deliverables were more focused on learning and understanding the relevant technologies

of A-Frame and ChatGPT. The third deliverable provided the specific instructions for the system

to behave as an assistant that interprets user’s commands as A-Frame code. We performed a

significant amount of testing for both simple and complex inputs as well as organized test sets to

determine ChatGPT’s consistency when generating A-Frame code. The last deliverable focused

on adding speech recognition and audio support to our project. This not only removed the need

of a user interface inside the virtual environment but also made the experience more engaging as

the user provides 3D modeling voice commands in real-time. Moreover, as we move on to the

next semester, we are looking forward to adding more features and expanding the project. While

ideas are still being brainstormed, we do expect to add more instructions into ChatGPT to

generate Javascript code so that we can create customized components that we can attach to

A-Frame objects. We are also thinking about adding serialization into the project, so that if we

have a scene or set of objects we want to reuse, we can save and then load up those objects in

another session. With these and more features we will be able to further improve the

functionality of the project and support more advanced 3D modeling capabilities.

20

INTEGRATING CHATGPT WITH A-FRAME FOR USER-DRIVEN 3D MODELING

REFERENCES

[1] M. Abdullah, A. Madain and Y. Jararweh, "ChatGPT: Fundamentals, Applications and

Social Impacts," 2022 Ninth International Conference on Social Networks Analysis,

Management and Security (SNAMS), Milan, Italy, 2022, pp. 1-8, doi:

10.1109/SNAMS58071.2022.10062688.

[2] S. G. Santos and J. C. S. Cardoso, "Web-based Virtual Reality with A-Frame," 2019

14th Iberian Conference on Information Systems and Technologies (CISTI), Coimbra,

Portugal, 2019, pp. 1-2, doi: 10.23919/CISTI.2019.8760795.

[3] M. Jang and T. Lukasiewicz, “Consistency Analysis of ChatGPT,” arXiv:2303.06273

[cs], Mar. 2023, Available: https://arxiv.org/abs/2303.06273

[4] C. Li and B. Tang, "Research on Voice Interaction Technology in VR Environment,"

2019 International Conference on Electronic Engineering and Informatics (EEI),

Nanjing, China, 2019, pp. 213-216, doi: 10.1109/EEI48997.2019.00053.

21

