
BUILDING LEAN, STANDALONE WEB SERVERS
AND ROUTING ENGINES

MASTER’S DEFENSE

BY AJITA SHRIVASTAVACommittee: Dr. Navrati Saxena

Advisor: Dr. Chris Pollett

Committee: Dr. Genya Ishigaki

1/52

CONTENTS

• Introduction

• Background

• Implementation

• Experiments

• Results

• Conclusion

• Future Work

2/52

INTRODUCTION

• Project Objective: Develop lightweight, single-file PHP servers for web and email operations.

• Motivation: Simplify server solutions for scalability, educational use, and embedded use cases.

• Existing Components: Atto servers - WebSite, MailSite and GopherSite.

• Existing Features:

• Handle HTTP requests using a micro-framework design.

• Asynchronous I/O, PHP superglobals, and file caching.

• My Contributions:

• Secure handling, HTTP/2 support, framing layer, header compression.

• Protocol commands support and functionality enhancements in email server.

3/52

BACKGROUND – WEB SERVERS
• Purpose: Web servers handle HTTP requests, serving web pages, APIs, or static content to

clients (usually browsers).

• Common Examples:

• Nginx: Known for high performance, load balancing, and reverse proxying.

• Apache: A robust, widely used web server offering extensive configurability.

• Node.js: A runtime enabling event-driven, non-blocking I/O for real-time applications.

• Challenges:

• Resource-heavy for small-scale applications.

• Complexity increases with modular add-ons and on-demand configurations.

4/52

BACKGROUND – EMAIL SERVERS
• Purpose: Email servers manage the sending, receiving, and storage of emails using standardized

protocols.

• Common Examples:

• Postfix: A mail transfer agent (MTA) focusing on email delivery using SMTP.

• Dovecot: A mail delivery agent (MDA) for handling mailbox storage and retrieval with IMAP and

POP3.

• Challenges:

• High resource demands for full-featured implementations.

• Complexity in securing protocols and managing user authentication.

5/52

BACKGROUND

• Related Work: Apache, Nginx, Postfix, and Dovecot dominate the field but are complex,

resource-heavy, and lack modularity.

• Challenges and Improvements: Addressed inefficiencies by developing lightweight,

single-file servers with modular, core protocol-focused functionality.

• Prior Work: Initial implementation offered HTTP support and asynchronous handling

providing a foundation for the enhancements I worked on.

6/52

IMPLEMENTATION – PRELIMINARY WORK

• MailSite – HELP Command Implementation

• Added the parsing for Help command which will display usage of the various supported commands.

• Helped to grasp the architecture and core functionality of the existing server.

• Implementation of Routes with WebSite Server:

• Developed routing system for web traffic.

• Set up index.php for controlling request handling and route management.

• Resulted in a fully functional routing system allowing navigation to different web pages.

• HTTP/2 Detection:

• Developed method to detect whether incoming requests used HTTP/1.1 or HTTP/2.

• Inspected encrypted traffic to determine protocol and routed accordingly for proper handling of

each protocol.

7/52

IMPLEMENTATION – PRELIMINARY WORK

• Conversion of HTTP/1.1 to HTTP/2:

• Implemented HTTP/1.1 to HTTP/2 frame conversion, including Frame, HeaderFrame, and

DataFrame classes.

• Focused on decoding frame headers and handling payload using binary-to-hex conversion.

• Established a foundation for complex HTTP/2 features like framing layer and header compression.

GET /doc/test.html HTTP/1.1

Host: www.test101.com

Accept: image/gif, image/jpeg, */*

Content-Length: 35

bookId=12345&author=paulo+Coehlo

[Frame 1] => 00 00 87 01 20 00 00 49 FF EB 6E 5E 9A 37 E4 83 D8 23 C5 A9

5D 73 C7 A3 2E DC B0 7B 04 8A 95 28 5F 8D D8 D7 5C 30 F4 D1 07 B0 5F 93

7E 3B FA 65 E7 D2 ED 1D 36 EC A9 1B F9 F4 83 D8 3B F7 EF 77 4C BC FA

63 86 37 63 DF B6 A0 E3 C7 97 87 48 3D 83 4E DC 39 F2 DF 9F 4E 6B 20 D3

B7 0E 7C B7 EA E1 97 3D 90 55 7D 55 0F 7E EE 99 77 74 B6 66 5D D9 FA 68

83 D8 33 D6 02

[Frame 2] => 00 00 20 00 A0 00 00 49 FF C5 BF 7E B9 39 3D C7 2C F4 D6 6C

3D 7A 68 DF CB DE 18 7A EC DF 5C 3D F9 74 6C 6F

8/52

IMPLEMENTATION – PRELIMINARY WORK

9/52

IMPLEMENTATION – LARGE SCALE IMPROVEMENTS

1. Secure handling

2. Binary framing layer

• Frame class, Padding, Priority, Flags and Frame factory

3. Hpack implementation

• Static and dynamic table, Indexing schemes, Huffman encoding, Encoding and Decoding

4. WebSite integration

5. Mail server commands implementation

10/52

IMPLEMENTATION – SECURE HANDLING

• Establishing secure connections focuses on encryption protocols and certificate

management to ensure data privacy and integrity.

• The server is configured using socket programming in PHP to implement secure

connections with ALPN (Application-Layer Protocol Negotiation).

• SSL is enabled, and the server context is initialized with certificates, private keys, peer

verification settings, and supported ALPN protocols.

• For development, self-signed certificates and self-generated private keys are used, with

peer verification disabled as the server runs locally.

• Self-signed certificates and keys are created with the SSL command-line tool and stored

in .pem files, ensuring compatibility with secure protocols and platforms.

11/52

IMPLEMENTATION
BINARY FRAMING
LAYER

12/52

IMPLEMENTATION – FRAME CLASS

• The Frame class is the core class in HTTP/2's

binary framing layer, acting as the base for all

specific frame types.

• It manages the shared structure and

functionality common to all frame types,

simplifying frame management in the

protocol.

• A key responsibility is handling the 9-byte

frame header, which contains essential

metadata like frame length, type, flags, and

stream identifier.

Length (24)

Type (8) Flags (8)

R Stream Identifier (31)

Frame Payload

13/52

IMPLEMENTATION – FRAME CLASS

14/52

IMPLEMENTATION – PADDING, PRIORITY AND FLAGS

• Flag Class: Represents individual flags in HTTP/2 frames, encapsulating the flag's name and bit value. It

provides a constructor for initializing flags, ensuring clear and consistent flag usage in the protocol.

• Flags Class: Manages a collection of flags for HTTP/2 frames, enabling addition, removal, and validation.

It includes methods like add(), discard(), and contains(), along with __toString() for a human-readable

representation of active flags.

• Padding Trait: Handles padding in HTTP/2 frames, ensuring correct frame size alignment. It includes

methods like serializePaddingData() and parsePaddingData() to add or extract padding based on the

'PADDED' flag, crucial for proper frame structure.

• Priority Class: Manages the HTTP/2 PRIORITY frame, dealing with stream dependencies, weight, and

exclusivity. It provides methods to serialize and parse priority data, helping optimize resource allocation

and data flow for improved performance.

15/52

IMPLEMENTATION – FRAME FACTORY

• FrameFactory uses the Factory pattern to dynamically create

frame objects based on their type number, enhancing flexibility

and extensibility.

• It maps frame type numbers to corresponding frame classes,

such as DataFrame, HeaderFrame, and PriorityFrame,

simplifying frame management.

• The factory decouples frame creation from other parts of the

system, making it easier to maintain and extend, including

adding custom frames.

• It supports various HTTP/2 frame types, including DataFrame,

HeaderFrame, SettingsFrame, and others, each serving specific

roles in the protocol.

16/52

IMPLEMENTATION – FRAMING LAYER CLASSES

Frame

HeaderFrame DataFrame SettingsFrame WindowUpdate RstStream Priority Ping GoAway Continuation PushPromise

Encodes

headers of

the

request in

compresse

d format.

Encodes

the actual

payload.

Encodes

all

parameter

s for

config.

Increases

stream /

window

capacity.

Used to

terminate

a stream

abruptly

in case of

errors.

Adjusts

stream

priorities.

Measures

latency of

the

connection

Used to

gracefully

close the

connectio

n.

Continues

large

header

blocks.

Promises

server

push

resources

17/52

IMPLEMENTATION – HPACK IMPLEMENTATION

• HPACK is the compression format used in HTTP/2 for

headers.

• Its primary purpose is to reduce the size of HTTP header

data, improving speed and efficiency in communication.

• HPACK uses two main techniques:

• Huffman coding for literal strings and

• indexing for common headers.

• The implementation involves static and dynamic tables for

header indexing, alongside Huffman encoding to minimize

overhead.

Key Value

Host www.test.com

Accept
image/gif,

image/jpeg, */*

Content-Length 35

18/52

IMPLEMENTATION – STATIC
AND DYNAMIC TABLES

• Static Table: Predefined set of common HTTP

header fields.

• Dynamic Table: Stores headers added during

runtime for efficient reuse.

• This implementation defines a ‘headers_table’:

• Combination of both tables

• First 61 entries are populated with the static table

in the constructor

• ‘max_table_size’ to tune memory utilization

• FIFO eviction policy

Index Header Name Header Value

1 :authority (empty)

2 :method GET

3 :method POST

4 :path /

5 :path /index.html

61 www-authenticate (empty)

62 -- --

63

64

19/52

IMPLEMENTATION – INDEXING SCHEMES

• There are two types of indexing schemes:

• Indexed

• Literal

• These schemes utilize the headers_table to compress and decompress header fields.

• The table serves as the core data structure, with each indexing scheme modifying the

table in different ways.

• Each header field (key, value pair) is encoded into binary with the starting bits

representing its bit pattern.

20/52

IMPLEMENTATION – INDEXED HEADER FIELDS

• Identifies an entry in the

table.

• An indexed header field starts

with a 1-bit pattern, followed

by the index of the matching

header field

0 1 2 3 4 5 6 7

1 Index

21/52

IMPLEMENTATION – LITERAL HEADER FIELDS

• Literal header fields consist of key-value pairs where the value is explicitly provided (literal).

• The key can either be retrieved from an index or encoded as a literal string.

• Literal strings are encoded using Huffman encoding or ASCII-hex representation.

• There are three forms of literal header field representations defined:

• With indexing: The header field is added to the dynamic table for future reference.

• Without indexing: The header field is transmitted without being added to the dynamic table.

• Never indexed: The header field is explicitly marked to never be added to the dynamic table,

ensuring privacy or security.

22/52

IMPLEMENTATION – LHF WITH INCREMENTAL
INDEXING

INDEXED NAME

0 1 2 3 4 5 6 7

0 1 Index

H Value Length

Value string

NEW NAME

0 1 2 3 4 5 6 7

0 1 0

H Name length

Name String (Length octets)

H Value Length

Value String (Length octets)

23/52

IMPLEMENTATION – LHF WITHOUT INDEXING

INDEXED NAME

0 1 2 3 4 5 6 7

0 0 0 0 Index

H Value Length

Value string

NEW NAME

0 1 2 3 4 5 6 7

0 0 0 0 0

H Name length

Name String (Length octets)

H Value Length

Value String (Length octets)

24/52

IMPLEMENTATION – LHF NEVER INDEX

INDEXED NAME

0 1 2 3 4 5 6 7

0 0 0 1 Index

H Value Length

Value string

NEW NAME

0 1 2 3 4 5 6 7

0 0 0 1 0

H Name length

Name String (Length octets)

H Value Length

Value String (Length octets)

25/52

IMPLEMENTATION –
HPACK
COMPRESSION
WORKFLOWS

26/52

IMPLEMENTATION

HPACK ENCODING
WORKFLOW

27/52

IMPLEMENTATION

HPACK DECODING
WORKFLOW

28/52

IMPLEMENTATION – HUFFMAN ENCODING

• The Huffman code is used for encoding string literals, specifically in HTTP headers.

• Generated from statistical analysis of a large sample of HTTP headers.

• Canonical form of Huffman code with modifications to ensure that no symbol has a

unique code length.

• Utilizes buffer matching at every bit during the encoding process.

29/52

IMPLEMENTATION – HUFFMAN ENCODING EXAMPLE

Input
Huffman codes
per character

Concatenation
and padding

Chunks to hex

text/html

30/52

IMPLEMENTATION – HUFFMAN ENCODING EXAMPLE

Input
Huffman codes
per character

Concatenation
and padding

Chunks to hex

Character Huffman Code

t 01001

e 00101

x 1111001

/ 011000

h 100111

m 101001

l 101000 31/52

IMPLEMENTATION – HUFFMAN ENCODING EXAMPLE

Input
Huffman codes
per character

Concatenation
and padding

Chunks to hex

010010010111110010100101100010011101001101001101000

01001001 01111100 10100101 10001001 11010011 01001101 00011111

32/52

IMPLEMENTATION – HUFFMAN ENCODING EXAMPLE

Input
Huffman codes
per character

Concatenation
and padding

Chunks to hex

01001001 01111100 10100101 10001001 11010011 01001101 00011111

49 7C A5 89 D3 4D 1F

33/52

IMPLEMENTATION – HUFFMAN ENCODING EXAMPLE

Input
Huffman codes
per character

Concatenation
and padding

Chunks to hex

Result: Huffman encoding chosen due to higher compression efficiency.

Metric Hex Encoding Huffman Encoding

Final Encoded Output 74 65 78 74 2F 68 74 6D 6C 49 7C A5 89 D3 4D 1F

Compression Length 9 bytes 7 bytes

34/52

IMPLEMENTATION – HUFFMAN DECODING EXAMPLE

Input
Hex to
binary

Buffer
matching

Result

25b650c3cbbab87f

35/52

IMPLEMENTATION – HUFFMAN DECODING EXAMPLE

Input
Hex to
binary

Buffer
matching

Result

25 b6 50 c3 cb ba b8 7f

0010 0101 1011 0110 0101 0000 1100 0011 1100 1011 1011 1010 1011 1000 0111 1111

36/52

IMPLEMENTATION – HUFFMAN DECODING EXAMPLE

Decoded character: c (ASCII: 99)

Current Buffer Match Found?

0 No

00 No

001 No

0010 No

00100 Yes

Buffer
Decoded

Character
ASCII

00100 c 99

101101 u 117

101100 r 114

101000 l 108

011000 / 47

011110 8 56

010111 . 46

011101 7 55

010111 . 46

00001 1 49

Input
Hex to
binary

Buffer
matching

Result

37/52

IMPLEMENTATION – HUFFMAN DECODING EXAMPLE

Input
Hex to
binary

Buffer
matching

Result

curl/8.7.1

NOTE: Padding detected and removed: 111111

38/52

IMPLEMENTATION – INTEGRATION INTO WEBSITE

• Till now, we discussed

1. Secure handling

2. Binary framing layer (Frame class, Padding, priority, flags and, Frame factory)

3. Hpack implementation (Static and dynamic table, Indexing schemes, Huffman encoding, Encoding, Decoding)

• Now, we will go through the integration of these into Website and cover the overall flow for frame

parsing.

• After a TCP connection is established with a new client, the frame parsing flow occurs in 2 phases:

1. Connection Preface

2. Active Connection

• Until the connection is closed by client.

39/52

40/52

IMPLEMENTATION – INTEGRATION

41/52

EXPERIMENTS

• Experiment 1: Analyzing the setup process

• Experiment 2: Measuring Response Time

• Experiment 3: Measuring Total Time for Request

• Experiment 4: Header Compression

• Experiment 5: Apache BenchMark Results

42/52

EXPERIMENT - ANALYZING THE SETUP PROCESS

Metric NGINX WebSite

Number of Steps Required 10 5

Time Taken for Installation 20 minutes 5 minutes

Space Utilized 2.6 MB 145 KB

43/52

EXPERIMENT - MEASURING RESPONSE TIME

Metric Nginx WebSite

Response time 0.068991s 0.088829s

• For most web applications and

the specific use cases this

server was built for, especially

those with low traffic or casual

use, a 0.02-second difference

can be deemed negligible.

• Illustrations on the right depict

one of the sample

observations. The test was run

several times to ensure

reliability of results.

44/52

EXPERIMENT - MEASURING CONNECTION TIME

Metric Nginx WebSite

Connection time (avg) 0.000413 0.000387

• Results showed minute

variations between the

connection times of both

servers with the average as

shown on the right.

• Screenshot shows one of the

runs of the command used for

measuring the connection

time.

45/52

EXPERIMENT - HEADER COMPRESSION

Metric Original Compressed

Size of sample headers 1 104 bytes 30 bytes

Size of sample headers 2 255 bytes 169 bytes

Size of sample headers 3 2339 bytes 702 bytes

46/52

EXPERIMENT – APACHE BENCHMARKING

• Test Configuration

• Total Requests: 1000

• Concurrency Level: 10

• Server: localhost, port 8080

• SSL/TLS Protocol: TLSv1.2 with ECDHE-

RSA-AES128-GCM-SHA256

Metric Value

Requests Completed 999 (99.9% success rate)

Failed Requests 0

Total Time Taken 18.628 seconds

Requests per Second (mean) 53.63 requests/sec

Time per Request (mean) 186.467 ms

Transfer Rate 15.03 Kbytes/sec

Connection Times

Minimum Connection Time 38 ms

Mean Connection Time 78 ms

Maximum Connection Time 97 ms

Median Connection Time 77 ms

47/52

RESULTS

• Installation Efficiency: The project server outperforms Nginx in installation time, steps and space. This highlights the

project’s simplicity and efficiency.

• Response Time: Similar scores are observed. Both servers have low latency, suitable for lightweight applications.

• Compression Performance: Hpack implementation shows significant compression efficiency with a marked reduction in

byte size (e.g., from 2339 to 702 bytes), demonstrating the server’s ability to minimize data transfer for better performance .

• Request Handling: The project’s performance closely matches Nginx’s, but the fewer failed requests suggest that the

implementation is reliable and suitable for high-traffic scenarios with minor tweaks.

• Connection Times: Connection times for both servers are within a reasonable range, with the project showing a median

connection time of 77 ms, comparable to NGINX’s 78 ms, indicating efficient network handling and minimal delays.

48/52

CONCLUSION

• Efficiency: The project proves to be a lightweight and efficient alternative to complex servers, with fast setup, competitive

response times, and strong compression rates. Further performance improvements can be done but is reliable for niche

applications and educational use.

• Projects' Strengths: The project demonstrates its potential as an alternative to traditional, resource-heavy servers like

Apache and Nginx. The project’s single-file, minimalist design makes it highly suitable for modern web and email traffic handling

with simplicity and ease of integration.

• Contributions and Features: Key enhancements, including HTTP/2 support, secure handling mechanisms, have significantly

improved the project’s functionality, security, and efficiency.

• Improved Communication Efficiency: The inclusion of HTTP/2 with header compression and Huffman encoding boosted

performance, reducing latency and improving overall communication efficiency.

• Real-World Applicability: The project confirms its ability to efficiently handle traffic while maintaining a small footprint and

minimal dependencies, making it suitable for educational purposes, embedded applications, and real-world scenarios.

49/52

FUTURE WORK

• Scalability and Expansion: The foundation laid in this project enables future growth, allowing the

server framework to scale with evolving communication demands. Such as, customized HTTP/2 frames

(allowed as per RFC).

• Enhanced Protocol Support: Future work can include the implementation of additional modern

protocols, such as QUIC or HTTP/3, to further improve performance and capabilities.

• Optimization for Production Use: Further optimization of resource management, load balancing, and

fault tolerance to make the project suitable for high-demand production environments.

• Educational Tools and Documentation: Expanding the educational use aspect by creating

comprehensive documentation and tools to help students and developers understand server operations.

50/52

REFERENCES

1. Apache Software Foundation. (n.d.). Apache HTTP Server Version 2.4 Documentation. Retrieved December 4, 2024, from https://httpd.apache.org/docs/.

2. Nginx. (n.d.). Nginx documentation. Retrieved December 4, 2024, from https://nginx.org/en/docs/

3. Dent, Kyle D. Postfix: The Definitive Guide: A Secure and Easy-to-Use MTA for UNIX. (“Postfix: The Definitive Guide: A Secure and Easy-to-Use MTA for UNIX ...”) O'Reilly

Media, Inc., 2003. Postfix Overview.

4. Dovecot. (n.d.). Dovecot documentation. Retrieved December 4, 2024, from https://doc.dovecot.org/

5. Hildebrandt, Ralf, and Patrick Koetter. The Book of Postfix: State-of-the-Art Message Transport. No Starch Press, 2005.

6. Belshe, M., Peon, R., & Thomson, M. (2015). Hypertext transfer protocol version 2 (HTTP/2) (RFC 7540). Internet Engineering Task Force. Retrieved December 4, 2024, from

https://www.rfc-editor.org/rfc/rfc7540

7. Fielding, R., Gettys, J., Mogul, J., Frystyk, H., Masinter, L., Leach, P., & Berners-Lee, T. (1999). Hypertext Transfer Protocol -- HTTP/1.1 (RFC 2616). Internet Engineering Task

Force (IETF). Retrieved December 4, 2024, from https://datatracker.ietf.org/doc/html/rfc2616

8. Klensin, J. (2008). Simple Mail Transfer Protocol (RFC 5321). Internet Engineering Task Force. Retrieved December 4, 2024, from https://datatracker.ietf.org/doc/html/rfc5321

9. Crispin, M. (2003). Internet message access protocol - version 4rev1 (RFC 3501). Internet Engineering Task Force. Retrieved December 4, 2024, from

https://datatracker.ietf.org/doc/html/rfc3501

51/52

THANK YOU!

52/52

	Slide 1: Building Lean, Standalone Web Servers and Routing Engines
	Slide 2: Contents
	Slide 3: Introduction
	Slide 4: Background – WEB servers
	Slide 5: Background – email servers
	Slide 6: Background
	Slide 7: Implementation – Preliminary Work
	Slide 8: Implementation – Preliminary Work
	Slide 9: Implementation – Preliminary Work
	Slide 10: Implementation – Large Scale Improvements
	Slide 11: Implementation – Secure handling
	Slide 12: Implementation binary framing layer
	Slide 13: Implementation – frame CLASS
	Slide 14: Implementation – frame CLASS
	Slide 15: Implementation – PADding, priority and flags
	Slide 16: Implementation – frame factory
	Slide 17: Implementation – Framing layer classes
	Slide 18: Implementation – Hpack Implementation
	Slide 19: Implementation – static and dynamic tables
	Slide 20: Implementation – Indexing schemes
	Slide 21: Implementation – indexed header fields
	Slide 22: Implementation – literal header fields
	Slide 23: Implementation – LHF with incremental indexing
	Slide 24: Implementation – LHF without indexing
	Slide 25: Implementation – LHF never index
	Slide 26: Implementation – HPACK COMPRESSION workflows
	Slide 27: Implementation HPACK ENcoding workflow
	Slide 28: Implementation HPACK DEcoding workflow
	Slide 29: Implementation – Huffman encoding
	Slide 30: Implementation – Huffman encoding EXAMPLE
	Slide 31: Implementation – Huffman encoding EXAMPLE
	Slide 32: Implementation – Huffman encoding EXAMPLE
	Slide 33: Implementation – Huffman encoding EXAMPLE
	Slide 34: Implementation – Huffman encoding EXAMPLE
	Slide 35: Implementation – Huffman DEcoding EXAMPLE
	Slide 36: Implementation – Huffman DEcoding EXAMPLE
	Slide 37: Implementation – Huffman DEcoding EXAMPLE
	Slide 38: Implementation – Huffman DEcoding EXAMPLE
	Slide 39: Implementation – Integration into website
	Slide 40
	Slide 41: Implementation – integration
	Slide 42: Experiments
	Slide 43: Experiment - Analyzing the setup process
	Slide 44: Experiment - Measuring Response Time
	Slide 45: Experiment - Measuring connection Time
	Slide 46: Experiment - Header Compression
	Slide 47: Experiment – Apache Benchmarking
	Slide 48: Results
	Slide 49: Conclusion
	Slide 50: Future Work
	Slide 51: References
	Slide 52: Thank you!

