
BUILDING LEAN, STANDALONE WEB SERVERS, AND ROUTING ENGINES

1

BUILDING LEAN, STANDALONE WEB SERVERS, AND ROUTING ENGINES

PROJECT REPORT

Presented to

Dr. Chris Pollett

Department of Computer Science

San Jose State University

In Partial Fulfillment

Of the Requirements for the Class

CS 297

By

Ajita Shrivastava

Fall 2023

BUILDING LEAN, STANDALONE WEB SERVERS, AND ROUTING ENGINES

2

ABSTRACT

Scalability, optimization, and rapid development are among the primary concerns in web

application development. This project introduces a collection of single-file, low-dependency,

pure PHP servers and routing engines that have adopted an event-driven, asynchronous I/O

approach. Currently comprising two server classes – WebSite and GopherSite – the project can

function seamlessly within traditional servers like Apache, nginx, or lighttpd, or operate

independently as standalone servers for applications utilizing its routing capabilities. The server

is implemented to be request event-driven, supporting asynchronous I/O for efficient web traffic

handling. In response to the increasing complexity of email setups and the reliance on external

software, this research endeavors to develop single-file, low-dependency, pure PHP servers and

routing engines implementing SMTP and IMAP protocols. The aim is to simplify email server

configurations, minimize external software dependencies, and democratize the process of setting

up email servers. Creating lightweight servers using PHP ensures ease of integration into diverse

projects while maintaining robustness. Thus, redefining the landscape of server technology,

providing a user-friendly and efficient solution to email server management.

BUILDING LEAN, STANDALONE WEB SERVERS, AND ROUTING ENGINES

3

TABLE OF CONTENTS

I. Introduction ... 4

II. Deliverable I: Implementation of routes with atto servers ... 6

III. Deliverable II: Conversion of HTTP 1.1 to HTTP/2 .. 9

IV. Deliverable III: Additional feature implementation: HELP Command 9

V. Deliverable IV: HTTP/2 Detection... 13

VI. Conclusion .. 15

References... 17

BUILDING LEAN, STANDALONE WEB SERVERS, AND ROUTING ENGINES

4

I. INTRODUCTION

In the current global landscape, where web application development stands as a

cornerstone of digital interaction, the imperatives of scalability, optimization, and swift

development have become paramount. Imagine the internet as a vast network of highways, and

web applications as the cars navigating through. This project introduces another kind of road

system - think of it as efficient pluggable highways. These highways, i.e. single file PHP servers,

are designed to manage web traffic smoothly and quickly. They're like magical paths that help

websites by providing a small yet efficient PHP server. But that's not all – this project also

tackles another challenge: emails. Setting up email servers can be like solving a puzzle with too

many pieces. The project simplifies this puzzle, making it easier for everyone to set up and

manage their email servers. It's like giving you a user-friendly tool to handle your emails without

needing a tech expert. Ultimately, this project serves as a versatile micro framework, ensuring a

streamlined experience for developers to use under traditional servers like Apache, nginx, or

lighttpd.

This report consists of four sections, each detailing one of the completed deliverables

from this semester. Following these sections are the conclusion and future work. Each section

elaborates on the deliverable's aim, the solution approach, and the results achieved. Like any

research project, the first deliverable serves as an exercise to comprehend the existing technology

and gain familiarity with the various aspects of this project. It entails creating routes using the

web server to understand the structure and functioning of the server. The second deliverable

provides a comprehensive understanding of the project's next phase: the transition from HTTP

BUILDING LEAN, STANDALONE WEB SERVERS, AND ROUTING ENGINES

5

1.1 to HTTP/2. Here, a simple program is developed to illustrate the conversion of a given HTTP

1.1 request into an HTTP/2 binary request format. The third deliverable introduces a new feature

to the existing platform—middleware priority and ordering. Implemented as modular functions

within the web server class, this addition enhances the project's capabilities to prioritize and

order the execution of middleware functions. The fourth deliverable delves into extraction of the

negotiated protocol. The implementation involves attempting to connect to a server to determine

the protocol negotiated between the client and server for further communication.

In essence, this project and its deliverables establish a foundation of knowledge on the

subject, provide an understanding of the features, and foster comfort of working on the project.

This inherently charts the course for future project implementation. Finally, the section on future

work outlines a direction for the future implementation of the project.

BUILDING LEAN, STANDALONE WEB SERVERS, AND ROUTING ENGINES

6

II. DELIVERABLE 1: IMPLEMENTATION OF ROUTING WITH ATTO SERVER

The primary goal of this deliverable is to create a seamless system for directing web

traffic within the Atto Server. By configuring routes in the index.php file, we aim to enable the

server to display differsnt web pages, providing a practical understanding of its operational

dynamics.

In setting up this routing system, we began by crafting the index.php file. This file acts as

the central control for defining how incoming requests should be handled and directed to specific

pages. The code written in this file establishes the groundwork for effective routing.

Subsequently, running the server was a crucial step. By navigating to the folder containing the

index.php file and executing the command php index.php, we ensured that the server was up and

running, actively listening on port 8000.

To observe the routing in action, users simply needed to open their web browser and visit

http://localhost:8000. This direct interaction with the main page provided a tangible

demonstration of how the server manages different routes.

The successful implementation of these measures yielded a fully functional routing

system within the Atto Server. The main page can be accessed through http://localhost:8000, and

from there, navigate to various web pages, each associated with a distinct route as shown in the

below screenshots.

BUILDING LEAN, STANDALONE WEB SERVERS, AND ROUTING ENGINES

7

Figure 1: Results of the main page displaying the routes

Bio Page Route

 $test->get('/bio', function() { ... });

Figure 2: Results of the bio link route

BUILDING LEAN, STANDALONE WEB SERVERS, AND ROUTING ENGINES

8

Blog Page Route

 $test->get('/blog', function() { ... });

Figure 3: Results of the project link route

Proposal Page Route

 $test->get('/proposal', function() { ... });

Figure 4: Results of the proposal link route

BUILDING LEAN, STANDALONE WEB SERVERS, AND ROUTING ENGINES

9

III. DELIVERABLE 2: CONVERSION OF HTTP1.1 TO HTTP/2

This deliverable involves the development of a program to convert an HTTP 1.1 request

into the binary format of HTTP/2, offering insights into the conversion process. The program

comprises three primary steps.

In the first step, the format is transformed by adding necessary headers and assigning

their values. This involves extracting key components of the request, such as 'method', 'path',

'protocol', 'headers', and 'body'. Two functions contribute to this process:

http1_request_parse($request_string) parses the request to create an array, and

http1_to_http2_hex($request_array) replaces extracted parts with the new format.

Following the new format, a request in HTTP/2 includes headers with binary values

assigned to them. The createHeadersFrame($request_array, $lastFrame) function generates a

frame for these headers. For example, the conversion of frame types is tabulated, with each type

assigned a specific hexadecimal value.

The subsequent function, createDataFrame($request_array), creates a frame for the data

stored in the original request by converting it into key-value pairs. This ensures the appropriate

fitting into the HTTP/2 format.

BUILDING LEAN, STANDALONE WEB SERVERS, AND ROUTING ENGINES

10

Finally, each frame is converted into binary, simplifying the process and facilitating

further analysis. This comprehensive conversion process provides a clear understanding of how

an HTTP 1.1 request evolves into the binary format of HTTP/2.

BUILDING LEAN, STANDALONE WEB SERVERS, AND ROUTING ENGINES

11

BUILDING LEAN, STANDALONE WEB SERVERS, AND ROUTING ENGINES

12

Figure 5: Results of the conversion program

BUILDING LEAN, STANDALONE WEB SERVERS, AND ROUTING ENGINES

13

IV. DELIVERABLE 3: ADDITIONAL FEATURE IMPLEMENTATION

In this deliverable, the implementation of the HELP command feature in MailSite.php is

achieved. This feature enables the server to provide assistance to clients by offering detailed

information about available commands. The HELP command does not affect the core

functionalities of MailSite, such as the reverse-path buffer, forward-path buffer, or the mail data

buffer. It can be invoked by clients at any point during communication. The HELP command's

response follows a structured format, starting with a header indicating the beginning of available

commands. It then lists each command along with its corresponding description, concluding with

an end marker. The implementation involves several steps:

The first step involves creating a JSON file named 'cmds.json' that contains a list of all

commands and their descriptions. This file format is chosen for its suitability in storing key-

value pair information. Next, the 'parseHelp' function is implemented. This function reads the

'cmds.json' file, decodes its contents, and formats them into a printable string. It handles any file-

related errors that may occur during the process. The 'parseHelp' function is then integrated into

the 'parseRequest' function, which is responsible for parsing client requests. The response

generated by 'parseHelp' is added to the 'out_stream' for transmission to the client. Lastly, the

'processRequestStreams' function is updated to accommodate the HELP command. Proper

checks are implemented to handle the new command, and the server's response, including the

HELP information, is included in the 'out_stream' and returned to the client.

BUILDING LEAN, STANDALONE WEB SERVERS, AND ROUTING ENGINES

14

Overall, the addition of the HELP command feature enhances the usability and user

experience of MailSite, providing clients with valuable assistance and improving communication

between the client and server. Below are some illustrations of the commands json file and the

results.

Figure 6: Results of the HELP command invoked

BUILDING LEAN, STANDALONE WEB SERVERS, AND ROUTING ENGINES

15

V. DELIVERABLE 4: HTTP/2 IDETECTION

This deliverable entails the development of a PHP program aimed at establishing a

connection with a server and retrieving the negotiated protocol between the client and server.

The ‘negotiated protocol extraction’ plays a vital role in the project as it aims to eventually

support all versions of HTTP. This part will help determine the appropriate responses

accordingly.

The initial step involves the creation of a TCP/IP socket using PHP's socket functions,

enabling a channel for communication. The program tries to establish a connection to the

designated server through the utilization of the socket_connect() function. This connection

attempt either successfully establishes communication channels or prompts an error message in

the event of connection failure.

Upon successfully establishing a connection, the program proceeds to extract the

negotiated protocol from the handshake packets exchanged during the initial communication

between the client and server. This extraction process entails dispatching a request to the server

and meticulously capturing the protocol information encapsulated within the handshake packets.

Through methodical dissection and analysis of the handshake protocol, the program discerns the

mutually agreed-upon protocol designated for subsequent interactions between the client and

server.

By systematically executing these procedures, the PHP program achieves its fundamental

objective of connecting to the server and retrieving the negotiated protocol. This accomplishment

serves as a foundation for facilitating seamless and efficient communication channels between

BUILDING LEAN, STANDALONE WEB SERVERS, AND ROUTING ENGINES

16

the client and server entities, thereby fostering enhanced interoperability and data exchange

capabilities across network environments.

Figure 7: Results of the detection program

BUILDING LEAN, STANDALONE WEB SERVERS, AND ROUTING ENGINES

17

VI. CONCLUSION

In conclusion, the progression of this project has been instrumental in advancing the

realm of web application development and email server management. The development of

single-file, low-dependency, pure PHP servers and routing engines, exemplified by WebSite and

GopherSite, has ushered in a new era of scalability, optimization, and rapid development in web

environments. By embracing an event-driven, asynchronous I/O approach, these servers offer

developers unparalleled flexibility in managing web traffic within both traditional server setups

and standalone applications.

Additionally, the project's exploration into email server management represents a

significant leap forward in simplifying the complexities associated with setting up and managing

email servers. Through the implementation of SMTP and IMAP protocols within single-file PHP

servers, the project aims to streamline email server configurations, reduce external software

dependencies, and democratize the process of email server management.

Each deliverable achieved throughout the project's lifecycle has played a crucial role in

propelling its objectives forward. From laying the groundwork with atto servers to navigating the

intricacies of detecting HTTP/2 and negotiating protocols, each task has contributed to a deeper

understanding of server technology and its practical implications for web development.

As the project looks towards the future, the insights gleaned from these milestones

provide invaluable guidance for continued development and innovation. With a steadfast focus

on meeting the evolving needs of developers and users alike, this project stands poised to shape

the future of web application development and email server management.

BUILDING LEAN, STANDALONE WEB SERVERS, AND ROUTING ENGINES

18

REFERENCES

[1] Riabov, Vladimir V. "SMTP (Simple Mail Transfer Protocol)." River College, 2005.

[2] Mullet, Dianna, and Kevin Mullet. Managing Imap. O'Reilly Media, Inc., 2000.

[3] Gourley, David, and Brian Totty. HTTP: The Definitive Guide. O'Reilly Media, Inc.,

2002.

[4] Pollard, Barry. HTTP/2 in Action. Simon and Schuster, 2019.

[5] Belshe, Mike, Roberto Peon, and Martin Thomson. "Hypertext Transfer Protocol

Version 2 (HTTP/2)." No. rfc7540. 2015. RFC Manual.

[6] Langley, Adam, et al. "The QUIC Transport Protocol: Design and Internet-Scale

Deployment." Proceedings of the Conference of the ACM Special Interest Group on

Data Communication, 2017.

[7] Carlucci, Gaetano, Luca De Cicco, and Saverio Mascolo. "HTTP over UDP: An

Experimental Investigation of QUIC." Proceedings of the 30th Annual ACM

Symposium on Applied Computing, 2015.

[8] Dent, Kyle D. Postfix: The Definitive Guide: A Secure and Easy-to-Use MTA for

UNIX. O'Reilly Media, Inc., 2003. Postfix Overview.

[9] Hildebrandt, Ralf, and Patrick Koetter. The Book of Postfix: State-of-the-Art Message

Transport. No Starch Press, 2005.

	ABSTRACT
	I. INTRODUCTION
	II. DELIVERABLE 1: IMPLEMENTATION OF ROUTING WITH ATTO SERVER
	Bio Page Route
	Blog Page Route
	Proposal Page Route

	III. DELIVERABLE 2: CONVERSION OF HTTP1.1 TO HTTP/2
	IV. DELIVERABLE 3: ADDITIONAL FEATURE IMPLEMENTATION
	V. DELIVERABLE 4: HTTP/2 IDETECTION
	VI. CONCLUSION
	REFERENCES

