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Introduction

● Yioop is an open source web search engine

● It uses result cache to improve response time

● Current implementation uses dynamic cache based on Marker Algorithm 

● A dynamic cache based on Marker or LRU algorithm captures short-term trends 

● The goal of the project is to explore different caching strategies and implement them in Yioop



Yioop Search Engine Architecture

● Yioop search engine consists of three main components: Crawler, Indexer, and Query Processor.

● Crawler

● Responsible for discovering and gathering information from web pages.

● QueueServer process queues URLs to be fetched.

● Fetcher process fetches webpages from the internet.

● Indexer

● Processes fetched pages to extract textual content.

● Builds an inverted index, which aids in processing queries.

● Generates textual summaries of the extracted information.

Figure 1: Yioop Architecture



Yioop Search Engine Architecture

● Query Processor

● Evaluates user queries for search results.

● Cleaning and preprocessing the query through techniques like case folding, stemming, and stopword 

elimination.

● Utilizes a result cache to check if the results for a query are already computed.

● If results are available in the cache, they are returned without further processing, saving time and resources.

● If not available, the processor retrieves posting lists for each term in the query from the inverted index.

● Utilizes a ranking algorithm to determine the most relevant documents.



Preliminary Work

● To implement new cache system in Yioop, following algorithms were evaluated

○ Static-Dynamic Cache

○ Machine Learning Static-Dynamic Cache

○ Static-Semistatic-Dynamic Cache

○ Static-Topic-Dynamic Cache

● Experiments were performed to evaluate each of these algorithms 

● Following slides give more information about each of these algorithms



Static-Dynamic Cache

● Dynamic cache adapts well to the short-term trend in queries

● It does not adapt well in presence of both short-term and long-term trends in queries

● Static-Dynamic cache divides cache into two segments 

○ Static segment adapts to the long-term trends in the queries

○ Dynamic segment adapts to the short-term trends in the queries  

● Static Cache - Modeled as offline cache allocation problem

● Dynamic Cache - Modeled as online admission-eviction problem

● Query is first checked in static cache and if not present, it is checked against the dynamic cache

Static Cache

Dynamic Cache

Figure 2: Static-Dynamic Cache



Machine Learning Static-Dynamic Cache

● Dynamic cache implemented using classical machine learning models.

● Goal of machine learning models is to accurately predict the next appearance of the query i.e. “IAT_NEXT”.

● Features extracted from the query.

● Models cache admission problem as a classification problem to classify whether query should be admitted or not.

● Models cache eviction problem as a regression problem to predict the “IAT_NEXT” value. It removes value having 

highest “IAT_NEXT”.



Dataset

● AOL Query logs contains 3 months of query logs generated in year 2006 on the AOL search engine.

● It contains total 36 million queries

● Dataset contains raw queries, anonymized user ids, timestamp, url clicked by the user, and the rank of the item.

Table 1: AOL Query log Dataset 



Query Features

● Based on the available data, a subset of features from original paper were selected 

Table 2: Query features



Experiment and results

● Regression model was fitted on the dataset of 1M queries

● Training data was highly skewed, over 80% data had IAT_NEXT value 

less 1% of total data

● Log binning was applied to remove the skewness of the data

● The model achieved the hit rate of 28.33% for cache size of 100 frames 

and 4K total number of queries

● LRU and Optimal offline algorithm achieved 52.6% and 57.27% for the 

same data.

● Will requires lot of tuning and feature engineering to achieve acceptable 

results

IAT_NEXT value before log binning

IAT_NECT value after log binning

Figure 4:

Figure 4:



Static-Semistatic-Dynamic Cache

● Adds Semistatic layer to Static-Dynamic cache framework 

● Based on observations, day time popular queries are different than night time popular queries. 

● Categorizes queries into day-time popular, night-time popular, and all-time popular queries

● Static segment contains all-time popular queries

● Semi-static segment toggles between day-time and night-time popular queries

● Dynamic cache implemented with LRU caching algorithm

● Query is checked in each cache in order - static cache, semi-static cache, 

and dynamic cache

Figure 5: Static-Semistatic-Dynamic cache



Experiment and Results

● Query categorization was done using AOL query logs

● Query which appeared more than 80% of time in day-time were categorized was day-time and similarly for night-

time queries

● If night day-time or night-time, it was termed all-time query 

● Training was performed using 1.5M queries

● Results were evaluated on other set of 1.5 M queries with cache size of  300 frames.



Experiment and Results

● The algorithm has acceptable performance. Only 1.2% lower than Static-Dynamic cache.

● There was no scope for improvement in this approach

● Requires large cache space and as day-time night-time both requires persistence, it was not selected.

Table 3: Hit rate in percentages (%) for 1.5M queries and cache size of 300 entries 



Static-Topic-Dynamic Cache 

● Different topics for e.g. weather, tv shows are accessed more frequently during different time of days and have 

different access patterns

● Static-Dynamic cache does not adapt well to these type of access patterns

● Static-Topic-Dynamic cache adds Topical layer over Static-Dynamic cache to capture such trends

● Topic is assigned to queries using some topic model

● Each topic has own instance of cache managed by a certain

policy

● Query is checked in each cache in order - static cache, 

topical cache, and dynamic cache

Figure 6: Static-Topic-Dynamic Cache



Topic Modeling

● Topic Modeling is a popular technique in NLP to extract topics from text

● Extracts latent topics without unsupervised learning algorithms

● Popular algorithms

● Latent Semantic Analysis (LSA)

● Latent Dirichlet Allocation (LDA)

● k-means Algorithm



Experiments and Results

● Experiment was performed on 10K queries and cache size of 100 and 200 frames

● For topic modeling LDA model was used

● LDA model was trained using 1.2M news headline dataset

● Each topical cache instance was governed using LRU cache

● Dynamic cache was implemented using LRU cache



Experiment and Results

● Static-Dynamic cache performance was close to Static-Dynamic cache

● There was scope for improvement by training the model using actual search engine text data 

● Queries can be enriched using user’s clicked URL data

Table 4: Hit rate in percentages (%) for 10K queries and cache size of 100 and 200 entries 



Implementation of New Cache in Yioop

● Choice of caching algorithm depends on the use case

● Yioop is used of variety of purposes for e.g. general purpose crawling, crawling set of web pages or crawling user’s 

website

● Old caching system in Yioop was tightly coupled with Marker Algorithm

● The new system gives Yioop flexibility to switch between different cache types 

● Following cache type are added in Yioop [Demo 1]

○ Least Recently Used

○ Static-Dynamic Cache

○ Static-Topic-Dynamic Cache



Cache System Design

● Object Oriented Design of new cache 

system

● Flexible design to switch internal 

implementation of Static-Dynamic and 

Static-Dynamic cache 

Figure 7: Class diagram of Cache System in Yioop



Implementation Static-Dynamic Cache

● “StaticDynamicCache” class is implemented in Yioop

● Static cache is populated using most frequent queries in search engine logs 

● Dynamic Cache segment uses instance of LRU cache



Implementation of Topical Cache

● “TopicalCache” class is implemented in Yioop

● It uses k-means clustering topic model to extract topic from cache

● k-means algorithm is an unsupervised machine learning model used of clustering

● k-means algorithm can also be used as topic model where centroids of k-means acts as latent topics

● k-means algorithm can be trained to  classify text into k number of topics

● Each of these topic have corresponding cache governed by “LRUCache”



Dataset

● To train k-means algorithm a text data was created using Yioop’s indexer

● As queries are usually 2-3 words long, it needs to be enriched with additional contextual information

● Contextual information was added using user’s clicked URL and webpages extracted from Yioop’s crawl data

● Yioop summarizer’s text was added to the query to enrich the queries for training

● As Yioop does not get lot of traffic, instead of Yioop’s query logs, AOL query logs were used

● Total of 10K clicked URL queries were used for dataset creation

● Thus a dataset was created using combination of Yioop’s crawl data and AOL query logs 



Word Embeddings

● Machine learning algorithms requires text to be represented as vectors

● In Yioop, CountVectorizer is implemented to convert terms into vectors 

● CountVectorizer first creates vocabulary from text corpus

● Assigns each word a unique index in a vector 

● Increments count of index of each term in the text

● To reduce the cost of memory and cpu, all vectors are implemented as sparse vectors in Yioop



Training k-means algorithm

● To train k-means algorithm, each document in the training dataset was converted into the vector 

● Each vector was appended to form a document-term matrix

● k=10 centroids were selected to train the algorithm

● To avoid training and creating vocabulary, serialization and deserialization capability is added to both 

KMeansClustering model as well as CountVectorizer



Results of k-means algorithm

Figure 8: Restaurants Figure 9: Holidays

Figure 10: Technology



Implementation of Static-Topic-Dynamic Cache

● “StaticTopicDynamicCache” is implemented in Yioop  

● Uses “TopicalCache” for topical segment of it’s cache

● Static and dynamic segments are implemented with “StaticCache” and “LRUCache” 

● “StaticTopicDynamicCache” first checks whether cache is present in static cache.

● If it is not present it checks in topical Cache.

● If it is not present it checks with dynamic cache.

● If it is found in any segment, result hit is returned



Evaluation of Different Cache Types in Yioop

● To evaluate the performance of cache, “CacheMetricWrapper” class is 

implemented

● It delegates get and put calls to the internal cache implementation and 

tracks performance based on the output

● Currently it tracks numbers of hits and misses and hit rate

● The performance was evaluated on 5k, 10k, and 20k queries

● Cache sizes were varied between 200-500 entries

Figure 11: CacheMetricWrapper class diagram



Results

Table 5: Hit rate in percentages (%) for 5K queries and cache size between 200-500 entries 



Results

Table 6: Hit rate in percentages (%) for 10K queries and cache size between 200-500 entries 



Results

Table 7: Hit rate in percentages (%) for 20K queries and cache size between 200-500 entries 



Results

Figure 12: Hit rate in percentages (%) for 5K queries and cache size between 200-500 entries 



Results

Figure 13: Hit rate in percentages (%) for 10K queries and cache size between 200-500 entries 



Results

Figure 14: Hit rate in percentages (%) for 20K queries and cache size between 200-500 entries 



Conclusion

● Static-Topic-Dynamic Cache performs consistently better than Marker cache and LRU cache 

● Performance of Static-Dynamic cache is slightly better than Static-Topic-Dynamic cache

● Static-Dynamic cache shows improvement of 2.3% over Marker cache

● Static-Topic-Dynamic shows improvement of 1.17% over Marker cache

● Users have ability to switch between the implementations based on the requirement



Future Work

● Currently topic model is trained on AOL query logs, it can be changed to use Yioop’s impression data  

● Instead of k-means algorithm, other topic models like LDA can be also be implemented 

● Topic models also exist which are particularly designed to extract topic from small texts

● Other vectorization method like tf-idf can be used instead of count vectorizer

● Customization feature can also be added to Yioop to customize individual instances of Static-Dynamic and 

Static-Topic-Dynamic cache
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