
Robust Cache System for Web
Search Engine Yioop

Presented by -

Rushikesh Padia

Department of Computer Science

Committee:

Dr. Chris Pollett (Advisor)

Dr. Ben Reed

Dr. Robert Chun

Every millisecond counts!

Agenda

◄ Introduction

◄ Preliminary Work

◄ Implementation Details

◄ Results

◄ Conclusion

◄ Future work

Introduction

● Yioop is an open source web search engine

● It uses result cache to improve response time

● Current implementation uses dynamic cache based on Marker Algorithm

● A dynamic cache based on Marker or LRU algorithm captures short-term trends

● The goal of the project is to explore different caching strategies and implement them in Yioop

Yioop Search Engine Architecture

● Yioop search engine consists of three main components: Crawler, Indexer, and Query Processor.

● Crawler

● Responsible for discovering and gathering information from web pages.

● QueueServer process queues URLs to be fetched.

● Fetcher process fetches webpages from the internet.

● Indexer

● Processes fetched pages to extract textual content.

● Builds an inverted index, which aids in processing queries.

● Generates textual summaries of the extracted information.

Figure 1: Yioop Architecture

Yioop Search Engine Architecture

● Query Processor

● Evaluates user queries for search results.

● Cleaning and preprocessing the query through techniques like case folding, stemming, and stopword

elimination.

● Utilizes a result cache to check if the results for a query are already computed.

● If results are available in the cache, they are returned without further processing, saving time and resources.

● If not available, the processor retrieves posting lists for each term in the query from the inverted index.

● Utilizes a ranking algorithm to determine the most relevant documents.

Preliminary Work

● To implement new cache system in Yioop, following algorithms were evaluated

○ Static-Dynamic Cache

○ Machine Learning Static-Dynamic Cache

○ Static-Semistatic-Dynamic Cache

○ Static-Topic-Dynamic Cache

● Experiments were performed to evaluate each of these algorithms

● Following slides give more information about each of these algorithms

Static-Dynamic Cache

● Dynamic cache adapts well to the short-term trend in queries

● It does not adapt well in presence of both short-term and long-term trends in queries

● Static-Dynamic cache divides cache into two segments

○ Static segment adapts to the long-term trends in the queries

○ Dynamic segment adapts to the short-term trends in the queries

● Static Cache - Modeled as offline cache allocation problem

● Dynamic Cache - Modeled as online admission-eviction problem

● Query is first checked in static cache and if not present, it is checked against the dynamic cache

Static Cache

Dynamic Cache

Figure 2: Static-Dynamic Cache

Machine Learning Static-Dynamic Cache

● Dynamic cache implemented using classical machine learning models.

● Goal of machine learning models is to accurately predict the next appearance of the query i.e. “IAT_NEXT”.

● Features extracted from the query.

● Models cache admission problem as a classification problem to classify whether query should be admitted or not.

● Models cache eviction problem as a regression problem to predict the “IAT_NEXT” value. It removes value having

highest “IAT_NEXT”.

Dataset

● AOL Query logs contains 3 months of query logs generated in year 2006 on the AOL search engine.

● It contains total 36 million queries

● Dataset contains raw queries, anonymized user ids, timestamp, url clicked by the user, and the rank of the item.

Table 1: AOL Query log Dataset

Query Features

● Based on the available data, a subset of features from original paper were selected

Table 2: Query features

Experiment and results

● Regression model was fitted on the dataset of 1M queries

● Training data was highly skewed, over 80% data had IAT_NEXT value

less 1% of total data

● Log binning was applied to remove the skewness of the data

● The model achieved the hit rate of 28.33% for cache size of 100 frames

and 4K total number of queries

● LRU and Optimal offline algorithm achieved 52.6% and 57.27% for the

same data.

● Will requires lot of tuning and feature engineering to achieve acceptable

results

IAT_NEXT value before log binning

IAT_NECT value after log binning

Figure 4:

Figure 4:

Static-Semistatic-Dynamic Cache

● Adds Semistatic layer to Static-Dynamic cache framework

● Based on observations, day time popular queries are different than night time popular queries.

● Categorizes queries into day-time popular, night-time popular, and all-time popular queries

● Static segment contains all-time popular queries

● Semi-static segment toggles between day-time and night-time popular queries

● Dynamic cache implemented with LRU caching algorithm

● Query is checked in each cache in order - static cache, semi-static cache,

and dynamic cache

Figure 5: Static-Semistatic-Dynamic cache

Experiment and Results

● Query categorization was done using AOL query logs

● Query which appeared more than 80% of time in day-time were categorized was day-time and similarly for night-

time queries

● If night day-time or night-time, it was termed all-time query

● Training was performed using 1.5M queries

● Results were evaluated on other set of 1.5 M queries with cache size of 300 frames.

Experiment and Results

● The algorithm has acceptable performance. Only 1.2% lower than Static-Dynamic cache.

● There was no scope for improvement in this approach

● Requires large cache space and as day-time night-time both requires persistence, it was not selected.

Table 3: Hit rate in percentages (%) for 1.5M queries and cache size of 300 entries

Static-Topic-Dynamic Cache

● Different topics for e.g. weather, tv shows are accessed more frequently during different time of days and have

different access patterns

● Static-Dynamic cache does not adapt well to these type of access patterns

● Static-Topic-Dynamic cache adds Topical layer over Static-Dynamic cache to capture such trends

● Topic is assigned to queries using some topic model

● Each topic has own instance of cache managed by a certain

policy

● Query is checked in each cache in order - static cache,

topical cache, and dynamic cache

Figure 6: Static-Topic-Dynamic Cache

Topic Modeling

● Topic Modeling is a popular technique in NLP to extract topics from text

● Extracts latent topics without unsupervised learning algorithms

● Popular algorithms

● Latent Semantic Analysis (LSA)

● Latent Dirichlet Allocation (LDA)

● k-means Algorithm

Experiments and Results

● Experiment was performed on 10K queries and cache size of 100 and 200 frames

● For topic modeling LDA model was used

● LDA model was trained using 1.2M news headline dataset

● Each topical cache instance was governed using LRU cache

● Dynamic cache was implemented using LRU cache

Experiment and Results

● Static-Dynamic cache performance was close to Static-Dynamic cache

● There was scope for improvement by training the model using actual search engine text data

● Queries can be enriched using user’s clicked URL data

Table 4: Hit rate in percentages (%) for 10K queries and cache size of 100 and 200 entries

Implementation of New Cache in Yioop

● Choice of caching algorithm depends on the use case

● Yioop is used of variety of purposes for e.g. general purpose crawling, crawling set of web pages or crawling user’s

website

● Old caching system in Yioop was tightly coupled with Marker Algorithm

● The new system gives Yioop flexibility to switch between different cache types

● Following cache type are added in Yioop [Demo 1]

○ Least Recently Used

○ Static-Dynamic Cache

○ Static-Topic-Dynamic Cache

Cache System Design

● Object Oriented Design of new cache

system

● Flexible design to switch internal

implementation of Static-Dynamic and

Static-Dynamic cache

Figure 7: Class diagram of Cache System in Yioop

Implementation Static-Dynamic Cache

● “StaticDynamicCache” class is implemented in Yioop

● Static cache is populated using most frequent queries in search engine logs

● Dynamic Cache segment uses instance of LRU cache

Implementation of Topical Cache

● “TopicalCache” class is implemented in Yioop

● It uses k-means clustering topic model to extract topic from cache

● k-means algorithm is an unsupervised machine learning model used of clustering

● k-means algorithm can also be used as topic model where centroids of k-means acts as latent topics

● k-means algorithm can be trained to classify text into k number of topics

● Each of these topic have corresponding cache governed by “LRUCache”

Dataset

● To train k-means algorithm a text data was created using Yioop’s indexer

● As queries are usually 2-3 words long, it needs to be enriched with additional contextual information

● Contextual information was added using user’s clicked URL and webpages extracted from Yioop’s crawl data

● Yioop summarizer’s text was added to the query to enrich the queries for training

● As Yioop does not get lot of traffic, instead of Yioop’s query logs, AOL query logs were used

● Total of 10K clicked URL queries were used for dataset creation

● Thus a dataset was created using combination of Yioop’s crawl data and AOL query logs

Word Embeddings

● Machine learning algorithms requires text to be represented as vectors

● In Yioop, CountVectorizer is implemented to convert terms into vectors

● CountVectorizer first creates vocabulary from text corpus

● Assigns each word a unique index in a vector

● Increments count of index of each term in the text

● To reduce the cost of memory and cpu, all vectors are implemented as sparse vectors in Yioop

Training k-means algorithm

● To train k-means algorithm, each document in the training dataset was converted into the vector

● Each vector was appended to form a document-term matrix

● k=10 centroids were selected to train the algorithm

● To avoid training and creating vocabulary, serialization and deserialization capability is added to both

KMeansClustering model as well as CountVectorizer

Results of k-means algorithm

Figure 8: Restaurants Figure 9: Holidays

Figure 10: Technology

Implementation of Static-Topic-Dynamic Cache

● “StaticTopicDynamicCache” is implemented in Yioop

● Uses “TopicalCache” for topical segment of it’s cache

● Static and dynamic segments are implemented with “StaticCache” and “LRUCache”

● “StaticTopicDynamicCache” first checks whether cache is present in static cache.

● If it is not present it checks in topical Cache.

● If it is not present it checks with dynamic cache.

● If it is found in any segment, result hit is returned

Evaluation of Different Cache Types in Yioop

● To evaluate the performance of cache, “CacheMetricWrapper” class is

implemented

● It delegates get and put calls to the internal cache implementation and

tracks performance based on the output

● Currently it tracks numbers of hits and misses and hit rate

● The performance was evaluated on 5k, 10k, and 20k queries

● Cache sizes were varied between 200-500 entries

Figure 11: CacheMetricWrapper class diagram

Results

Table 5: Hit rate in percentages (%) for 5K queries and cache size between 200-500 entries

Results

Table 6: Hit rate in percentages (%) for 10K queries and cache size between 200-500 entries

Results

Table 7: Hit rate in percentages (%) for 20K queries and cache size between 200-500 entries

Results

Figure 12: Hit rate in percentages (%) for 5K queries and cache size between 200-500 entries

Results

Figure 13: Hit rate in percentages (%) for 10K queries and cache size between 200-500 entries

Results

Figure 14: Hit rate in percentages (%) for 20K queries and cache size between 200-500 entries

Conclusion

● Static-Topic-Dynamic Cache performs consistently better than Marker cache and LRU cache

● Performance of Static-Dynamic cache is slightly better than Static-Topic-Dynamic cache

● Static-Dynamic cache shows improvement of 2.3% over Marker cache

● Static-Topic-Dynamic shows improvement of 1.17% over Marker cache

● Users have ability to switch between the implementations based on the requirement

Future Work

● Currently topic model is trained on AOL query logs, it can be changed to use Yioop’s impression data

● Instead of k-means algorithm, other topic models like LDA can be also be implemented

● Topic models also exist which are particularly designed to extract topic from small texts

● Other vectorization method like tf-idf can be used instead of count vectorizer

● Customization feature can also be added to Yioop to customize individual instances of Static-Dynamic and

Static-Topic-Dynamic cache

References

[1] R. Baeza-Yates, A. Gionis, F. Junqueira, V. Murdock, V. Plachouras, and F. Silvestri, “The Impact of Caching on Search Engines,”

in Proceedings of the 30th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, 2007,

pp. 183–190. doi: 10.1145/1277741.1277775.

[2] E. P. Markatos, “On caching search engine query results,” Computer Communications, vol. 24, no. 2, pp. 137–143, 2001, doi:

https://doi.org/10.1016/S0140-3664(00)00308-X.

[3] T. Fagni, R. Perego, F. Silvestri, and S. Orlando, “Boosting the performance of Web search engines: Caching and prefetching

query results by exploiting historical usage data.,” ACM Trans. Inf. Syst., vol. 24, pp. 51–78, Jan. 2006.

[4] R. Ozcan, I. S. Altingovde, and Ö. Ulusoy, “Static Query Result Caching Revisited,” 2008, pp. 1169–1170. doi:

10.1145/1367497.1367710.

[5] R. Ozcan, I. S. Altingovde, and Ö. Ulusoy, “Cost-Aware Strategies for Query Result Caching in Web Search Engines,” ACM Trans.

Web, vol. 5, no. 2, May 2011, doi: 10.1145/1961659.1961663.

References

[6] T. Kucukyilmaz, B. B. Cambazoglu, C. Aykanat, and R. Baeza-Yates, “A Machine Learning Approach for Result Caching in Web

Search Engines,” Inf. Process. Manage., vol. 53, no. 4, pp. 834–850, Jul. 2017, doi: 10.1016/j.ipm.2017.02.006.

[7] T. Kucukyilmaz, “Exploiting temporal changes in query submission behavior for improving the search engine result cache

performance,” Information Processing & Management, vol. 58, no. 3, p. 102533, 2021, doi:

https://doi.org/10.1016/j.ipm.2021.102533.

[8] I. Mele, N. Tonellotto, O. Frieder, and R. Perego, “Topical result caching in web search engines,” Information Processing &

Management, vol. 57, no. 3, p. 102193, 2020, doi: https://doi.org/10.1016/j.ipm.2019.102193.

[9] G. Pass, A. Chowdhury, and C. Torgeson, “A picture of search,” Jun. 2006. doi: 10.1145/1146847.1146848.

[10] X. Jin and J. Han, “K-Means Clustering,” in Encyclopedia of Machine Learning, C. Sammut and G. I. Webb, Eds. Boston, MA:

Springer US, 2010, pp. 563–564. doi: 10.1007/978-0-387-30164-8_425.

Thank you!
Questions?

	Slide 1: Robust Cache System for Web Search Engine Yioop
	Slide 2
	Slide 3: Agenda
	Slide 4: Introduction
	Slide 5: Yioop Search Engine Architecture
	Slide 6: Yioop Search Engine Architecture
	Slide 7: Preliminary Work
	Slide 8: Static-Dynamic Cache
	Slide 9: Machine Learning Static-Dynamic Cache
	Slide 10: Dataset
	Slide 11: Query Features
	Slide 12: Experiment and results
	Slide 13: Static-Semistatic-Dynamic Cache
	Slide 14: Experiment and Results
	Slide 15: Experiment and Results
	Slide 16: Static-Topic-Dynamic Cache
	Slide 17: Topic Modeling
	Slide 18: Experiments and Results
	Slide 19: Experiment and Results
	Slide 20: Implementation of New Cache in Yioop
	Slide 21: Cache System Design
	Slide 22: Implementation Static-Dynamic Cache
	Slide 23: Implementation of Topical Cache
	Slide 24: Dataset
	Slide 25: Word Embeddings
	Slide 26: Training k-means algorithm
	Slide 27: Results of k-means algorithm
	Slide 28: Implementation of Static-Topic-Dynamic Cache
	Slide 29: Evaluation of Different Cache Types in Yioop
	Slide 30: Results
	Slide 31: Results
	Slide 32: Results
	Slide 33: Results
	Slide 34: Results
	Slide 35: Results
	Slide 36: Conclusion
	Slide 37: Future Work
	Slide 38: References
	Slide 39: References
	Slide 40: Thank you!

