A machine learning approach for result caching in web search engines

Tayfun Kucukyilmaz, B. Barla Cambazoglu, Cevdet Aykanat, Ricardo Baeza-Yates

Presented By: Rushikesh Padia

Overview

- Proposes machine learning based approaches for Static, Dynamic, Static-Dynamic Cache
- Proposes unifying framework which uses extensive set of features.
- Applies variety of models to evaluate impact of Hit Rate
- Static Cache modeling: Offline cache allocation problem
- Dynamic Cache modeling: Online Eviction Problem
- Uses classical ML models

Features

Туре	Feature	Description
Query	QUERY_LENGTH TERM_COUNT PROTOCOL_PRESENT DOMAIN_PRESENT MISSPELLED AVG_TERM_LENGTH PAGE_NUMBER QUERY_TIME	Number of characters in the query string Number of terms in the query string Presence of a protocol string in the query string Presence of a domain name in the query string Presence of misspelling Average number of characters in query terms Requested result page number Hour of the day the query was submitted
Session	USER_LOGGED_IN CTR CTR_TOP_ONE HIT_COUNT DAYTIME_COUNT TIME_COMPATIBLILTY	Whether the user is logged in or not Clickthrough rate Clickthrough rate for the top result Number of matching results Daytime query frequency Daytime/nighttime compatibility
Index	MIN_POSTING_COUNT MAX_POSTING_COUNT AVG_POSTING_COUNT	Number of postings for the rarest term Number of postings for the most common term Average posting list size of query terms
Term freq.	MIN_TERM_FREQ_MINUTE MAX_TERM_FREQ_MINUTE AVG_TERM_FREQ_MINUTE MIN_TERM_FREQ_HOUR MAX_TERM_FREQ_HOUR AVG_TERM_FREQ_HOUR MIN_TERM_FREQ_DAY MAX_TERM_FREQ_DAY AVG_TERM_FREQ_DAY	Min. query term freq. in the last one minute Max. query term freq. in the last one minute Avg. query term freq. in the last one hour Min. query term freq. in the last one hour Max. query term freq. in the last one hour Avg. query term freq. in the last one hour Min. query term freq. in the last one day Max. query term freq. in the last one day Avg. query term freq. in the last one day
Query freq.	QUERY_FREQ QUERY_FREQ_MINUTE QUERY_FREQ_HOUR QUERY_FREQ_DAY	Query frequency Query frequency in the last one minute Query frequency in the last one hour Query frequency in the last one day

Static Result Caching

- Baseline | Offline-LRU
- Baseline | MFU
- Baseline | QDEV (Query stability)
- Oracle | Theoretical Oracle (TO): Selects Most frequently used in test set
- Oracle | Practical Oracle (PO): Selects Most frequently used in test set which also appears in training set

Static Result Caching

Machine learned static caching (MLSC)

- Uses regression model to predict IAT-NEXT (next occurrence time)
- lower IAT_NEXT, earlier it will appear; higher the value, later it will appear.
- MLSC & Off-LRU are similar. Off-LRU uses training set frequencies, MLSC uses predicted frequencies of past queries
- Based on assumption, query carries characteristics markers which can be extracted by ML algorithms

Dynamic Result Caching

- Baseline | LRU
- Oracle | Belady: Clairvoyant algorithm or optimal algorithm
- Machine learned Dynamic Caching (MLDC): predicts IAT_NEXT for the queries
- Uses 2 classifier approach
 - Singleton Classifier: Predicts [0, 1] for singleton queries. Singleton queries are queries that appear only once.
 - Non-singleton Classifier: Fits regression model, where the class labels is IAT_NEXT

Dynamic Result Caching

- Approach 1: Use Singleton Classifier for admission, Non-singleton for eviction
- Approach 2: Uses linear combination of both classifier to take eviction decision
- Segmentation: Uses segmentation approach to prevent permanent pollution of cache

Static-Dynamic Cache

- Baseline | Static-Dynamic Cache (SDC)
- Oracle | SDC dynamic oracle | SDC-Belady
- Oracle | SDC static oracle | SDC-PO
- Proposed | MLSC+LRU / Off-LRU+MLDC
- Proposed | MLSDC

Dataset

- Yahoo 10 days data
- AOL query logs https://jeffhuang.com/search_query_logs/
- ML Algos MLP, pace regression, SVM, KNN, logistic regression, Gradient Boosted Decision Tree
- Best performance by GBDT

Reference

[1] T. Kucukyilmaz, B. B. Cambazoglu, C. Aykanat, and R. Baeza-Yates, "A machine learning approach for result caching in web search engines,â€□
Information Processing & Management, vol. 53, no. 4, pp. 834–850, 2017, doi: https://doi.org/10.1016/j.ipm.2017.02.006.