
ROBUST CACHE SYSTEM FOR WEB SEARCH ENGINE YIOOP

Robust Cache System for Web Search Engine Yioop

A Project Report

Presented to Dr. Chris Pollett

Department of Computer Science

San Jose State University

In Partial Fulfilment

of the Requirements for the Class

Fall 2022: CS 297

By

Rushikesh Padia

December 2022

ROBUST CACHE SYSTEM FOR WEB SEARCH ENGINE YIOOP

 i

ABSTRACT

 Caches are the most effective mechanism utilized by web search engines to optimize the

performance of search queries. Search engines employ caching at multiple levels to improve its

performance, for example, caching posting list and/or caching result set. Caching query results

reduces overhead of processing frequent queries and thus saves a lot of time and computing

power. Employing a good caching mechanism can significantly improve the performance of a

web search engine. Yioop is an open-source web search engine which utilizes result cache to

optimize searches. The current implementation utilizes single dynamic cache based on Marker’s

algorithm. Our goal is to improve the performance of cache in Yioop. In this report, we focus on

understanding Yioop Media Jobs and different caching mechanisms.

Keywords - Yioop, Web Search Engine, Result Caching, Result cache performance

ROBUST CACHE SYSTEM FOR WEB SEARCH ENGINE YIOOP

 ii

TABLE OF CONTENTS

I. INTRODUCTION .. 1

II. DELIVERABLE 1 – CACHE REFRESH MEDIA JOB .. 3

III. DELIVERABLE 2 – IMPLEMENT MACHINE LEARNING DYNAMIC CACHING ALGORITHM 5

IV. DELIVERABLE 3 – IMPLEMENT STATIC-TOPIC-DYNAMIC CACHE ALGORITHM .. 8

VI. CONCLUSION .. 12

REFERENCES ... 13

HIGH PERFORMANCE DISTRIBUTED FILESYSTEM BASED ON BLOCKCHAIN

1

I. INTRODUCTION

The most critical objective of a web search engine is to produce search results within a fraction

of a second. With the billions of pages currently present on the internet and the number still

exponential growing, it is crucial to employ efficient caching mechanisms to search queries. The

goal of caching is to reduce the response time by storing results of previously executed

operations. Most of the modern search engines caches data at multiple levels. Caching posting

lists, posting intersections, result sets are the most common approaches used for caching in web

search engine. Result caching is the highest-level caching which caches query and the

corresponding result. It reduces the overhead of processing the query. Thus, it is the most

efficient in reducing the response time of a search query.

The main problem of result caching is to detect which query to be cached while which one to

remove. These problems are called query admission problem and query eviction problem.

Several approaches are available to determine admission and eviction of the query. For e.g., LRU

admits every query while it evicts query which appeared least recently in the cache. Although

LRU is one the most widely used caching algorithms, it does not capture global long-term trends.

To capture these trends, static cache is often employed along with the dynamic cache [1]. Many

recent caching algorithms modify this framework to achieve better results.

Yioop, an open-source web search engine uses result cache to improve the performance of search

queries. It uses simple Marker’s algorithm based dynamic cache for caching query results. The

goal for this semester is to get familiarized with Yioop MediaJobs and evaluate three different

caching algorithms.

ROBUST CACHE SYSTEM FOR WEB SEARCH ENGINE YIOOP

 2

We are now going to discuss the organization of the rest of the report. In Deliverable 1, a

MediaJob was created to periodically refresh the cache. Deliverable 2 was the implementation of

the Machine Learning based dynamic caching algorithm. The algorithm used features extracted

from query log to take eviction decision. Deliverable 3 and 4 the caching algorithms that exploit

temporal locality of the query topic and the query respectively to populate the cache.

ROBUST CACHE SYSTEM FOR WEB SEARCH ENGINE YIOOP

 3

II. DELIVERABLE 1 – CACHE REFRESH MEDIA JOB

The goal of this deliverable was to get familiar with Yioop code base, analyze important classes and

methods related to Media Job. Along with this, implement a new Media Job to refresh cache with

popular queries. Currently Yioop has only a dynamic cache which is populated with popular queries

offline during the restart. To refresh the cache, a script has to be run manually. The top most popular

queries have been empirically decided and are based on past data. The dynamic contents are updated in

cache with execution of every search query.

Static-Dynamic Cache [1] is one of the most popular approaches and is widely used for benchmarking

the performance of cache implementations. Almost every state-of-the-art caching mechanism [2, 3]

employs some form of static and dynamic cache for storage. Static parts of these caches are refreshed

offline periodically while dynamic parts are updated online. To periodically refresh the cache, a Media

Job has been created. Media jobs are the processes that are scheduled to run periodically by Media

Updater of Yioop. Analysis of classes and methods of Media Job and Media Updater is shown in Table 1

and Table 2. Having cache refreshed automatically and periodically ensured that the cache is up to date

with popular queries.

CacheRefreshJob is a Media Job that is created to refresh the cache. It reads all the files present in the

folder “/cache/cache_queries” and one by one executes each query on the search engine. Search engine

caches these queries in the result cache according to the policy currently configured.

Thus, we analyzed the important classes and methods related to Media Jobs. Also, we have

implemented a Media Job to refresh the cache which will be helpful in the next semester to implement

any algorithm which require static cache to be populated periodically.

ROBUST CACHE SYSTEM FOR WEB SEARCH ENGINE YIOOP

 4

Classes Description

MediaJob It is a parent class for the Media Job to be executed. All jobs need to
extend this class and override callback methods to execute their
intended functionality.

MediaUpdater It is a class reponsible for executing and managing lifecycle of Media
Jobs

Table 1: Classes related to Media Job

Methods Description

init() Callback method called after constructor to initialize the job.
checkPrerequisites() Method that should returns true if media job has to be executed, false

otherwise.
nondistributedTasks() Method is called when Media Job is running in non-distributed mode.

Non-distributed version on task can be added in this method
prepareTasks() Method is responsible for preparing data for the tasks executed on

client machines in distributed mode. The method is executed on the
NameServer only.

getTasks() Client machines call this method on NameServer to get their data. This
method uses the output of prepareTask() method and send client its
indiavidual share of the data.

doTasks() The method to process the data fetched from getTasks() method. This
is called by MediaUpdater on each client after they complete
getTasks().

putTasks() Each client calls this method on the NameServer to store their
processed results on the NameServer

finishTasks() The method is called on the NameServer to complete the final
computation after all tasks are completed

Table 2: Description of methods of class MediaJob

ROBUST CACHE SYSTEM FOR WEB SEARCH ENGINE YIOOP

 5

III. DELIVERABLE 2 – IMPLEMENT MACHINE LEARNING DYNAMIC CACHING ALGORITHM

The goal of this deliverable is to implement a cache eviction policy based on the framework described in

the paper [4]. The paper proposes a machine learning based cache admission and eviction algorithm. In

this framework, a set of features are derived from query logs. The admission and eviction decision is

based on a machine learning model trained from these features. The paper proposes machine learning

models for both static and dynamic cache. Populating static cache has been modeled as an offline cache

allocation problem while the latter has been modeled as an online eviction problem.

To derive features from the query log, AOL [5] query logs were used. Table 3 shows the extracted

features. This subset of features was selected based on the availability of query logs and Yioop indexing

data structures. ‘IAT_NEXT’ is the ground truth value that represents the next time the same query

appears i.e., the number of queries between the next appearance of the query. The goal of the machine

learning model was to predict the IAT_NEXT value as close to the actual IAT_NEXT value. The query

having the highest IAT_NEXT value was evicted if the cache was full.

To create the features, queries were first cleaned. The query was converted to lowercase, stop words

were removed, and words were stemmed. Features were then extracted from the clean queries. The

key observation from the data was that the data was highly skewed. More than 80% of the data had an

IAT_NEXT value of less than 1% of the total data (Figure 1). To mitigate this issue, IAT_NEXT values were

binned using logarithmic binning. This reduced the effect of skewness in the data (Figure 2). A regression

model was fitted and evaluated on this data. The model achieved a hit rate of 28.33% for cache size of

100 and 4200 queries. While its counterpart LRU achieved the hit rate of 52.60% and optimal offline

algorithm - Belady’s algorithm achieved a 57.27% hit rate.

ROBUST CACHE SYSTEM FOR WEB SEARCH ENGINE YIOOP

 6

As the hit rate is significantly low, we can conclude that the performance of this algorithm is not suitable

for our implementation. Although the performance can be improved by adding more features but will

require lot of effort in fine tuning and feature engineering. Hence, this algorithm will not be considered

for the further development.

Feature Description

QUERY_HOUR Hour of the day, query was fired
LAST_MIN_FREQ Frequency of query in last minute
LAST_HOUR_FREQ Frequency of query in last hour
LAST_DAY_FREQ Frequency of query in last day
PAST_FREQ Total frequency of the query
IS_TIME_COMPAT Whether query is time compatible
QUERY_LENGTH Number of words in the query

Table 3: Features extracted from query logs

Figure 1: Distribution of IAT_NEXT values

ROBUST CACHE SYSTEM FOR WEB SEARCH ENGINE YIOOP

 7

Figure 2: Distribution of IAT_NEXT values after log binning

ROBUST CACHE SYSTEM FOR WEB SEARCH ENGINE YIOOP

 8

IV. DELIVERABLE 3 – IMPLEMENT STATIC-TOPIC-DYNAMIC CACHE ALGORITHM

The goal of this deliverable is to implement Static-Topic-Dynamic Cache (STDC) [2]. The given approach

refines the traditional Static-Dynamic Cache (SDC) to capture the temporal locality of the topic in query

streams. In SDC, static cache is populated periodically with the popular queries with assumption being

popular queries in past remains popular in future. The dynamic part of the cache using LRU strategy

captures the burst of short-term popular queries. The drawback of this approach is that it fails to

capture queries with long-term popularity. There are certain queries which are neither too popular to be

cached in static cache nor too frequent in short-term to be captured by dynamic cache. For instance,

queries for certain topics like weather can be popular in the morning and late in the evening but are not

popular in other parts of the day. To capture this temporal locality of the topic, topic cache is introduced

along with the static and the dynamic part.

Assigning topic to a query is a challenging part as queries are generally very short. To classify queries

correctly, queries are enriched with the search results. For this deliverable, queries are not enriched

with search results, instead a news dataset is used to train the Latent Dirichlet Allocation (LDA) model.

LDA model is an unsupervised statistical method to discover the hidden topic in the text. Given, k

different topic, it assigns individual scores between [0, 1] to each topic. The topic is assigned to the

query if the topic has maximum score and is greater than minimum threshold.

The topical cache has individual instances of cache of each topic. These cache instances can be LRU or

SDC. The size of each instance can be configured to be fixed or variable depending upon the popularity

of the topic. For this deliverable, we have evaluated STDC with both fixed sized (STDC) and variable size

ROBUST CACHE SYSTEM FOR WEB SEARCH ENGINE YIOOP

 9

(STDC) topic cache and compared its performance with traditional SDC, LRU and optimal offline

algorithm for 10K queries. The results are shown in Table 4.

The performance of this algorithm is significant improvement over the LRU baseline algorithm. The

algorithm improved the hit rate by 2% resulting in gap reduction of 12% with optimal Belady. Also,

compared to SDC, the performance is not significantly lower and can improved the better data set and

fine tuning the number of topic. Thus, we will further explore this algorithm in the next semester.

Cache Size Configuration Hit Rate

100 LRU 42.33
100 Belady 49.08
100 SDC(30-70) 43.35
100 STDC(30-50-20) 43.16
100 STDC-V(30-50-20) 43.10

200 LRU 44.49
200 Belady 49.81
200 SDC(15-85) 45.16
200 SDTC(15-50-35) 45.08
200 STDC-V(15-50-35) 45.01

Table 4: Result of STDC algorithm

ROBUST CACHE SYSTEM FOR WEB SEARCH ENGINE YIOOP

 10

V. Deliverable 4 – Implement Static-Semi-Static-Dynamic Cache

The goal of this deliverable is to implement Static-Semi-Static-Dynamic Cache (SSDC) [3]. The

previous paper STDC used dynamic cache to capture the temporal locality in cache while this

approach uses semi-static cache to capture the temporal locality. The key observation the

paper relied on was that daytime queries have higher submission rate during day while

nighttime queries have higher submission rate during night.

To capture the temporal query frequency variations, new attributes called normalized temporal

query frequency (NT-Freq) attributes were added to the queries. NT-Freq values are hourly

submission rate of the query i.e., total frequency of the query during a period divided by

number of hours in the period. NT-Freq attribute for daytime hours is calculated as total

frequency of query between 07:00 to 19:00 divided by 12. Similarly, nighttime NT-Freq is

calculated as frequency during other time of the day divided by 12. All time NT-Freq is

calculated as total frequency in period of 24 hours divided by 24.

SSDC utilizes semi-static cache along with traditional SD cache. The semi-static cache contains

daytime popular and nighttime popular queries corresponding to the time of the day. Daytime

and nighttime popular queries are calculated using training data. For this deliverable, training

was performed using 1.5 million queries and is tested on other 1.5 million queries with cache

size of 300. The cache size has been increased as SSDC approach is designed for large caches

only. The result of this model is shown in Table 5.

ROBUST CACHE SYSTEM FOR WEB SEARCH ENGINE YIOOP

 11

The hit rate of the algorithm is 1.2% lower than the SDC algorithm. It less than the performance

of STDC and has additional constraint of having large static cache. The algorithm is easy

implement and has a considerable performance but has a very little scope for fine tuning as

most of the parameters are fixed. Hence, it might not be considered in the next semester.

Cache Size Configuration Hit Rate

300 SDC(80-20) 56.65
300 SSDC(10-70-20) 55.76
300 SSDC(20-60-20) 55.95
300 SSDC(40-40-20) 56.21
300 SSDC(60-20-20) 55.94
300 SSDC(70-10-20) 56.56
300 SSDC(0-80-20) 55.46

Table 5: Results of SSDC algorithm

ROBUST CACHE SYSTEM FOR WEB SEARCH ENGINE YIOOP

 12

VI. CONCLUSION

In this semester, we got familiarized with the current caching mechanism and the code base of

Yioop. Additional components like MediaUpdater and MediaJobs were also analyzed and were

used to implement important functionality for future use in SD cache. Along with this, three

different caching algorithms were implemented and evaluated against real life AOL query log

data. SDC, STDC and SSDC did show promising results and were much more efficient than the

traditional LRU algorithm. Although the efficiency of the STDC was limited by lack of dataset

having enriched queries from search results, it still showed promising results. Fine tuning STDC

may increase its efficiency. Hence, we will explore it further in the next semester.

In the next semester, we will first fine tune the STDC model to improve its efficiency. Integrate

newly created cache implementation is Yioop. As current implementation is done in Python, it

has to be migrated to PHP as Yioop is written in PHP. Currently, Yioop does not have module to

track performance of cache. A new module to evaluate the performance of cache will be added.

The performance of cache will finally be tested using a newly integrated module in Yioop.

ROBUST CACHE SYSTEM FOR WEB SEARCH ENGINE YIOOP

 13

REFERENCES

[1] T. Fagni, R. Perego, F. Silvestri, and S. Orlando, “Boosting the Performance of Web Search

Engines: Caching and Prefetching Query Results by Exploiting Historical Usage Data,” ACM

Trans. Inf. Syst., vol. 24, no. 1, pp. 51–78, Jan. 2006, doi: 10.1145/1125857.1125859.

[2] I. Mele, N. Tonellotto, O. Frieder, and R. Perego, "Topical result caching in web search

engines", Information Processing & Management, vol. 57, no. 3, p. 102193, 2020, doi:

https://doi.org/10.1016/j.ipm.2019.102193.

[3] T. Kucukyilmaz, “Exploiting temporal changes in query submission behavior for improving

the search engine result cache performance,” Information Processing & Management, vol. 58,

no. 3, p. 102533, 2021, doi: https://doi.org/10.1016/j.ipm.2021.102533.

[4] T. Kucukyilmaz, B. B. Cambazoglu, C. Aykanat, and R. Baeza-Yates, "A machine learning

approach for result caching in web search engines," Information Processing & Management, vol.

53, no. 4, pp. 834-850, 2017, doi: https://doi.org/10.1016/j.ipm.2017.02.006.

[5] G. Pass, A. Chowdhury, and C. Torgeson, “A Picture of Search,” in Proceedings of the 1st

International Conference on Scalable Information Systems, 2006, pp. 1-es. doi:

10.1145/1146847.1146848.

https://doi.org/10.1016/j.ipm.2019.102193
https://doi.org/10.1016/j.ipm.2021.102533
https://doi.org/10.1016/j.ipm.2017.02.006

