
ENHANCING THE SECURITY OF YIOOP DISCUSSION BOARD

Enhancing the Security of Yioop Discussion Board

A Project Report

Presented to

Dr Chris Pollett

Department of Computer Science

San José State University

In Partial Fulfillment

Of the Requirements for the Class

CS 297

By

Prajna Gururaj Puranik

December 2022

ENHANCING THE SECURITY OF YIOOP DISCUSSION BOARD

i

ABSTRACT

Yioop is an open-source web portal that works as a search engine and a discussion board.

To function as a wiki system and as a discussion board, Yioop provides groups feature that

allows users to create, join and share content with each other. Such a system needs to store and

access data, so data security is an important concern. Apart from database security, Yioop

generates statistical data that needs to be protected. The security mechanism also covers access

restriction to the groups as well as the data shared among group members.

While Yioop has a security mechanism in place, the goal for this semester was to extend

it by implementing several security measures like differential privacy, secret sharing, and

homomorphic encryption. The main objective is to protect user data and make the portal more

secure. To that end, the project goals for this semester were to understand the existing security

concepts of Yioop as well as explore new encryption techniques that could make data sharing

more secure. These techniques will be incorporated in Yioop as part of the project for next

semester.

Keywords –Yioop, Security, Groups, Thread, Encryption, Differential Privacy, Secret

Sharing, Homomorphic Encryption

ENHANCING THE SECURITY OF YIOOP DISCUSSION BOARD

ii

TABLE OF CONTENTS

I. Introduction ... 1

II. Deliverable 1 ... 2

III. Deliverable 2 ... 4

IV. Deliverable 3 ... 7

V. Deliverable 4 ... 10

VI. Conclusion ... 8

References .. 14

ENHANCING THE SECURITY OF YIOOP DISCUSSION BOARD

1

I. INTRODUCTION

Data security is of critical importance in the current age of information. It is important to

protect data against threats like identity theft, data tampering etc. Web security is crucial for

preventing hackers from gaining access to confidential data. Without a proactive security policy,

web services run the risk of attacks and possible data leakage. This project focuses on enhancing

security measures of one such system – Yioop by implementing security systems like differential

privacy, secret sharing and homomorphic encryption.

Yioop is open-source software system that functions as a search engine and a social

platform with groups, discussion board and wiki. Users can create and join groups, start

discussions with other users in their groups, configure the rules of their groups to restrict access

to group members and so on. The groups can be made secure by turning on encryption for the

group and the group data can be hidden by turning on the differential privacy option. This option

uses the concept of differential privacy: a technique to protect a statistical database such that

sensitive data in the database can be protected while allowing useful information to be obtained

from the database. The goal of this project for this semester is to extend differential privacy

mechanism and implement two new encryption schemes that can potentially make Yioop more

secure.

The project for this semester was executed in two phases: the first phase deals with

understanding and implementing differential privacy. The second phase involves implementing

two encryption schemes. The two phases are split into four deliverables, each of which is

detailed in a separate section in this report. Deliverable 1 focuses on understanding the existing

differential privacy mechanism in Yioop while Deliverable 2 is an implementation of differential

privacy to mask the number of users in a group. Deliverable 3 involves implementing secret

sharing while deliverable 4 is homomorphic encryption implementation. The conclusion section

summarizes the work done this semester and discusses the future goals of the project

ENHANCING THE SECURITY OF YIOOP DISCUSSION BOARD

2

II. DELIVERABLE 1

The goal of the first deliverable is to understand the existing privacy mechanism in

Yioop. To achieve this, an encrypted group was created in Yioop, and the database was checked

to see whether group creation and addition of users, threads were reflected in the database

tables. This deliverable was instrumental in clarifying the security concepts already implemented

in Yioop.

The first finding of this deliverable was the concept of database encryption used to

protect the data in the Yioop database. Here, data is converted into ciphertext and stored it in the

database. This transformed data needs to be decrypted first before users can access it.

There are different techniques available for database encryption like external database

encryption, column level encryption, field level encryption, application-level encryption and so

on. Yioop uses application-level encryption and the key for data encryption and decryption is

used in an external database. The key is symmetric, generated by AES-256 encryption scheme.

This external database provides an additional layer of security. If an intruder gets access to the

main database, they will not be able to decrypt the data in the database without having access to

the external database. To make it more secure, we inject random values to the actual data every

time any database operation like insert, update etc. are performed.

Not all data inside a group needs to be encrypted since not all data is sensitive. We are

interested in encrypting the threads in the group and this includes encrypting the title and

description. Since it is selective encryption, column level encryption is used so that only the title

and description columns are encrypted/decrypted.

To verify these concepts, an encrypted group called ‘Deliverable1_Test’ was created and

users were added to this group as well as several threads. The objective was to find the affected

databases, query them to check if the group creation was reflected and if the appropriate tables

ENHANCING THE SECURITY OF YIOOP DISCUSSION BOARD

3

contain the added users and posts. Additionally, database had to be queried to check if thread

title and description were present in an encrypted form.

Figure 1 shows the presence of created group ‘Deliverable1_Test’ with group id=5 while

Figure 2 shows existence of posts added to the created group. Additionally, figure 3 shows that

title and description of threads are encrypted.

Figure 1: Query table to check if created group is present

Figure 2: Query table to check if posts created in the group are reflected

Figure 3: Check if title and description of threads are encrypted

ENHANCING THE SECURITY OF YIOOP DISCUSSION BOARD

4

III. DELIVERABLE 2

Deliverable 2 involves implementing differential privacy using the concepts learnt in the

previous deliverable. Differential privacy is used here to mask user statistics in Yioop i.e.,

number of users in groups. This deliverable ensures that Yioop is protected against statistical

attacks.

To understand differential privacy, we first define statistic as quantity computed from a

sample. A statistical database is said to protect privacy when it enables the user to learn

properties of the population, while protecting the privacy of the individuals in the sample.

Differential privacy is a mechanism that ensures that the risk to one’s privacy does not

substantially increase because of participating in a statistical database.

A randomized function K gives ε-differential privacy if for all data sets D1 and D2

differing on at most one element, and all S ⊆ Range(K),

Pr[K(D1) ∈ S] ≤ exp(ε) × Pr[K(D2) ∈ S]

where ε is a positive real number and S is a subset of image K is a set of all output

values that it might produce

A mechanism K that satisfies this definition addresses concerns that any participant

might have about the leakage of her personal information x: even if the participant removed her

data from the data set, no outputs (and thus consequences of outputs) would become

significantly more or less likely

The mechanism works by adding appropriately chosen random noise to the answer a =

f(X), where f is the query function and X is the database. Magnitude of the random noise is

chosen as a function of the largest change a single participant could have on the output to the

query function => sensitivity of the function

For f: D → Rd, the L1-sensitivity of f is: ∆f = max || f(D1) − f(D2) || for all D1, D2

differing in at most one element and D is the collection of datasets

ENHANCING THE SECURITY OF YIOOP DISCUSSION BOARD

5

The privacy mechanism (Kf for a query function f) computes f(X) and adds noise with a

scaled symmetric exponential distribution with variance σ2 in each component, described by

the density function:

Pr[Kf (X) = a] ∝ exp(−∥f(X) − a∥/σ)

For f: D → Rd, the mechanism Kf gives (∆f/σ)- differential privacy. For query strategy

F = {fρ: D → Rd}, the mechanism Kf gives (∆F/σ)-differential privacy.

This deliverable was executed by first identifying the existing code that calculates the

number of users in each group. Understanding how this user count is stored and fetched from

the database helps identify the point in the codebase where differential privacy function can be

called.

This functionality is part of the SocialComponent’s function getGroupUsersData, which

calls GroupModel’s countGroupUsers function to calculate the number of users per group in the

database. This is where noise needs to be added to prevent the actual user count from being

displayed. The next step is to add addDifferentialPrivacy function to the getGroupUsersData

function so that the number of users per count is fuzzified. This masked count of users is then

displayed.

There are three instances in the UI where the group user count is displayed. The root user

can see group count in the Edit Group section while a general user can see the group user count

when accessing information about the group. So, to test this deliverable, these three UI instances

need to be checked to ensure that the group user count is fuzzified. These three instances are

shown in Figure 4.

ENHANCING THE SECURITY OF YIOOP DISCUSSION BOARD

6

Figure 4: Differential Privacy implementation result

ENHANCING THE SECURITY OF YIOOP DISCUSSION BOARD

7

IV. DELIVERABLE 3

This deliverable consists of secret sharing encryption scheme implementation. Secret

sharing involves distributing a secret among a group such that no individual holds any

intelligible information about the secret. When a sufficient number of individuals combine their

shares, the secret can be reconstructed. An adversary without enough shares cannot reconstruct

the secret even with infinite time and computing capacity. We use (k, n) threshold scheme which

divides data D into n pieces D1, D2,,…, Dn such that:

• Knowledge of any k or more Di pieces makes D easily computable

• Knowledge of any k - 1 or fewer Di pieces leaves D completely undetermined, in the

sense that all its possible values are equally likely

This is especially useful in the management of cryptographic keys. Keeping the key in a

single, well-guarded location is unreliable and storing multiple copies of the key at different

locations could be dangerous. So, the best solution is (n, k) threshold scheme to keep the

encryption keys a secret. Threshold schemes are ideally suited to applications in which a group

of mutually suspicious individuals with conflicting interests must cooperate.

Polynomial interpolation is used to implement secret sharing. Assume that the data to be

encrypted is D, n is number of shares and k is threshold or the minimum number of shares

required to retrieve the secret. We create Di shares of the data by choosing a polynomial with

degree k-1 and encoding the secret as a coefficient of P. The polynomial is then evaluated to get

Di points as shares. The steps can be formally defined as follows:

• Select a random k-1-degree polynomial q(x) = a0 + a1(x) + a2(x2) +.... +ak-1(xk-1) in

which a0 = D.

• Evaluate: D1 = q (1) Di = q(i) Dn = q(n)

https://en.wikipedia.org/wiki/Secrecy

ENHANCING THE SECURITY OF YIOOP DISCUSSION BOARD

8

Given any subset of k of these Di values, we can find the coefficients of q(x) by

interpolation, and then evaluate D=q (0). Knowledge of just k - 1 of these values does not suffice

to calculate D.

Secret sharing can be implemented using integer arithmetic or finite field arithmetic.

Using integer arithmetic provides weak security wherein the attacker could possibly guess the

secret by solving algebraic equations. This problem can be solved by using finite field

arithmetic. The steps to be followed are:

Choose a prime number such that prime number is greater than number of

participants and prime number is greater than every coefficient, including the secret. The points

on the polynomial must also be calculated as (x, f(x) mod prime) instead of (x, f(x)). This prime

number is known but even with this information, attacker will not be able to stop guessing,

unlike integer arithmetic problem. (-prime.mx) is added to each equation. Subtraction of previous

equations with give prime (m1 - m2) because of mod and it becomes impossible to guess.

Encryption function is created using the approach outlined above. Special care must be

taken while decrypting the secret. If threshold number of shares are given, use Lagrange basis

polynomial equations to decrypt the secret.

If 1 point is given, find l0(x) = (x - x1)/ (x0 - x1) * (x - x2) / (x0 - x2)

If 2 points are given, find l1(x) in addition to l0(x) and so on

In general, the formula for interpolation is:

f(x) = ∑yj * lj(x)

Reconstruction of the secret involves finding the multiplicative modulo inverse of a

number. Extended GCD can be used for this purpose.

There are many advantages of using secret sharing scheme. The size of each piece does

not exceed the size of the original data. When k is kept fixed, Di pieces can be dynamically

added or deleted without affecting the other Di pieces. It is easy to change the Di pieces without

ENHANCING THE SECURITY OF YIOOP DISCUSSION BOARD

9

changing the original data. All we need is a new polynomial q(x) with the same free term. A

frequent change of this type can greatly enhance security. Secret sharing also wllows a

hierarchical scheme where number of pieces needed to determine the secret depends on their

importance.

The result of secret sharing implementation is shown below in Figure 5

Figure 5: Secret Sharing implementation result

ENHANCING THE SECURITY OF YIOOP DISCUSSION BOARD

10

V. DELIVERABLE 4

Deliverable 4 involves implementation of a homomorphic encryption scheme. The

methodology chosen for implementation is Paillier encryption, a partial homomorphic

encryption scheme.

Homomorphic encryption permits users to perform computations on encrypted data

without first decrypting it. This result is in an encrypted form When it is decrypted, result is

identical to that produced if the operations been performed on the unencrypted data.

Homomorphic encryption makes it possible to analyze or manipulate encrypted data without

revealing the data to anyone.

Just like other forms of encryption, homomorphic encryption uses a public key to encrypt

the data. Unlike other forms of encryption, it allows functions to be performed on the data while

it’s still encrypted. Then, the individual with the matching private key can access the

unencrypted data after the functions and manipulation are complete. This allows the data to be

and remain secure and private even when someone is using it.

Homomorphic encryption has huge potential in areas with sensitive personal data such as

in financial services or healthcare when the privacy of a person is paramount. Another bonus of

homomorphic encryption is that unlike other encryption models in use today, it is safe from

getting broken by quantum computers.

There are three main types of homomorphic encryption:

• Fully-HE (FHE): keeps information secure and accessible while allowing any number of

addition and multiplication operations.

• Somewhat-HE (SHE): It allows both addition and multiplication, but we are limited in term

of the number of operations we can perform.

ENHANCING THE SECURITY OF YIOOP DISCUSSION BOARD

11

• Partially-HE (PHE): Keeps sensitive data secure by only allowing select mathematical

functions to be performed on encrypted data. This type of scheme either allows addition or

multiplication, but in an unlimited fashion.

Paillier encryption scheme is partially homomorphic over addition. That is,

E(m1) * E(m2) = (gm1 r1
n (mod n2)) * (gm2 r2

n (mod n2))

= gm1+m2 (r1 * r2)
n mod n2

= E (m1 + m2)

As the encryption function is additively homomorphic, we can define the following

properties:

1) Multiplying encrypted messages results in the addition of the original plaintexts mod n:

D (E (m1, r1) * E (m2, r2) mod n2) = m1 + m2 mod n

2) Homomorphic multiplication of ciphertext to power of plaintext: A ciphertext raised to the

power of a plaintext will decrypt to the product of the two plaintexts. More generally, a

ciphertext raised to a constant k will decrypt to the product of the plaintext and the constant:

 D (E (m1, r1)
k mod n2) = k m1 mod n

Implementation steps involve generating a public-private key pair and using it to encrypt

and decrypt the plaintext. The key generation function starts with picking two large prime

numbers p and q randomly and independently. We need to confirm that GCD (pq, (1-p) (1-q)) is

1. This property is assured if both primes are of equal length. We then compute n as the product

of p and q and lambda as the lcm of p-1 and q-1. Next, pick a random integer g in the set of

integers from 1 to n2 and define function L which is division of x-1 by n. Last step is to calculate

multiplicative modulo inverse, mu. If it doesn't exist, choose new p and q and repeat. The public

key is (n, g) and the private key is (λ, µ)

For encryption of plaintext m in the range 0 to n, select random number r such that r

value is between 0 and n and compute ciphertext C as:

ENHANCING THE SECURITY OF YIOOP DISCUSSION BOARD

12

C = gm rn mod n2

To decrypt the ciphertext, plaintext = L (cλ mod n2). µ mod n

The result of the implementation is given by Figure 6

Figure 6: Paillier encryption implementation result

ENHANCING THE SECURITY OF YIOOP DISCUSSION BOARD

13

VI. CONCLUSION

Ensuring the security of Yioop and safety of user data is the objective of this project.

This project has taken several steps to achieve that objective. Deliverable 1 was the groundwork

that helped understand Yioop, from the coding guidelines to the execution flow and database

tables involved. Deliverable 1 and 2 focused on the concept of differential privacy and the scope

at which it was already part of Yioop. It was also instrumental in helping identify use cases to

extend differential privacy and one such use case was implemented as part of deliverable 2 to

mask the number of users in groups. Deliverables 3 and 4 were an exploration into encryption

concepts that could potentially be used to make Yioop more secure. These two deliverables drive

home the importance of information security.

The encryption schemes executed in Deliverables 3 and 4 will be integrated into Yioop in

the next semester. More such schemes and use cases will be explored in the next project.

Possible areas for extending differential privacy will be investigated so that sensitive information

is hidden while not hindering the functionality of the system. This project, as well as the project

next semester, will be focused on the overall objective of making Yioop more secure.

ENHANCING THE SECURITY OF YIOOP DISCUSSION BOARD

14

REFERENCES

[1] C. Dwork, "Differential Privacy, 33rd International Colloquium on Automata, Languages

and Programming, part II", 2006

[2] C. Dwork et al., "Differential Privacy - A Primer for the Perplexed", Conference of

European Statisticians, 201

[3] A. Shamir, "How to share a secret", Communications of the ACM, 612,613

[4] https://blog.boot.dev/cryptography/shamirs-secret-sharing/

[5] D. R. Stinson, M.R.Patterson, “Cryptograph Theory and Practice”, 4th edition, page 467

[6] https://www.freecodecamp.org/news/introduction-to-homomorphic-encryption/

[7] M. O’Keeffe, “The Paillier Cryptosystem: A Look into The Cryptosystem and Its

Potential Application”, College of New Jersey, 2008

[8] A. Acar et al., “A Survey on Homomorphic Encryption Schemes: Theory and

Implementation”, Florida International University

	ABSTRACT
	I. INTRODUCTION
	II. DELIVERABLE 1
	III. DELIVERABLE 2
	IV. DELIVERABLE 3
	V. DELIVERABLE 4
	VI. CONCLUSION
	References

