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ABSTRACT 

 
 

Yioop is an open-source web portal that works as a search engine and a discussion board. 

To function as a wiki system and as a discussion board, Yioop provides groups feature that 

allows users to create, join and share content with each other. Such a system needs to store and 

access data, so data security is an important concern. Apart from database security, Yioop 

generates statistical data that needs to be protected. The security mechanism also covers access 

restriction to the groups as well as the data shared among group members.  

While Yioop has a security mechanism in place, the goal for this semester was to extend 

it by implementing several security measures like differential privacy, secret sharing, and 

homomorphic encryption. The main objective is to protect user data and make the portal more 

secure. To that end, the project goals for this semester were to understand the existing security 

concepts of Yioop as well as explore new encryption techniques that could make data sharing 

more secure. These techniques will be incorporated in Yioop as part of the project for next 

semester.  

Keywords –Yioop, Security, Groups, Thread, Encryption, Differential Privacy, Secret 

Sharing, Homomorphic Encryption 
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I. INTRODUCTION 

 
Data security is of critical importance in the current age of information. It is important to 

protect data against threats like identity theft, data tampering etc. Web security is crucial for 

preventing hackers from gaining access to confidential data. Without a proactive security policy, 

web services run the risk of attacks and possible data leakage. This project focuses on enhancing 

security measures of one such system – Yioop by implementing security systems like differential 

privacy, secret sharing and homomorphic encryption. 

Yioop is open-source software system that functions as a search engine and a social 

platform with groups, discussion board and wiki. Users can create and join groups, start 

discussions with other users in their groups, configure the rules of their groups to restrict access 

to group members and so on. The groups can be made secure by turning on encryption for the 

group and the group data can be hidden by turning on the differential privacy option. This option 

uses the concept of differential privacy: a technique to protect a statistical database such that 

sensitive data in the database can be protected while allowing useful information to be obtained 

from the database. The goal of this project for this semester is to extend differential privacy 

mechanism and implement two new encryption schemes that can potentially make Yioop more 

secure.  

The project for this semester was executed in two phases: the first phase deals with 

understanding and implementing differential privacy. The second phase involves implementing 

two encryption schemes. The two phases are split into four deliverables, each of which is 

detailed in a separate section in this report. Deliverable 1 focuses on understanding the existing 

differential privacy mechanism in Yioop while Deliverable 2 is an implementation of differential 

privacy to mask the number of users in a group. Deliverable 3 involves implementing secret 

sharing while deliverable 4 is homomorphic encryption implementation. The conclusion section 

summarizes the work done this semester and discusses the future goals of the project 
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II. DELIVERABLE 1 

 

The goal of the first deliverable is to understand the existing privacy mechanism in 

Yioop. To achieve this, an encrypted group was created in Yioop, and the database was checked 

to see whether group creation and addition of users, threads were reflected in the database 

tables. This deliverable was instrumental in clarifying the security concepts already implemented 

in Yioop.  

The first finding of this deliverable was the concept of database encryption used to 

protect the data in the Yioop database. Here, data is converted into ciphertext and stored it in the 

database. This transformed data needs to be decrypted first before users can access it.  

There are different techniques available for database encryption like external database 

encryption, column level encryption, field level encryption, application-level encryption and so 

on. Yioop uses application-level encryption and the key for data encryption and decryption is 

used in an external database. The key is symmetric, generated by AES-256 encryption scheme. 

This external database provides an additional layer of security. If an intruder gets access to the 

main database, they will not be able to decrypt the data in the database without having access to 

the external database. To make it more secure, we inject random values to the actual data every 

time any database operation like insert, update etc. are performed. 

Not all data inside a group needs to be encrypted since not all data is sensitive. We are 

interested in encrypting the threads in the group and this includes encrypting the title and 

description. Since it is selective encryption, column level encryption is used so that only the title 

and description columns are encrypted/decrypted.  

To verify these concepts, an encrypted group called ‘Deliverable1_Test’ was created and 

users were added to this group as well as several threads. The objective was to find the affected 

databases, query them to check if the group creation was reflected and if the appropriate tables 
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contain the added users and posts. Additionally, database had to be queried to check if thread 

title and description were present in an encrypted form.  

Figure 1 shows the presence of created group ‘Deliverable1_Test’ with group id=5 while 

Figure 2 shows existence of posts added to the created group. Additionally, figure 3 shows that 

title and description of threads are encrypted.  

 
Figure 1: Query table to check if created group is present 

 

 
Figure 2: Query table to check if posts created in the group are reflected 

 

 
Figure 3: Check if title and description of threads are encrypted 

 



ENHANCING THE SECURITY OF YIOOP DISCUSSION BOARD

   

 

 

4 

III. DELIVERABLE 2 

 

Deliverable 2 involves implementing differential privacy using the concepts learnt in the 

previous deliverable. Differential privacy is used here to mask user statistics in Yioop i.e., 

number of users in groups. This deliverable ensures that Yioop is protected against statistical 

attacks. 

To understand differential privacy, we first define statistic as quantity computed from a 

sample. A statistical database is said to protect privacy when it enables the user to learn 

properties of the population, while protecting the privacy of the individuals in the sample. 

Differential privacy is a mechanism that ensures that the risk to one’s privacy does not 

substantially increase because of participating in a statistical database.   

A randomized function K gives ε-differential privacy if for all data sets D1 and D2 

differing on at most one element, and all S ⊆ Range(K),     

Pr[K(D1) ∈ S] ≤ exp(ε) × Pr[K(D2) ∈ S]  

where ε is a positive real number and S is a subset of image K is a set of all output 

values that it might produce   

A mechanism K that satisfies this definition addresses concerns that any participant 

might have about the leakage of her personal information x: even if the participant removed her 

data from the data set, no outputs (and thus consequences of outputs) would become 

significantly more or less likely  

The mechanism works by adding appropriately chosen random noise to the answer a = 

f(X), where f is the query function and X is the database. Magnitude of the random noise is 

chosen as a function of the largest change a single participant could have on the output to the 

query function => sensitivity of the function   

For f: D → Rd, the L1-sensitivity of f is: ∆f = max || f(D1) − f(D2) || for all D1, D2 

differing in at most one element and D is the collection of datasets 
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The privacy mechanism (Kf for a query function f) computes f(X) and adds noise with a 

scaled symmetric exponential distribution with variance σ2 in each component, described by 

the density function:    

Pr[Kf (X) = a] ∝ exp(−∥f(X) − a∥/σ) 

For f: D → Rd, the mechanism Kf gives (∆f/σ)- differential privacy. For query strategy 

F = {fρ: D → Rd}, the mechanism Kf gives (∆F/σ)-differential privacy. 

This deliverable was executed by first identifying the existing code that calculates the 

number of users in each group. Understanding how this user count is stored and fetched from 

the database helps identify the point in the codebase where differential privacy function can be 

called.  

This functionality is part of the SocialComponent’s function getGroupUsersData, which 

calls GroupModel’s countGroupUsers function to calculate the number of users per group in the 

database. This is where noise needs to be added to prevent the actual user count from being 

displayed. The next step is to add addDifferentialPrivacy function to the getGroupUsersData 

function so that the number of users per count is fuzzified. This masked count of users is then 

displayed.  

There are three instances in the UI where the group user count is displayed. The root user 

can see group count in the Edit Group section while a general user can see the group user count 

when accessing information about the group. So, to test this deliverable, these three UI instances 

need to be checked to ensure that the group user count is fuzzified. These three instances are 

shown in Figure 4.
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Figure 4: Differential Privacy implementation result 
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IV. DELIVERABLE 3 

 

This deliverable consists of secret sharing encryption scheme implementation. Secret 

sharing involves distributing a secret among a group such that no individual holds any 

intelligible information about the secret. When a sufficient number of individuals combine their 

shares, the secret can be reconstructed. An adversary without enough shares cannot reconstruct 

the secret even with infinite time and computing capacity. We use (k, n) threshold scheme which 

divides data D into n pieces D1, D2,,…, Dn such that:  

• Knowledge of any k or more Di pieces makes D easily computable 

• Knowledge of any k - 1 or fewer Di pieces leaves D completely undetermined, in the 

sense that all its possible values are equally likely 

This is especially useful in the management of cryptographic keys. Keeping the key in a 

single, well-guarded location is unreliable and storing multiple copies of the key at different 

locations could be dangerous. So, the best solution is (n, k) threshold scheme to keep the 

encryption keys a secret. Threshold schemes are ideally suited to applications in which a group 

of mutually suspicious individuals with conflicting interests must cooperate.  

Polynomial interpolation is used to implement secret sharing. Assume that the data to be 

encrypted is D, n is number of shares and k is threshold or the minimum number of shares 

required to retrieve the secret. We create Di shares of the data by choosing a polynomial with 

degree k-1 and encoding the secret as a coefficient of P. The polynomial is then evaluated to get 

Di points as shares. The steps can be formally defined as follows: 

• Select a random k-1-degree polynomial q(x) = a0 + a1(x) + a2(x2) +.... +ak-1(xk-1) in 

which a0 = D. 

• Evaluate: D1 = q (1) .... Di = q(i) ..... Dn = q(n) 

https://en.wikipedia.org/wiki/Secrecy
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Given any subset of k of these Di values, we can find the coefficients of q(x) by 

interpolation, and then evaluate D=q (0). Knowledge of just k - 1 of these values does not suffice 

to calculate D.  

Secret sharing can be implemented using integer arithmetic or finite field arithmetic. 

Using integer arithmetic provides weak security wherein the attacker could possibly guess the 

secret by solving algebraic equations. This problem can be solved by using finite field 

arithmetic. The steps to be followed are: 

Choose a prime number such that prime number is greater than number of 

participants and prime number is greater than every coefficient, including the secret. The points 

on the polynomial must also be calculated as (x, f(x) mod prime) instead of (x, f(x)). This prime 

number is known but even with this information, attacker will not be able to stop guessing, 

unlike integer arithmetic problem. (-prime.mx) is added to each equation. Subtraction of previous 

equations with give prime (m1 - m2) because of mod and it becomes impossible to guess.  

Encryption function is created using the approach outlined above. Special care must be 

taken while decrypting the secret. If threshold number of shares are given, use Lagrange basis 

polynomial equations to decrypt the secret.  

If 1 point is given, find l0(x) = (x - x1)/ (x0 - x1) * (x - x2) / (x0 - x2)  

If 2 points are given, find l1(x) in addition to l0(x) and so on 

In general, the formula for interpolation is: 

f(x) = ∑yj * lj(x) 

Reconstruction of the secret involves finding the multiplicative modulo inverse of a 

number. Extended GCD can be used for this purpose. 

There are many advantages of using secret sharing scheme. The size of each piece does 

not exceed the size of the original data. When k is kept fixed, Di pieces can be dynamically 

added or deleted without affecting the other Di pieces. It is easy to change the Di pieces without 
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changing the original data. All we need is a new polynomial q(x) with the same free term. A 

frequent change of this type can greatly enhance security. Secret sharing also wllows a 

hierarchical scheme where number of pieces needed to determine the secret depends on their 

importance. 

The result of secret sharing implementation is shown below in Figure 5 

 

 
 

Figure 5: Secret Sharing implementation result 
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V. DELIVERABLE 4 

 

Deliverable 4 involves implementation of a homomorphic encryption scheme. The 

methodology chosen for implementation is Paillier encryption, a partial homomorphic 

encryption scheme. 

Homomorphic encryption permits users to perform computations on encrypted data 

without first decrypting it. This result is in an encrypted form When it is decrypted, result is 

identical to that produced if the operations been performed on the unencrypted data. 

Homomorphic encryption makes it possible to analyze or manipulate encrypted data without 

revealing the data to anyone.  

Just like other forms of encryption, homomorphic encryption uses a public key to encrypt 

the data. Unlike other forms of encryption, it allows functions to be performed on the data while 

it’s still encrypted. Then, the individual with the matching private key can access the 

unencrypted data after the functions and manipulation are complete. This allows the data to be 

and remain secure and private even when someone is using it.  

Homomorphic encryption has huge potential in areas with sensitive personal data such as 

in financial services or healthcare when the privacy of a person is paramount. Another bonus of 

homomorphic encryption is that unlike other encryption models in use today, it is safe from 

getting broken by quantum computers.  

There are three main types of homomorphic encryption: 

• Fully-HE (FHE): keeps information secure and accessible while allowing any number of 

addition and multiplication operations. 

• Somewhat-HE (SHE): It allows both addition and multiplication, but we are limited in term 

of the number of operations we can perform. 
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• Partially-HE (PHE): Keeps sensitive data secure by only allowing select mathematical 

functions to be performed on encrypted data. This type of scheme either allows addition or 

multiplication, but in an unlimited fashion. 

Paillier encryption scheme is partially homomorphic over addition. That is,  

E(m1) * E(m2) = (gm1 r1
n (mod n2)) * (gm2 r2

n (mod n2)) 

= gm1+m2 (r1 * r2)
n mod n2 

= E (m1 + m2) 

As the encryption function is additively homomorphic, we can define the following 

properties: 

1) Multiplying encrypted messages results in the addition of the original plaintexts mod n: 

D (E (m1, r1) * E (m2, r2) mod n2) = m1 + m2 mod n 

2) Homomorphic multiplication of ciphertext to power of plaintext: A ciphertext raised to the 

power of a plaintext will decrypt to the product of the two plaintexts. More generally, a 

ciphertext raised to a constant k will decrypt to the product of the plaintext and the constant:  

    D (E (m1, r1)
k mod n2) = k m1 mod n 

Implementation steps involve generating a public-private key pair and using it to encrypt 

and decrypt the plaintext. The key generation function starts with picking two large prime 

numbers p and q randomly and independently. We need to confirm that GCD (pq, (1-p) (1-q)) is 

1. This property is assured if both primes are of equal length. We then compute n as the product 

of p and q and lambda as the lcm of p-1 and q-1. Next, pick a random integer g in the set of 

integers from 1 to n2 and define function L which is division of x-1 by n. Last step is to calculate 

multiplicative modulo inverse, mu. If it doesn't exist, choose new p and q and repeat. The public 

key is (n, g) and the private key is (λ, µ) 

For encryption of plaintext m in the range 0 to n, select random number r such that r 

value is between 0 and n and compute ciphertext C as:  
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C = gm rn mod n2 

To decrypt the ciphertext, plaintext = L (cλ mod n2). µ mod n 

The result of the implementation is given by Figure 6 

 

Figure 6: Paillier encryption implementation result 
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VI. CONCLUSION 

 

 

Ensuring the security of Yioop and safety of user data is the objective of this project. 

This project has taken several steps to achieve that objective. Deliverable 1 was the groundwork 

that helped understand Yioop, from the coding guidelines to the execution flow and database 

tables involved. Deliverable 1 and 2 focused on the concept of differential privacy and the scope 

at which it was already part of Yioop. It was also instrumental in helping identify use cases to 

extend differential privacy and one such use case was implemented as part of deliverable 2 to 

mask the number of users in groups. Deliverables 3 and 4 were an exploration into encryption 

concepts that could potentially be used to make Yioop more secure. These two deliverables drive 

home the importance of information security. 

The encryption schemes executed in Deliverables 3 and 4 will be integrated into Yioop in 

the next semester. More such schemes and use cases will be explored in the next project. 

Possible areas for extending differential privacy will be investigated so that sensitive information 

is hidden while not hindering the functionality of the system. This project, as well as the project 

next semester, will be focused on the overall objective of making Yioop more secure.  
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