Smart contracts with Solidity

Ajinkya Rajguru
Deliverable 4
SJSU: FALL 2022
CS 297
Dr. Chris Pollett

Introduction

* Object Oriented high level language.

* Main purpose: Implementing smart contracts
e Written in .sol files

e Similar to Javascript

e Statically typed

Smart Contracts

* An account present on a blockchain network which is controlled by
code.

¢ Components of a contract account —
1. Balance — Amount of ether the account owns
2. Storage — Data storage for the contract (depends on the application)
3. Code — Machine code for the contract

Solidity

1. Create contract definition using solidity
2. Itis passed to the Solidity compiler

3. The compiler gives out two separate files —
1. Byte Code which is ready for deployment — deployed into Ethereum
network

2. Application Binary Interface (ABI) — Used to interact with deployed smart
contracts (example using Javascript for .js applications)

Remix IDE for
Solidity (3

A web-based IDE to write .sol
contracts

e Contains an inbuild solidity
compiler and an editor

e Great for small contracts

e Also contains a mock
Ethereum network to deploy
and test contracts

* Basic flow of deploying a
contract:

SOLIDITY COMPILER
COMP! +B8
0.4.17+commit.bdeb9e52 s
Include nightly builds

| Auto compile

Hide warnin
Advanced Configu

& Compile 3_Ballot.sol

Compile and Run script

No Contract Compiled Yet

contracts/3_Ballot.sol:1:1:
Warning: Source file does not
specify required compiler
version!Consider adding "pragma
solidity ~0.4.17

Q @) Home X & 1 Storage.sol § 3_Ballot.sol

d&\;b Featured
REMIX O ¥ in [

The Native IDE for Web3 Development.

Website Documentation Remix Plugin Remix Desktop

Documentation Q

Files

REMIX REWARDS

NFTs for our users!

Remix Project rewards contributors, beta
testers, and UX research participants with
NFTs deployed on Optimism. Remix Reward
holders are able to mint a second “Remixer”
user NFT badge to give to any other user of

New File Get Started - Project Templates

BLANK
Open File

Create an empty workspace.
Connect to Localhost

Loa

Featured Plugins
GitHub Gist IPFS HTTPS '
Learn SOLIDITY

5 Compile, test and analyse
Remix Basics smart contract.

Introduction to Remix's interface and
concepts used in Ethereum, as well as the
basics of Solidity.

Get Started
Scam Alerts:

REMIX DEFAULT

Create a workspace with
sample files.

)

STARKNET

Compile and deploy contracts
with Cairo, a native language
for StarkNet.

12

Remix Intermediate The only URL Remix uses is remix.ethereum.org

Remix Advanced Beware of online vide romoting "liquidity front runner bots'

Additional safety tips: here

OPENZEPPELIN ERC20

Create an ERC20 token by
importing OpenZeppelin library.

SOLHINT LINTER

Solhint is an open source
project for linting Solidity code.

earn more

Solidity

1. Common function types include —

1. Access modifiers — public and private
2. Return type — View and Constant: The function returns data and does not modify the
contracts data.

3. Pure — Function will not modify or read the contracts data
4. Payable — This function can include an ether along with its call.

Solidity run and deploy configuration

e Environment — We use a Remix TP —
Virtual machine ENVIRONMENT W

Remix VM (London)

e Account — Any account can be
selected which are already
preloaded with 100 ether coins for
testing.

0x5B3...eddC4 (100 ether)

e Select a contract — here Inbox

Publish to IPFS

* An empty box appears to put in
parameters for the constructor

defined by us in the contract

Deployed Contracts

Currently you have no contract instances to intera it

Inbox contract

* Deployed by inserting a string “Hi
there”.

 Below shoes the instance created.

* setMessage, getMessage and
message buttons allow us to interact
with the contract.

CONTRACT (Compiled by Remix)

Inbox - contracts/3_Ballot.sol

Deploy "Hi there"

Publish to IPFS

At Address

Transactions recorded @ ()

Deployed Contracts

v INBOX AT 0XD91...39138 (MEMORY)

Balance: 0 ETH
setMessage

getMessage

message

Low level interactions

CALLDATA

Deployed Contracts

Inbox contract

v INBOX AT 0XD91...39138 (MEMORY)

Balance: 0 ETH

* We receive Hi there after setMessage
clicking the getMessage
button. getMessage

0: string: Hi there

message

Low level interactions

CALLDATA

Inbox contract

* setMessage as Goodbye

* We get the message by

clicking on getMessage as

well as message.

* message is a public variable

which can also check the
value for message

Deployed Contracts

v INBOX AT 0XD91..39138 (MEMORY)

Balance: O ETH

setMessage "Goodbye"

getMessage
0: string: Goodbye
message

0: string: Goodbye

Low level interactions

CALLDATA

Inbox Contract - console

e Each function call produces the following console logs.

This includes the receiver and sender along with the execution cost in gas unit

call to Inbox.getMessage

[call] from: 0x5B38Da6a701c568545dCfcB03FcB875f56beddC4 to: Inbox.getMessage()
data: Oxce6...d4lde

0x5B38Da6a701c568545dCE£cB03FcB875£56beddca (O

Inbox.getMessage() 0xd9145CCE52D386£254917e481eB44e9943F39138 ([

execution cost 24248 gas (Cost only applies when called by a contract) ([

input 0xce6...ddlde @O

decoded input

decoded output
"0": "string: Hi there"

L8]

logs R 18]

transact to Inbox.setMessage pending ...

Creating a contract - What happens at the
background

 Similar to transfer of money on a network.
* We create a transaction to create a contract

* Contract transaction contains:
 Nonce — number of times the sender has sent a transaction
e To —field is blank as opposed to while sending a money
* Data — bytecode of contract (exposed to the world)
e v, rand s — crypto pieces of data
* Value — Amount of Wei (Wei is a smaller unit of ether — 1 ether =(1078) wei)

* gas — cost to run our code on another machine: Gas cost sheet — [5]
ttps://docs.google.com/spreadsheets/d/1n6mRgkBz3iWcOIRem_ mO09GtSKEKrAsf

O7Frgx18pNU/edit#gid=0
e gasPrice — cost willing to pay for a transaction
e gasLimit — The unit of gas this transaction can consume

https://docs.google.com/spreadsheets/d/1n6mRqkBz3iWcOlRem_mO09GtSKEKrAsfO7Frgx18pNU/edit

-

[4] Ethereum unit converter

Ethereum Unit Converter | Gwei to Ether

Wei

0.001 Kwei

0.000001 Mwei

0.000000001 Gwei

0.000000000001 Szabo

0.000000000000001 Finney

0.000000000000000001 Ether

0.000000000000000000001 Kether

0.000000000000000000000001 Mether

0.000000000000000000000000001 Gether

Reading and Modifying functions

* Reading Transactions —

 Calling a function can include returning a data and does not include modifying
the contract data.

* Runs instantly and is free

* Sending Transactions —

* Sending a transaction to a function can include modifying the contract data
which returns the transaction hash.

* Takes time to execute and costs money

References

[1] https://docs.soliditylang.org/en/v0.8.17/introduction-to-smart-
contracts.html#simple-smart-contract

[2] https://www.udemy.com/share/1013Fs3@Qax1kH8XyDPQcM-
COaQ hYkoQetC7yzJla KIQC1oKYYhIXWIDonghJw9-eXS 6-2Q==/

[3]
https://remix.ethereum.org/#optimize=false&runs=200&evmVersion=n
ull&version=soljson-v0.4.17+commit.bdeb9e52.js&language=Solidity

[4] https://coinguides.org/ethereum-unit-converter-gwei-ether/

[5] https://github.com/djrtwo/evm-opcode-gas-costs

https://docs.soliditylang.org/en/v0.8.17/introduction-to-smart-contracts.html
https://www.udemy.com/share/1013Fs3@Qax1kH8XyDPQcM-COaQ_hYkoQetC7yzJJa_KJQC1oKYYhJXWlDonqhJw9-eXS_6-2Q==/
https://remix.ethereum.org/
https://coinguides.org/ethereum-unit-converter-gwei-ether/
https://github.com/djrtwo/evm-opcode-gas-costs

