
Smart contracts with Solidity

Ajinkya Rajguru
Deliverable 4

SJSU: FALL 2022
CS 297

Dr. Chris Pollett

Introduction

• Object Oriented high level language.
• Main purpose: Implementing smart contracts
• Written in .sol files
• Similar to Javascript
• Statically typed

Smart Contracts
• An account present on a blockchain network which is controlled by

code.
• Components of a contract account –

1. Balance – Amount of ether the account owns
2. Storage – Data storage for the contract (depends on the application)
3. Code – Machine code for the contract

Solidity

1. Create contract definition using solidity
2. It is passed to the Solidity compiler
3. The compiler gives out two separate files –

1. Byte Code which is ready for deployment – deployed into Ethereum
network

2. Application Binary Interface (ABI) – Used to interact with deployed smart
contracts (example using Javascript for .js applications)

Remix IDE for
Solidity [3]
• A web-based IDE to write .sol

contracts

• Contains an inbuild solidity
compiler and an editor

• Great for small contracts
• Also contains a mock

Ethereum network to deploy
and test contracts

• Basic flow of deploying a
contract:

Solidity

1. Common function types include –
1. Access modifiers – public and private
2. Return type – View and Constant: The function returns data and does not modify the

contracts data.
3. Pure – Function will not modify or read the contracts data
4. Payable – This function can include an ether along with its call.

Solidity run and deploy configuration

• Environment – We use a Remix
Virtual machine

• Account – Any account can be
selected which are already
preloaded with 100 ether coins for
testing.

• Select a contract – here Inbox

• An empty box appears to put in
parameters for the constructor
defined by us in the contract

Inbox contract

• Deployed by inserting a string ”Hi
there”.

• Below shoes the instance created.
• setMessage, getMessage and

message buttons allow us to interact
with the contract.

Inbox contract

• We receive Hi there after
clicking the getMessage
button.

Inbox contract

• setMessage as Goodbye

• We get the message by
clicking on getMessage as
well as message.

• message is a public variable
which can also check the
value for message

Inbox Contract - console

• Each function call produces the following console logs.

• This includes the receiver and sender along with the execution cost in gas unit

Creating a contract - What happens at the
background

• Similar to transfer of money on a network.
• We create a transaction to create a contract
• Contract transaction contains:

• Nonce – number of times the sender has sent a transaction
• To – field is blank as opposed to while sending a money
• Data – bytecode of contract (exposed to the world)
• v, r and s – crypto pieces of data
• Value – Amount of Wei (Wei is a smaller unit of ether – 1 ether =(1018) wei)
• gas – cost to run our code on another machine: Gas cost sheet – [5]

https://docs.google.com/spreadsheets/d/1n6mRqkBz3iWcOlRem_mO09GtSKEKrAsf
O7Frgx18pNU/edit#gid=0

• gasPrice – cost willing to pay for a transaction
• gasLimit – The unit of gas this transaction can consume

https://docs.google.com/spreadsheets/d/1n6mRqkBz3iWcOlRem_mO09GtSKEKrAsfO7Frgx18pNU/edit

[4] Ethereum unit converter

Reading and Modifying functions

• Reading Transactions –
• Calling a function can include returning a data and does not include modifying

the contract data.
• Runs instantly and is free

• Sending Transactions –
• Sending a transaction to a function can include modifying the contract data

which returns the transaction hash.
• Takes time to execute and costs money

References

[1] https://docs.soliditylang.org/en/v0.8.17/introduction-to-smart-
contracts.html#simple-smart-contract
[2] https://www.udemy.com/share/1013Fs3@Qax1kH8XyDPQcM-
COaQ_hYkoQetC7yzJJa_KJQC1oKYYhJXWlDonqhJw9-eXS_6-2Q==/
[3]
https://remix.ethereum.org/#optimize=false&runs=200&evmVersion=n
ull&version=soljson-v0.4.17+commit.bdeb9e52.js&language=Solidity
[4] https://coinguides.org/ethereum-unit-converter-gwei-ether/
[5] https://github.com/djrtwo/evm-opcode-gas-costs

https://docs.soliditylang.org/en/v0.8.17/introduction-to-smart-contracts.html
https://www.udemy.com/share/1013Fs3@Qax1kH8XyDPQcM-COaQ_hYkoQetC7yzJJa_KJQC1oKYYhJXWlDonqhJw9-eXS_6-2Q==/
https://remix.ethereum.org/
https://coinguides.org/ethereum-unit-converter-gwei-ether/
https://github.com/djrtwo/evm-opcode-gas-costs

