
High Performance
Distributed File System
Based on Blockchain

By Ajinkya Rajguru

• Advisor: Dr. Chris Pollett

• Committee: Dr. Ben Reed

• Committee: Sanmesh Bhosale

Agenda

• Introduction

• Background

• Technologies used
• Important Components

• System Architecture
• Workflows

• Results

• Conclusion

Agenda

System
Architecture

Fun Fact

An average person stores 500 GB of data in their
cloud storage.

If the physical representation of this data (CDs,
papers, photos) were stacked on each other, it
would be three times the size of the Eiffel Tower
[1].

Introduction:
Purpose

• The amount of data generated and consumed
by a user is increasing daily.

• Drawbacks of conventional storage
• Need for alternate storage systems.

• Possibility to make profits from unused storage
spaces on personal devices.

Introduction:
purpose

Introduction:
Purpose

• Develop a fault-tolerant decentralized file store.

• Ability to easily store, retrieve, and delete data

• Robust storage along with maintained data
integrity.

• Fast storage with no single point of failure.
• Use of blockchain for monetization and

transaction transparency.

Introduction:
Goals

Background:
Distributed File
Systems

• Allows for storing of data on commodity
servers connected using a computer network

• Replication – Increase the reliability of the
system by having redundant data.

• Sharding – Makes data more manageable and
increases the performance of the system.

• Conventional systems like HDFS [4] and GFS [3]
require a master server to manage metadata
and commodity servers.

Background:
Distributed
Hash Table

• Provides a decentralized lookup based on Key-
value pairs.

• Highly scalable
• Fault-tolerant

Background:
Chord DHT [5]

0

15

3060

12

15

50

90

125

Hash function: mod 100

90

12550

12

12

15

Background :
Blockchain

• A decentralized and public digital ledger

• Securely stores transactions

• Unalterable
• Ethereum – decentralized blockchain with

smart contract functionality
• Ether - Native cryptocurrency of Ethereum

Background :
Solidity Smart
Contract

• Programs stored on the blockchain run after
predetermined conditions are met [2].

• Solidity – A programming language designed
for developing smart contracts that run on
Ethereum [3].

Technologies used

System
Architecture

Important
Components:
Client

• To store data on the filesystem

• Data retrieval

• Data deletion
• Encryption

• Divide data into blocks of 64 KB
• Make payments

Important
Components:
Client

Requirements to participate as a client

1. Java 11+
2. An empty port

3. The IP address of the blockchain network
4. Contract address

5. Crypto wallet (loaded with Ether)

Important
Components:
Smart
Contract

• Introduces an incentive layer

• Transparency of transactions

• Verification for storage
• Payment

• To store/get the IP address of an arbitrary
server.

Important
Components:
Smart
Contract

Important
Components:
Server - Chord

• The hash function used: FNV-1A [6]

• This generates a 32-bit hash for each server derived
out of its IP address.

• Significant function: n.findSuccessor(id)

• Threads:
• FixFingers()
• Stabilize()

Important
Components:
Server - Chord

Important
Components:
Server -
Filesystem
structure

• The blocks received are of two types:
• A content block
• File details blocks

• Data is replicated on two other servers:
• Successor
• Predecessor

• The stabilizeFileStore thread performs four major
functions:
• Re-distribution of data if a new node is added
• Garbage collection
• Replication
• Payment calls

Important
Components:
Server

Requirements to participate as a server

1. Java 11+
2. An empty port

3. The IP address of the blockchain network
4. Contract address

5. Crypto wallet (loaded with Ether)

Workflow:
Store File

Client-side

Sample.pdf

Block 1 Block 3Block 2

Store Sample.pdf
on the FS

Hash1 =
SHA-

256(encrypt(byte[],K))

Hash2 =
SHA-

256(encrypt(byte[],K))

Hash3 =
SHA-

256(encrypt(byte[],K))

1. Divide the File into Blocks
2. Generate subsequent

block hashes and a
resultant root hash

Root Hash = SHA-256(Hash1 + Hash2 + Hash3)

Smart Contract

Block 1

Hash1 = SHA-
256(encrypt(byte[],K))

R
Verification_Hash

Owner

1. Store Block information
on the Smart Contract

2. Send Ip address of an
arbitrary node

Send the IP address of an arbitrary node to the client.

Client-side

Block 1

Hash1 = SHA-256(encrypt(byte[],K))
Let arr = encrypt(byte[],K)

1. Select a Random Number
2. Generate Verification

Hash

Generate a random number R between 0 – arr.length

Rand_byte = Byte representation of R

RandByte[] = Replace Rth index from arr by Rand_byte

Initial_Hash = Keccak(RandByte[])

Verification_Hash = Keccak(Initial_Hash + R)

Server: getPaid()

Block 1

Hash1 = SHA-256(encrypt(byte[],K))
Let arr = encrypt(byte[],K)

1. Select a Random Number
2. Generate Verification

Hash

Read random number R from the contract

Rand_byte = Byte representation of R

RandByte[] = Replace Rth index from arr by Rand_byte

Initial_Hash = Keccak(RandByte[])

Calc_Verification_Hash = Keccak(Initial_Hash + R)

Send the Initial_Hash to the contract for verification

If Verification_Hash == Calc_Verification_Hash then Pay

1. Each file has two parts:
1. File Details Block
2. Content Blocks

Client-side

Client-side

1. Each file has two parts:
a) File Details Block
b) Content Blocks

Content Block 1

Content Block 3

Content Block 2

File Details Block

Returns a server IP
according to the key hash

1. Make a DHT lookup call
for each block.

2. Send the blocks for
storage on their
respective servers
according to the lookup

Client

Lookup for a block on an
arbitrary node

Send Blocks for Storage on respective servers

Workflow:
Store File

Server Node:
File System and Chord

1. Persist the block
2. Replicate it on successor

and predecessor nodes

Persist Block 1

Predecessor Successor

Replicate Replicate

Servers arranged in a Chord ring

Workflow:
Retrieve File

Workflow:
Delete File

Results

Cumulative gas consumption to
store file data on a smart contract.

A server requires on average
360000 gas while calling getPaid()

Results

The client requires an average of 200
milliseconds for every block of 64 KB

Results

Conclusion

The developed file system boasts impressive benefits:

• Great performance
• Lucrative rewards
• Robust storage verification
• Effortless replication
• Secure
• An enticing option for users seeking to maximize their

storage capabilities and make the most of their available
space.

Thank you

References

[1] I. Dimitrov, ‘‘Stacks of storage: How much space does your data take up?’’ https://blog.pcloud.com/stacks-of-storage/,
Dec 2020, (Accessed on 05/02/2023).

[2] Smart Contract https://www.ibm.com/topics/smart-contracts

[3] S. GHEMAWAT, H. GOBIOFF, and S.-T. LEUNG, ‘‘The google file system,’’ vol. 37, no. 5, pp. 29–43, doi:
10.1145/1165389.945450, 2003.

[4] K.Shvachko, H.Kuang, S.Radia, and R. Chansler, ‘‘The hadoop distributed file system,’’ IEEE 26th Symposium on Mass
Storage Systems and Technologies (MSST), 2010, pp. 1–10, doi: 10.1109/MSST.2010.5496972, 2010.

[5] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Balakrishnan, ‘‘Chord: a scalable peer-to-peer lookup protocol for
internet applications,’’ vol. 11, no. 1. pp. 17–32, 2003.

[6] L. Noll, ‘‘Fnv hash,’’ http://www.isthe.com/chongo/tech/comp/fnv/index.html# FNV-1.

[7] G. Bertoni, J. Daemen, M. Peeters, and G. V. Assche, ‘‘The keccak reference,’’ https://keccak.team/files/Keccak-reference-
3.0.pdf, Jan 2011.

https://www.ibm.com/topics/smart-contracts

