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Project Goals

● Determine sensor noise patterns for camera models
● Spoof individual camera model sensor noise patterns
● Model sensor noise for individual cameras



Background - Digital Image Processing



Background - What is a noiseprint?

● Sensor noise pattern (“noiseprint”)

● Fixed Pattern Noise (FPN): Dark currents

● Photo-Response Non-Uniformity (PRNU): 

Pixel sensitivity

● Different qualities of noise

● Scene invariant noise is better

   
 



Background: Denoising Filters

● Signal Waveform Decomposition
● Reconstruction
● Taylor Series
● Fourier Transform
● Wavelet Decomposition



Background - Local Binary Patterns

● Texture Descriptor
● Compact and fast
● Sliding window



Background - Convolutional Neural Networks 
(CNNs)

● Sliding window
● Self Learning Filters
● Localized features



Background - Generative Adversarial Networks 
(GANs)

● Two competing models
● Real or Fake?



Related Works

● Sensor Pattern Noise discovery [Lucas et al.]
● Insertion of camera noiseprints onto artificially generated images [Cozzolino 

et al.]
● Arbitrary attacks on discriminative networks [Chen et al.]
● Tests in robustness of camera identification [Samaras et al.]
● PCA based denoising of noiseprints [Li et al.]



Dataset

● Simulate an attack on victims personal phone
● 3 Different Cameras (1 iPhone X and 2 Samsung Galaxy S8s)
● Old images and new images
● Brightness
● Indoors/Outdoors
● Temperatures
● Humidity
● Default settings



Dataset

● GAN Training: 240 images per class
● Classifier Training: 275 images for classifier, 30 test set



Implementation: Preprocessing GAN

● Center crop of 128x128x3 from dataset
● Multiple Regional Crops are better but increase training time
● Noise = Original Image - Denoised Image
● Arrays of sensor noise are small float values 
● Saved as npz files readable by NumPy



GAN the model

Generator:
● Transforms Random Noise Vector into an 128 x 128 x 3 array



GAN the model

Discriminator:
● CNN based image classifier
● Classifies Noise from specific camera model as real or fake



GAN the model

● Generator and Discriminator is trained simultaneously
● Both models improve, but will only be using generator
● Model checkpoint and will be used later to generate fake noise



Preprocessing the Classifier

● Center crops for all images
● Input data is a 1-D vector of image features
● LBP [128x128] of noiseprint -> histogram [26x3]->input
● 3 RGB channels -> 3 Wavelet coefficients -> nth moment of the 

mean of wavelet coefficient matrix -> 3x3x9
● Input data of shape 26x3 + 3x3x9 = 159
● Test Images: Spoofed images + original

○ Denoise -> GAN generates np -> add np to denoised image



Training and testing the Classifier

● Multiple Models used
● Logistic Regression (train: 92%, val: 85%)
● K-means (train, val: 80%)
● MLP gave the best results (2 layers: 256 nodes and 128 

nodes) (train: 92%, val: 88%)



Experiments and Ideal Results



Experiments and Ideal Results



Experiments and Ideal Results



Double JPG compression

● Initially saved trained, test, and spoofed cropped images to 
jpgs

● Picture initially was jpg format
● Double compression lowered accuracy
● Classifier saving to png is reasonable to increase accuracy



Denoising methods



Denoising methods

● Went with 
denoise_tv_chambolle 
denoising method (variation of 
total denoising)

● Closest to 50% accuracy on 
denoised images

● less bias than median 
denoising



Rounding

● Can’t inject noise in the model as float for realistic attack
● Task: Inject noise in images and save them
● Problem: Conversion of floats to ints
● Made model slightly more biased to iphone noise
● Deemed necessary since it would be necessary to more 

accurately represent noise



Rounding
Before rounding After rounding



Model Persistent Changes

● Saving picture in lossless format
● Using total variation denoising
● Rounding



Weighting noiseprints



Weighting Noiseprints

Iphone noiseprints 
fool model better 
at lower weights

Galaxy8 
noiseprints fool 
model better at 
higher weights

Conclusion: The model associates smooth images with iphones and noisy images with galaxies



Random Noise Injection

● Initially thought that that due to previous experiment, a large amount of 
random noise would classify the image as galaxy8. 

● This could be due to the uniform distribution implying that the model thinks 
the iphone noise is more uniform.



Random Pixel Test

● Purely Random RGB values between 0 to 255
● All 100 generated pictures were classified as iphone
● Random distribution was set to uniform
● Confirmed theory from previous experiment



Inter-Model Classification

● Do different phones of the same model have distinguishable noiseprints?
● Novel problem that hasn’t been studied
● 3 classes: iphone, galaxy8c, galaxy8l
● 3 GANs





Random Noise Injection into Training Set

Delta2

Original



Random Noise Injection into Training Set

● Attempt at regularization of the model 
● Comparable Results for original test images
● iphone noise spoofing was more successful
● galaxy8c and 8l noise spoofing was less successful
● Two possible conclusions:

○ The model is now better able to model larger changes between iphone and galaxy (more 
success between distinguishing between the two models) at the cost of lower intermodel 
accuracy (due to smaller variation between classes being overwritten in training)

○ The uniform random noise injection contributed towards the model leaning towards iphone 
due to distribution shape association



2D-CNN classifier

Tested on Raw images 

Tested on NoisePrints

Tested on LBP data

Results were subpar

Demonstrated the strength of wavelet coefficients and histograming



2D-CNN - Raw images



2D-CNN - Noiseprints



2D-CNN - LBP



1D-CNN classifier

Results were very similar to MLP model



1D-CNN classifier

MLP     1DCNN



Cross Validation MLP

No 
noticeable 
changes

NoCV       CV



Recipes for success

● Poison attack: 
○ Simple Denoising, least noticable
○ Weighted noise, Random noise makes the model misclassify
○ Be careful of SSIM values

● Evasion:
○ Test classification to identify bias in network and attempt to hand craft noise to spoof 

network



Future Work

● Larger crop windows (either full size or regional crops)
● Machine Learning based PRNU extraction
● More hyperparameter tuning of models
● Auxiliary Classifier Generative Adversarial Network (AC-GAN)
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