
Faking Sensor Noise
Information

Presented by Justin Chang on 5/18/2022
Master’s Defense

Advisor: Dr. Chris Pollett
Committee: Dr. Mark Stamp & Dr. Robert Chun

Outline

● Project goals
● Background
● Related works
● Dataset
● Model Design and Implementation
● Experiments and Results
● Recipes for Success
● Future work
● References

Project Goals

● Determine sensor noise patterns for camera models
● Spoof individual camera model sensor noise patterns
● Model sensor noise for individual cameras

Background - Digital Image Processing

Background - What is a noiseprint?

● Sensor noise pattern (“noiseprint”)

● Fixed Pattern Noise (FPN): Dark currents

● Photo-Response Non-Uniformity (PRNU):

Pixel sensitivity

● Different qualities of noise

● Scene invariant noise is better

Background: Denoising Filters

● Signal Waveform Decomposition
● Reconstruction
● Taylor Series
● Fourier Transform
● Wavelet Decomposition

Background - Local Binary Patterns

● Texture Descriptor
● Compact and fast
● Sliding window

Background - Convolutional Neural Networks
(CNNs)

● Sliding window
● Self Learning Filters
● Localized features

Background - Generative Adversarial Networks
(GANs)

● Two competing models
● Real or Fake?

Related Works

● Sensor Pattern Noise discovery [Lucas et al.]
● Insertion of camera noiseprints onto artificially generated images [Cozzolino

et al.]
● Arbitrary attacks on discriminative networks [Chen et al.]
● Tests in robustness of camera identification [Samaras et al.]
● PCA based denoising of noiseprints [Li et al.]

Dataset

● Simulate an attack on victims personal phone
● 3 Different Cameras (1 iPhone X and 2 Samsung Galaxy S8s)
● Old images and new images
● Brightness
● Indoors/Outdoors
● Temperatures
● Humidity
● Default settings

Dataset

● GAN Training: 240 images per class
● Classifier Training: 275 images for classifier, 30 test set

Implementation: Preprocessing GAN

● Center crop of 128x128x3 from dataset
● Multiple Regional Crops are better but increase training time
● Noise = Original Image - Denoised Image
● Arrays of sensor noise are small float values
● Saved as npz files readable by NumPy

GAN the model

Generator:
● Transforms Random Noise Vector into an 128 x 128 x 3 array

GAN the model

Discriminator:
● CNN based image classifier
● Classifies Noise from specific camera model as real or fake

GAN the model

● Generator and Discriminator is trained simultaneously
● Both models improve, but will only be using generator
● Model checkpoint and will be used later to generate fake noise

Preprocessing the Classifier

● Center crops for all images
● Input data is a 1-D vector of image features
● LBP [128x128] of noiseprint -> histogram [26x3]->input
● 3 RGB channels -> 3 Wavelet coefficients -> nth moment of the

mean of wavelet coefficient matrix -> 3x3x9
● Input data of shape 26x3 + 3x3x9 = 159
● Test Images: Spoofed images + original

○ Denoise -> GAN generates np -> add np to denoised image

Training and testing the Classifier

● Multiple Models used
● Logistic Regression (train: 92%, val: 85%)
● K-means (train, val: 80%)
● MLP gave the best results (2 layers: 256 nodes and 128

nodes) (train: 92%, val: 88%)

Experiments and Ideal Results

Experiments and Ideal Results

Experiments and Ideal Results

Double JPG compression

● Initially saved trained, test, and spoofed cropped images to
jpgs

● Picture initially was jpg format
● Double compression lowered accuracy
● Classifier saving to png is reasonable to increase accuracy

Denoising methods

Denoising methods

● Went with
denoise_tv_chambolle
denoising method (variation of
total denoising)

● Closest to 50% accuracy on
denoised images

● less bias than median
denoising

Rounding

● Can’t inject noise in the model as float for realistic attack
● Task: Inject noise in images and save them
● Problem: Conversion of floats to ints
● Made model slightly more biased to iphone noise
● Deemed necessary since it would be necessary to more

accurately represent noise

Rounding
Before rounding After rounding

Model Persistent Changes

● Saving picture in lossless format
● Using total variation denoising
● Rounding

Weighting noiseprints

Weighting Noiseprints

Iphone noiseprints
fool model better
at lower weights

Galaxy8
noiseprints fool
model better at
higher weights

Conclusion: The model associates smooth images with iphones and noisy images with galaxies

Random Noise Injection

● Initially thought that that due to previous experiment, a large amount of
random noise would classify the image as galaxy8.

● This could be due to the uniform distribution implying that the model thinks
the iphone noise is more uniform.

Random Pixel Test

● Purely Random RGB values between 0 to 255
● All 100 generated pictures were classified as iphone
● Random distribution was set to uniform
● Confirmed theory from previous experiment

Inter-Model Classification

● Do different phones of the same model have distinguishable noiseprints?
● Novel problem that hasn’t been studied
● 3 classes: iphone, galaxy8c, galaxy8l
● 3 GANs

Random Noise Injection into Training Set

Delta2

Original

Random Noise Injection into Training Set

● Attempt at regularization of the model
● Comparable Results for original test images
● iphone noise spoofing was more successful
● galaxy8c and 8l noise spoofing was less successful
● Two possible conclusions:

○ The model is now better able to model larger changes between iphone and galaxy (more
success between distinguishing between the two models) at the cost of lower intermodel
accuracy (due to smaller variation between classes being overwritten in training)

○ The uniform random noise injection contributed towards the model leaning towards iphone
due to distribution shape association

2D-CNN classifier

Tested on Raw images

Tested on NoisePrints

Tested on LBP data

Results were subpar

Demonstrated the strength of wavelet coefficients and histograming

2D-CNN - Raw images

2D-CNN - Noiseprints

2D-CNN - LBP

1D-CNN classifier

Results were very similar to MLP model

1D-CNN classifier

MLP 1DCNN

Cross Validation MLP

No
noticeable
changes

NoCV CV

Recipes for success

● Poison attack:
○ Simple Denoising, least noticable
○ Weighted noise, Random noise makes the model misclassify
○ Be careful of SSIM values

● Evasion:
○ Test classification to identify bias in network and attempt to hand craft noise to spoof

network

Future Work

● Larger crop windows (either full size or regional crops)
● Machine Learning based PRNU extraction
● More hyperparameter tuning of models
● Auxiliary Classifier Generative Adversarial Network (AC-GAN)

References

J. Lukas, J. Fridrich and M. Goljan, "Digital camera identification from sensor pattern noise," in IEEE Transactions on
Information Forensics and Security, vol. 1, no. 2, pp. 205-214, June 2006, doi: 10.1109/TIFS.2006.873602.

R. Li, Y. Guan and C. Li, "PCA-based denoising of Sensor Pattern Noise for source camera identification," 2014 IEEE
China Summit & International Conference on Signal and Information Processing (ChinaSIP), 2014, pp. 436-440, doi:
10.1109/ChinaSIP.2014.6889280.

D. Cozzolino, J. Thies, A. Rössler, M. Nießner and L. Verdoliva, "SpoC: Spoofing Camera Fingerprints," 2021 IEEE/CVF
Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), 2021, pp. 990-1000, doi:
10.1109/CVPRW53098.2021.00110.

C. Chen, X. Zhao and M. C. Stamm, "Generative Adversarial Attacks Against Deep-Learning-Based Camera Model
Identification," in IEEE Transactions on Information Forensics and Security, doi: 10.1109/TIFS.2019.2945198.

S. Samaras, V. Mygdalis and I. Pitas, "Robustness in blind camera identification," 2016 23rd International Conference
on Pattern Recognition (ICPR), 2016, pp. 3874-3879, doi: 10.1109/ICPR.2016.7900239.

Thank You!

