Translating Natural Language
Queries to SPARQL

Shreya Bhajikhaye

Table of Contents

* Introduction

* Background

* Dataset Used

* System Design

* Analysis and Results
* Conclusion

Introduction

* Question Answering Systems can be considered an advanced form of
Information Retrieval systems

* Answer questions posed by humans in natural language

e Search through a structured knowledge base or unstructured
collection of documents

* Closed domain or Open domain
* Transform English language questions to SPARQL query for Wikidata

Background

Semantic Web & RDF

* “The Semantic Web provides a common framework that allows data to be
shared and reused across application, enterprise, and community
boundaries.”

* The documents on the web are in various formats like XML, HTML, relational
etc.

* The Resource Description Framework (RDF) models different formats of data
to a machine-readable format.

* Resource descriptions in RDF are expressed as triples.

Background

RDF

* Example triple : <subject> <predicate> <object>

<The Nightwatch> <was created by> <Rembrandt van Rijn> .

e RDF database records

<The Nightwatch> <was created by> <Rembrandt van Rijn> .
<The Nightwatch> <was created in> <1642> .

<The Nightwatch> <has medium> <o0oil on canvas>

<Rembrandt van Rijn> <was born in> <1606> .

<Rembrandt van Rijn> <has nationality> <Dutch>

<Johannes Vermeer> <has nationality> <Dutch> .

<Woman with a Balance> <was created by> <Johannes Vermeer>

<Woman with a Balance> <has medium> <oil on canvas> .

Background

RDF

The Nightwatch Woman with a Balance

Was
created in

has medium has medium

Rembrandt van Rijn oil on canvas Johannes Vermeer

as nationality as nationality

Background

SPARQL

 SPARQL is the standard language to query graph databases represented in the
RDF format.

* Two components :

e SELECT clause defines the output variables
 WHERE clause provides basic graph pattern

SELECT <variables>
WHERE
<graph pattern>

Background

SPARQL

* Search for paintings that have medium as oil on canvas

WHERE {

?painting <has medium> <oil on canvas> . The Nightwatch

¥

Woman with a Balance

Background

SPARQL

The Nightwatch Woman with a Balance

Was was
createdin created by

was
created by

has medium has medium

Rembrandt van Rijn oil on canvas Johannes Vermeer

as bom in as nationality as nationality

Background

SPARQL

 Complex queries : Paintings by any artist who is Dutch

SELECT ?artist ‘?painting

WHERE {
fartist <has nationality> <Dutch> .

’painting <was created by> ?fartist .

¥

Rembrandt van Rijn The Nightwatch

Johannes Vermeer Woman with a Balance

Background

SPARQL

The Nightwatch Woman with a Balance

was was
created in created by

was
created by

has medium has medium

Rembrandt van Rijn oil on canvas Johannes Vermeer

has nationality has nationality

Dutch

Background

SPARQL Wikidata Query

» Refer to every document and relation by its IRI
* Namespace : wd and wdt

. . . SELECT ?2artist ? inti
SELECT ?fartist ?painting arts batit_td

WHERE { WHERE {
Partist <has nationality> <Dutch> . EEHEEILES wdt b2y wd:Q170072 .
?painting <was created by> ?artist . ?painting wdt:P170 wd:Q5598 .

} }

Background

Word Vectorization

* One hot vector

* Represent categorical data as a binary vector
* [red, green, green] =[1,0],[0,1],[0,1]]

 Word Embedding

e Conveys the meaning of the word in a
numerical format

* Words with similar meaning lie closer to each
other in the vector space

Summer
Spring
Winter
King
Queen
Computer
Phone

Television

Background

Recurrent Neural Networks

* Allows its own output to be used as input
* Vanishing gradient problem i

LSTM

 Add memory cell to preserve long term

dependencies
* Use gating to control information flow

—

-

Background

Recursive Neural Networks

* Apply the same set of weights
recursively on a structured input

* Improve encoding of sentences using
their structure

Tree-LSTM

* Generalization of the LSTM model
* Tree-structured input

e Useful in semantic relatedness and
sentiment classification

1 12 Y3 i1
) x : A
; X : X
rq r9 ra ryg
(73]
*

R S
r4q HH rg

Background

Child Sum Tree-LSTM Example: What jumped over the lazy dog ?
e Children output and memory cell are .
jumped

summed / \A\.?

* Does not take into account child order Wit) '
d (0]
* Works with variable number of children / lg \
» Shares gate weight between children
over the lazy

Used in dependency Tree-LSTM

k €child(j)

Dataset Used

Lc-QuAD dataset

* 30,000 questions in English language across 38 templates

* Query types — list, boolean and count

* ~6500 list queries across 8 unique SPARQL template
» Dataset create with 600 questions across 3 templates

"template": "E REF ?F",

"template_id": "1",

"question": "What is the capital of Denmark?",
"NNQT_question": "What is <capital city> of <Denmark> ?",
"sparql_wikidata":

"select distinct Panswer where { wd:Q35 wdt:P36 ?answer}”

ID SPARQL Query Template Total
Count
SELECT DISTINCT ?uri WHERE { <S> <P> ?uri } 3304
SELECT DISTINCT ?uri WHERE { ?uri <P><0>} 740
SELECT DISTINCT ?uri WHERE { <S> <P1> ?uri . ?uri <P2><0>} 2505

Dataset Used

Template ID SPARQL Question Template Total Count

1 SELECT DISTINCT ?uri WHERE { <S> <P> ?uri } 3304
2 SELECT DISTINCT ?uri WHERE { ?uri <P> <0O> } 740

3 SELECT DISTINCT ?uri WHERE { <S> <P1> ?uri . ?uri <P2><0> } 2505
4 SELECT DISTINCT ?uri WHERE { <S> <P1><0> . <0> <P2> ?uri } 3713
5 SELECT DISTINCT ?uri WHERE { <S> <P1> ?0bj . ?obj <P2> ?uri } 2969
6 SELECT DISTINCT ?uri WHERE { <S> <P1><0> . <0> <P2> ?uri } 2943
7 SELECT DISTINCT ?uri WHERE { ?uri <P> <O> . ?uri rdf:instance <O> } 2042
8 SELECT DISTINCT ?uri WHERE { <S> <P> ?uri. ?uri rdf:instance <O> } 1872

System Design

Main components of the proposed system are as follows:

* Question Analysis

* Template Classification
* Phrase Matching

* Query Construction

Template
Classifier

Input Question in
Natural Language
Phrase

Matching

Query
Construction

Output SPARQL
query

System Design

Question Analysis
* Stanza library for text analysis
* Part-of-speech tagging : annotate tokens

WP JJ [EN) (IN) [
What is the capital city of Denmark?

* Dependency parsing : build the dependency parse tree

punct
nsubj
det nmaod
PRON mp"‘m DET ADJ*amodS NOUN [ADF’I"C‘BseﬁPROPN PUNCT

What is the capital mty of Denmark ?

System Design

Template Classification

* |dentify the type of SPARQL query equivalent to the input question
* Tree-LSTM model implemented with PyTorch library

* Feature set

* Tokens
POS tags
Syntactic tree structure
Relationship dependency tags
Characters

System Design

[

[

v

Dependency
parsing

Build vocabulary

Build
dependency
tree structure

v

Build
embedding
models

| Train Tree-LSTM

model

System Design

Phrase Matching Example: What is the capital of Denmark?
* Named Entity Recognition |
 Entity and Relation Linking with Wikidata =~ "erisiesicidersm |

. - "<http://www.wikidata.org/entity/Q35:",
* Falcon 2.0 library “Denmark"
ﬂ;?latians_uikidata” [

- "<http://www.wikidata.org/entity/P36>",
"capital®

System Design

Query Construction

* Template classification captures the semantic structure of the user question
with slots to be filled

* Entities and predicates to be filled from phrase matching phrase
Example: What is the capital of Denmark?

|Identified SPARQL template :
SELECT DISTINCT 7?answer WHERE { ?answer wdt:<P> wd:<R> }
Query constructed :

SELECT DISTINCT 7?answer WHERE { ?answer wdt:P36 wd:Q35 }

Analysis and Results

Experiment Design
* The system was deployed on Google collaboratory.

* The Lc-QuaD dataset consisted of ~¥6000 English questions and their
equivalent SPARQL query.

* To improve the dataset, 600 questions were cleaned by correcting their
grammar and the SPARQL template id for 3 classes.

* This was separated into a training dataset of 480 questions and a testing
dataset of 120 questions that was used to evaluate the Tree-LSTM
classification model.

* The testing dataset of 120 questions was used to verify the query results of
the system.

* The model was trained for 20 epochs for each experiment.

Analysis and Results

Template Classification
 Composition of dataset

Composition of the training dataset

Correctly identified templates

Total data size(training / test)

Uncleaned full set records of three Template 1 (3327) + 56.5% 6572 (5258 /1314)
templates Template 2 (740)+

Template 3 (2505)
Cleaned dataset with subset of two Template 1 (200) + 70% 400 (320/ 80)
templates Template 2 (200)
Cleaned dataset with subset of three Template 1 (200) + 72.83% 600 (480/120)

templates

Template 2 (200) +

Template 3 (200)

Analysis and Results

Template Classification

e Feature Selection

Word Embedding

Test data Composition Feature List Accuracy

Template 1 + Template 2 Dependency Tree + Word Embedding 62.5%

(320 training records / 80 test records) Dependency Tree + Parts-of-speech + Word embedding 65.5%
Dependency Tree + Parts-of-speech + Relation tags + Character + | 70%
Word Embedding

Template 1 + Template 2 + Template 3 Dependency Tree + Word Embedding 71.6%

(480 training records / 120 test records) Dependency Tree + Parts-of-speech + Word embedding 72.5%
Dependency Tree + Parts-of-speech + Relation tags + Character + | 72.83%

Analysis and Results

Parameter Tuning

* Small dataset size of 600 questions

* Prevent overfitting with aggressive regularization and curtail learning rate
Weight decay

* Update weights every epoch with multiplicative factor less than 1
* Prevent exploding gradient

Dropout
* Drop random units with their connections to prevent overfitting
Adaptive learning rate

e Accuracy stagnant after few epochs ; training loss increasing
» Step scheduler periodically decreased learning rate

Analysis and Results

Parameter Tuning
* Final parameters of the model

Parameter Value

Input dimensions 444 x 1

Tree-LSTM memory dimensions 150x 1

Epochs 20

Batch size 25

Learning rate 1x10?

Weight decay 0.1x103

Dropout 0.2

Loss function Cross entropy loss
Optimizer Adam optimizer
Scheduler Stepwise learning rate decay
LR step size once every 5 epochs
LR step decay 0.1

Analysis and Results

Phrase Matching
* Alternate entity linking library : OpenTapioca
* Works better than Falcon 2.0 for person, organization and location
* Falcon 2.0 is a joint entity and relation linking module

Example: What is the atomic number of Helium?

- “entities wikidata": [[What] is the atomic number of WHelium]?
[Helium (Q57@6286)
"<http: /e wikidata.org/entity/Q5682", American alternative rock band
"Helium" Rank: -0.43, phrase: 12.77
Statements 14, sitelinks: 1
] score: -1.32133380264865876
|
"relations_wikidata": [HELium (Q31448677)
"<http://www.wikidata.org/entity/P1086>", Statements: 3, sitelinks: 1
"atomic number” Score: -1.3888897497602446

]

Helium {Q19245757)
street in Oud Gastel, the Metherlands

..........

-1.3915848745378922

Analysis and Results

Query Construction

* For a test dataset of 120 questions in English language, the highest accuracy
achieved by the Tree-LSTM model was 72.83%. This model identifies the
SPARQL query for the input question.

 The Falcon 2.0 API results the list of entities and relations that are combined
with the classification results.

* The resultant queries are checked against manually generated queries.
Queries are correct if they give the desired answer or are meaningfully
correct.

* From the 120 questions, 60% queries were constructed correctly.

Analysis and Results

Query Construction
* Example Result

What i1s the total equity of Micron Technology?
["SELECT DISTINCT ?7answer WHERE { wd:01197548 wdt:PZ2137
?answer} ']

Micron Technology (qiio7548) total equity (2137

amount of equity value for an entity

American multinational corporation based in Boise, Idaho which produce,
equity | shareholder equity

many forms of semiconductor devices.
Micron Technology, Inc

Analysis and Results

Query Construction
* Example Result

What i1s Sanskrit’s writing system?
['"SELECT DISTINCT ?7answer WHERE { wd:Q11059 wdt:P282 ?answer}’',
'SELECT DISTINCT ?Zanswer WHERE { wd:058778 wdt:P282 7?answer} ']

Sanskrit (o050 writing system (pzs-)
ancient Indian language alphabet, character set or other system of writing used by a language,

alphabet | script

system (Qss778)

set of interacting or interdependent components

Analysis and Results

Query Construction

* Types of errors possible:
* Misclassification of template
* Incorrect entity and relation linking
* Multiple triple candidates
* Incorrect grammar of input user question

Conclusion

e Resultant query can be executed on Wikidata query service to get the
desired answer

* The system has a correctness of 60% across 3 unique SPARQL
templates

* Lack of ontology recognition. Can be improved with custom entity
and relation linking module

* Extend training dataset for a larger template coverage as well as the
number of questions under each template

