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Introduction

• Question Answering Systems can be considered an advanced form of 
Information Retrieval systems

• Answer questions posed by humans in natural language

• Search through a structured knowledge base or unstructured 
collection of documents

• Closed domain or Open domain

• Transform English language questions to SPARQL query for Wikidata



Background

Semantic Web & RDF
• “The Semantic Web provides a common framework that allows data to be 

shared and reused across application, enterprise, and community 
boundaries.”

• The documents on the web are in various formats like XML, HTML, relational 
etc. 

• The Resource Description Framework (RDF) models different formats of data 
to a machine-readable format.

• Resource descriptions in RDF are expressed as triples.



Background

RDF
• Example triple : <subject> <predicate> <object>

• RDF database records



Background

RDF



Background

SPARQL
• SPARQL is the standard language to query graph databases represented in the 

RDF format.

• Two components :
• SELECT clause defines the output variables

• WHERE clause provides basic graph pattern



Background

SPARQL
• Search for paintings that have medium as oil on canvas



Background

SPARQL



Background

SPARQL
• Complex queries : Paintings by any artist who is Dutch



Background

SPARQL



Background

SPARQL Wikidata Query
• Refer to every document and relation by its IRI

• Namespace : wd and wdt

SELECT ?artist ?painting 

WHERE {

?artist    wdt:P27 wd:Q170072 .

?painting  wdt:P170 wd:Q5598 .

}



Background

Word Vectorization
• One hot vector

• Represent categorical data as a binary vector

• [red, green, green]  = [[1,0] ,[0,1] ,[0,1]] 

• Word Embedding
• Conveys the meaning of the word in a 

numerical format

• Words with similar meaning lie closer to each 
other in the vector space 

Summer
Spring
Winter 

King 
Queen

Computer 
Phone

Television



Background

Recurrent Neural Networks
• Allows its own output to be used as input

• Vanishing gradient problem

LSTM
• Add memory cell to preserve long term 

dependencies

• Use gating to control information flow



Background

Recursive Neural Networks
• Apply the same set of weights 

recursively on a structured input

• Improve encoding of sentences using 
their structure

Tree-LSTM
• Generalization of the LSTM model

• Tree-structured input

• Useful in semantic relatedness and 
sentiment classification



Background

Child Sum Tree-LSTM
• Children output and memory cell are 

summed

• Does not take into account child order

• Works with variable number of children

• Shares gate weight between children

• Used in dependency Tree-LSTM 

෩ℎ𝑗 = 

𝑘 ∈𝑐ℎ𝑖𝑙𝑑(𝑗)

ℎ𝑘

Example: What jumped over the lazy dog ?

jumped

What

over the

dog

lazy

?



Dataset Used

Lc-QuAD dataset
• 30,000 questions in English language across 38 templates

• Query types – list, boolean and count

• ~6500 list queries across 8 unique SPARQL template

• Dataset create with 600 questions across 3 templates

ID SPARQL Query Template Total 

Count

1 SELECT DISTINCT ?uri WHERE { <S> <P> ?uri }  3304

2 SELECT DISTINCT ?uri WHERE { ?uri <P> <O> }                            740

3 SELECT DISTINCT ?uri WHERE { <S> <P1> ?uri . ?uri <P2> <O> }                                    2505



Dataset Used
Template ID SPARQL Question Template Total Count

1 SELECT DISTINCT ?uri WHERE { <S> <P> ?uri }  3304

2 SELECT DISTINCT ?uri WHERE { ?uri <P> <O> }                            740

3 SELECT DISTINCT ?uri WHERE { <S> <P1> ?uri . ?uri <P2> <O> }                                    2505

4 SELECT DISTINCT ?uri WHERE { <S> <P1> <O> . <O> <P2> ?uri } 3713

5 SELECT DISTINCT ?uri WHERE { <S> <P1> ?obj . ?obj <P2> ?uri } 2969

6 SELECT DISTINCT ?uri WHERE { <S> <P1> <O> . <O> <P2> ?uri }                                2943

7 SELECT DISTINCT ?uri WHERE { ?uri <P> <O> . ?uri rdf:instance <O> } 2042

8 SELECT DISTINCT ?uri WHERE { <S> <P> ?uri. ?uri rdf:instance <O> } 1872



System Design

Main components of the proposed system are as follows:
• Question Analysis 

• Template Classification

• Phrase Matching 

• Query Construction



System Design

Question Analysis
• Stanza library for text analysis

• Part-of-speech tagging : annotate tokens

• Dependency parsing : build the dependency parse tree



System Design

Template Classification
• Identify the type of SPARQL query equivalent to the input question

• Tree-LSTM model implemented with PyTorch library

• Feature set 
• Tokens

• POS tags

• Syntactic tree structure

• Relationship dependency tags

• Characters



System Design

Training data
Dependency 

parsing

Build vocabulary
Build 

embedding 
models

Train Tree-LSTM 
model

Build 
dependency 

tree structure



System Design

Phrase Matching
• Named Entity Recognition

• Entity and Relation Linking with Wikidata

• Falcon 2.0 library

Example: What is the capital of Denmark?



System Design

Query Construction
• Template classification captures the semantic structure of the user question 

with slots to be filled

• Entities and predicates to be filled from phrase matching phrase

Example: What is the capital of Denmark?

Identified SPARQL template :

Query constructed :



Analysis and Results

Experiment Design
• The system was deployed on Google collaboratory. 
• The Lc-QuaD dataset consisted of ~6000 English questions and their 

equivalent SPARQL query.
• To improve the dataset, 600 questions were cleaned by correcting their 

grammar and the SPARQL template id for 3 classes.
• This was separated into a training dataset of 480 questions and a testing 

dataset of 120 questions that was used to evaluate the Tree-LSTM 
classification model.

• The testing dataset of 120 questions was used to verify the query results of 
the system. 

• The model was trained for 20 epochs for each experiment.



Analysis and Results

Template Classification
• Composition of dataset

Composition of the training dataset Correctly identified templates Total data size(training / test)

Uncleaned full set records of three 

templates

Template 1 (3327) + 

Template 2 (740)+ 

Template 3 (2505)

56.5% 6572 ( 5258 /1314)

Cleaned dataset with subset of two 

templates

Template 1 (200) + 

Template 2 (200)

70% 400 ( 320 / 80)

Cleaned dataset with subset of three 

templates

Template 1 (200) + 

Template 2 (200) + 

Template 3 (200) 

72.83% 600 ( 480 / 120 )



Analysis and Results

Template Classification
• Feature Selection

Test data Composition Feature List Accuracy

Template 1 + Template 2 

(320 training records / 80 test records  )

Dependency Tree + Word Embedding 62.5%

Dependency Tree + Parts-of-speech + Word embedding 65.5%

Dependency Tree + Parts-of-speech + Relation tags + Character + 

Word Embedding

70%

Template 1  + Template 2  + Template 3 

(480 training records / 120 test records )

Dependency Tree + Word Embedding 71.6%

Dependency Tree + Parts-of-speech + Word embedding 72.5%

Dependency Tree + Parts-of-speech + Relation tags + Character + 

Word Embedding

72.83%



Analysis and Results

Parameter Tuning
• Small dataset size of 600 questions

• Prevent overfitting with aggressive regularization and curtail learning rate

• Weight decay
• Update weights every epoch with multiplicative factor less than 1

• Prevent exploding gradient

• Dropout
• Drop random units with their connections to prevent overfitting

• Adaptive learning rate
• Accuracy stagnant after few epochs ; training loss increasing

• Step scheduler periodically decreased learning rate



Analysis and Results

Parameter Tuning
• Final parameters of the model

Parameter Value

Input dimensions 444 x 1

Tree-LSTM memory dimensions 150 x 1

Epochs 20

Batch size 25

Learning rate 1 x 10-1

Weight decay 0.1 x 10-3

Dropout 0.2

Loss function Cross entropy loss

Optimizer Adam optimizer

Scheduler Stepwise learning rate decay

LR step size once every 5 epochs

LR step decay 0.1



Analysis and Results

Phrase Matching
• Alternate entity linking library : OpenTapioca

• Works better than Falcon 2.0 for person, organization and location

• Falcon 2.0 is a joint entity and relation linking module

Example: What is the atomic number of Helium?



Analysis and Results

Query Construction
• For a test dataset of 120 questions in English language, the highest accuracy 

achieved by the Tree-LSTM model was 72.83%. This model identifies the 
SPARQL query for the input question.

• The Falcon 2.0 API results the list of entities and relations that are combined 
with the classification results.

• The resultant queries are checked against manually generated queries. 
Queries are correct if they give the desired answer or are meaningfully 
correct.

• From the 120 questions, 60% queries were constructed correctly.



Analysis and Results

Query Construction
• Example Result



Analysis and Results

Query Construction 
• Example Result



Analysis and Results

Query Construction
• Types of errors possible:

• Misclassification of template

• Incorrect entity and relation linking

• Multiple triple candidates

• Incorrect grammar of input user question



Conclusion

• Resultant query can be executed on Wikidata query service to get the 
desired answer

• The system has a correctness of  60% across 3 unique SPARQL 
templates

• Lack of ontology recognition. Can be improved with custom entity 
and relation linking module

• Extend training dataset for a larger template coverage as well as the 
number of questions under each template


