Translating Natural Language Queries to SPARQL

Shreya Bhajikhaye
Table of Contents

• Introduction
• Background
• Dataset Used
• System Design
• Analysis and Results
• Conclusion
Introduction

• Question Answering Systems can be considered an advanced form of Information Retrieval systems
• Answer questions posed by humans in natural language
• Search through a structured knowledge base or unstructured collection of documents
• Closed domain or Open domain
• Transform English language questions to SPARQL query for Wikidata
Background

Semantic Web & RDF

• “The Semantic Web provides a common framework that allows data to be shared and reused across application, enterprise, and community boundaries.”
• The documents on the web are in various formats like XML, HTML, relational etc.
• The Resource Description Framework (RDF) models different formats of data to a machine-readable format.
• Resource descriptions in RDF are expressed as triples.
Background

RDF

• Example triple: <subject> <predicate> <object>

<The Nightwatch> <was created by> <Rembrandt van Rijn> .

• RDF database records

...<The Nightwatch> <was created by> <Rembrandt van Rijn> .
<The Nightwatch> <was created in> <1642> .
<The Nightwatch> <has medium> <oil on canvas> .
<Rembrandt van Rijn> <was born in> <1606> .
<Rembrandt van Rijn> <has nationality> <Dutch> .
<Johannes Vermeer> <has nationality> <Dutch> .
<Woman with a Balance> <was created by> <Johannes Vermeer> .
<Woman with a Balance> <has medium> <oil on canvas> .
...
Background

RDF
Background

SPARQL

- SPARQL is the standard language to query graph databases represented in the RDF format.
- Two components:
 - SELECT clause defines the output variables
 - WHERE clause provides basic graph pattern

```
SELECT <variables>
WHERE {
  <graph pattern>
}
```
Background

SPARQL

- Search for paintings that have medium as oil on canvas

```sparql
SELECT ?painting
WHERE {
  ?painting <has medium> <oil on canvas> .
}
```

<table>
<thead>
<tr>
<th>painting</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Nightwatch</td>
</tr>
<tr>
<td>Woman with a Balance</td>
</tr>
</tbody>
</table>
Background

SPARQL
Background

SPARQL

• Complex queries: Paintings by any artist who is Dutch

```sparql
SELECT ?artist ?painting
WHERE {
    ?artist <has nationality> <Dutch> .
    ?painting <was created by> ?artist .
}
```

<table>
<thead>
<tr>
<th>artist</th>
<th>painting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rembrandt van Rijn</td>
<td>The Nightwatch</td>
</tr>
<tr>
<td>Johannes Vermeer</td>
<td>Woman with a Balance</td>
</tr>
</tbody>
</table>
Background

SPARQL
Background

SPARQL Wikidata Query
- Refer to every document and relation by its IRI
- Namespace : wd and wdt

```sparql
SELECT ?artist ?painting
WHERE {
    ?artist <has nationality> <Dutch> .
    ?painting <was created by> ?artist .
}
```

```sparql
SELECT ?artist ?painting
WHERE {
    ?painting wdt:P170 wd:Q5598 .
}
```
Background

Word Vectorization

• One hot vector
 • Represent categorical data as a binary vector
 • \([\text{red, green, green}] = [[1,0],[0,1],[0,1]]\)

• Word Embedding
 • Conveys the meaning of the word in a numerical format
 • Words with similar meaning lie closer to each other in the vector space
Background

Recurrent Neural Networks
- Allows its own output to be used as input
- Vanishing gradient problem

LSTM
- Add memory cell to preserve long term dependencies
- Use gating to control information flow
Background

Recursive Neural Networks
• Apply the same set of weights recursively on a structured input
• Improve encoding of sentences using their structure

Tree-LSTM
• Generalization of the LSTM model
• Tree-structured input
• Useful in semantic relatedness and sentiment classification
Background

Child Sum Tree-LSTM

- Children output and memory cell are summed
- Does not take into account child order
- Works with variable number of children
- Shares gate weight between children
- Used in dependency Tree-LSTM

\[\tilde{h}_j = \sum_{k \in \text{child}(j)} h_k \]

Example: What jumped over the lazy dog?
Dataset Used

Lc-QuAD dataset

- 30,000 questions in English language across 38 templates
- Query types – list, boolean and count
- ~6500 list queries across 8 unique SPARQL template
- Dataset create with 600 questions across 3 templates

<table>
<thead>
<tr>
<th>ID</th>
<th>SPARQL Query Template</th>
<th>Total Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>SELECT DISTINCT ?uri WHERE { <S> <P> ?uri }</td>
<td>3304</td>
</tr>
<tr>
<td>2</td>
<td>SELECT DISTINCT ?uri WHERE { ?uri <P> <O> }</td>
<td>740</td>
</tr>
<tr>
<td>3</td>
<td>SELECT DISTINCT ?uri WHERE { <S> <P1> ?uri . ?uri <P2> <O> }</td>
<td>2505</td>
</tr>
</tbody>
</table>

```json
{
  "template": "E REF ?F",
  "template_id": "1",
  "question": "What is the capital of Denmark?",
  "NQNT_question": "What is <capital city> of <Denmark> ?",
  "sparql_wikidata": "select distinct ?answer where { wd:Q35 wdt:P36 ?answer}" 
}
```
Dataset Used

<table>
<thead>
<tr>
<th>Template ID</th>
<th>SPARQL Question Template</th>
<th>Total Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>SELECT DISTINCT ?uri WHERE { <S> <P> ?uri }</td>
<td>3304</td>
</tr>
<tr>
<td>2</td>
<td>SELECT DISTINCT ?uri WHERE { ?uri <P> <O> }</td>
<td>740</td>
</tr>
<tr>
<td>3</td>
<td>SELECT DISTINCT ?uri WHERE { <S> <P1> ?uri . ?uri <P2> <O> }</td>
<td>2505</td>
</tr>
<tr>
<td>4</td>
<td>SELECT DISTINCT ?uri WHERE { <S> <P1> <O> . <O> <P2> ?uri }</td>
<td>3713</td>
</tr>
<tr>
<td>5</td>
<td>SELECT DISTINCT ?uri WHERE { <S> <P1> ?obj . ?obj <P2> ?uri }</td>
<td>2969</td>
</tr>
<tr>
<td>6</td>
<td>SELECT DISTINCT ?uri WHERE { <S> <P1> <O> . <O> <P2> ?uri }</td>
<td>2943</td>
</tr>
<tr>
<td>7</td>
<td>SELECT DISTINCT ?uri WHERE { ?uri <P> <O> . ?uri rdf:instance <O> }</td>
<td>2042</td>
</tr>
</tbody>
</table>
System Design

Main components of the proposed system are as follows:

- Question Analysis
- Template Classification
- Phrase Matching
- Query Construction
System Design

Question Analysis

• Stanza library for text analysis
• Part-of-speech tagging: annotate tokens

• Dependency parsing: build the dependency parse tree
System Design

Template Classification
- Identify the type of SPARQL query equivalent to the input question
- Tree-LSTM model implemented with PyTorch library
- Feature set
 - Tokens
 - POS tags
 - Syntactic tree structure
 - Relationship dependency tags
 - Characters
System Design

- Training data
- Dependency parsing
- Build vocabulary
- Build dependency tree structure
- Build embedding models
- Train Tree-LSTM model
System Design

Phrase Matching

- Named Entity Recognition
- Entity and Relation Linking with Wikidata
- Falcon 2.0 library

Example: What is the capital of Denmark?

```json
{
  "entities_wikidata": [
    "<http://www.wikidata.org/entity/Q55>"
  ],
  "relations_wikidata": [
    "<http://www.wikidata.org/entity/P36>"
  ],
  "capital": "Denmark"
}
```
System Design

Query Construction

• Template classification captures the semantic structure of the user question with slots to be filled
• Entities and predicates to be filled from phrase matching phrase

Example: What is the capital of Denmark?

Identified SPARQL template:

```
SELECT DISTINCT ?answer WHERE { ?answer wdt:P wd:<R> }
```

Query constructed:

```
SELECT DISTINCT ?answer WHERE { ?answer wdt:P36 wd:Q35 }
```
Analysis and Results

Experiment Design

• The system was deployed on Google collaboratory.
• The Lc-QuaD dataset consisted of ~6000 English questions and their equivalent SPARQL query.
• To improve the dataset, 600 questions were cleaned by correcting their grammar and the SPARQL template id for 3 classes.
• This was separated into a training dataset of 480 questions and a testing dataset of 120 questions that was used to evaluate the Tree-LSTM classification model.
• The testing dataset of 120 questions was used to verify the query results of the system.
• The model was trained for 20 epochs for each experiment.
Analysis and Results

Template Classification

- Composition of dataset

<table>
<thead>
<tr>
<th>Composition of the training dataset</th>
<th>Correctly identified templates</th>
<th>Total data size(training / test)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Uncleaned full set records of three templates</td>
<td>Template 1 (3327) + Template 2 (740) + Template 3 (2505)</td>
<td>56.5%</td>
</tr>
<tr>
<td>Cleaned dataset with subset of two templates</td>
<td>Template 1 (200) + Template 2 (200)</td>
<td>70%</td>
</tr>
<tr>
<td>Cleaned dataset with subset of three templates</td>
<td>Template 1 (200) + Template 2 (200) + Template 3 (200)</td>
<td>72.83%</td>
</tr>
</tbody>
</table>
Analysis and Results

Template Classification
- Feature Selection

<table>
<thead>
<tr>
<th>Test data Composition</th>
<th>Feature List</th>
<th>Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Template 1 + Template 2 (320 training records / 80 test records)</td>
<td>Dependency Tree + Word Embedding</td>
<td>62.5%</td>
</tr>
<tr>
<td></td>
<td>Dependency Tree + Parts-of-speech + Word embedding</td>
<td>65.5%</td>
</tr>
<tr>
<td></td>
<td>Dependency Tree + Parts-of-speech + Relation tags + Character + Word Embedding</td>
<td>70%</td>
</tr>
<tr>
<td>Template 1 + Template 2 + Template 3 (480 training records / 120 test records)</td>
<td>Dependency Tree + Word Embedding</td>
<td>71.6%</td>
</tr>
<tr>
<td></td>
<td>Dependency Tree + Parts-of-speech + Word embedding</td>
<td>72.5%</td>
</tr>
<tr>
<td></td>
<td>Dependency Tree + Parts-of-speech + Relation tags + Character + Word Embedding</td>
<td>72.83%</td>
</tr>
</tbody>
</table>
Analysis and Results

Parameter Tuning

- Small dataset size of 600 questions
- Prevent overfitting with aggressive regularization and curtail learning rate
 - Weight decay
 - Update weights every epoch with multiplicative factor less than 1
 - Prevent exploding gradient
 - Dropout
 - Drop random units with their connections to prevent overfitting
 - Adaptive learning rate
 - Accuracy stagnant after few epochs; training loss increasing
 - Step scheduler periodically decreased learning rate
Analysis and Results

Parameter Tuning

• Final parameters of the model

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input dimensions</td>
<td>444 x 1</td>
</tr>
<tr>
<td>Tree-LSTM memory dimensions</td>
<td>150 x 1</td>
</tr>
<tr>
<td>Epochs</td>
<td>20</td>
</tr>
<tr>
<td>Batch size</td>
<td>25</td>
</tr>
<tr>
<td>Learning rate</td>
<td>1×10^{-1}</td>
</tr>
<tr>
<td>Weight decay</td>
<td>0.1×10^{-3}</td>
</tr>
<tr>
<td>Dropout</td>
<td>0.2</td>
</tr>
<tr>
<td>Loss function</td>
<td>Cross entropy loss</td>
</tr>
<tr>
<td>Optimizer</td>
<td>Adam optimizer</td>
</tr>
<tr>
<td>Scheduler</td>
<td>Stepwise learning rate decay</td>
</tr>
<tr>
<td>LR step size</td>
<td>once every 5 epochs</td>
</tr>
<tr>
<td>LR step decay</td>
<td>0.1</td>
</tr>
</tbody>
</table>
Analysis and Results

Phrase Matching

• Alternate entity linking library: OpenTapioca
• Works better than Falcon 2.0 for person, organization and location
• Falcon 2.0 is a joint entity and relation linking module

Example: What is the atomic number of Helium?
Analysis and Results

Query Construction

• For a test dataset of 120 questions in English language, the highest accuracy achieved by the Tree-LSTM model was 72.83%. This model identifies the SPARQL query for the input question.
• The Falcon 2.0 API results the list of entities and relations that are combined with the classification results.
• The resultant queries are checked against manually generated queries. Queries are correct if they give the desired answer or are meaningfully correct.
• From the 120 questions, 60% queries were constructed correctly.
Analysis and Results

Query Construction

• Example Result

What is the total equity of Micron Technology?
['SELECT DISTINCT ?answer WHERE { wd:Q1197548 wdt:P2137 ?answer }']

Micron Technology (Q1197548)
American multinational corporation based in Boise, Idaho which produces many forms of semiconductor devices.

total equity (P2137)
amount of equity value for an entity equity | shareholder equity
Analysis and Results

Query Construction

• Example Result

What is Sanskrit’s writing system?

Sanskrit
(Q11059)

- ancient Indian language
- sa | Sunscrit | skt

writing system
(P282)

- alphabet, character set or other system of writing used by a language, supported by a typeface
- alphabet | script

system
(Q58778)

- set of interacting or interdependent components
Analysis and Results

Query Construction

• Types of errors possible:
 • Misclassification of template
 • Incorrect entity and relation linking
 • Multiple triple candidates
 • Incorrect grammar of input user question
Conclusion

• Resultant query can be executed on Wikidata query service to get the desired answer

• The system has a correctness of 60% across 3 unique SPARQL templates

• Lack of ontology recognition. Can be improved with custom entity and relation linking module

• Extend training dataset for a larger template coverage as well as the number of questions under each template