
Translating Natural Language
Queries to SPARQL

Shreya Bhajikhaye

Table of Contents

• Introduction

• Background

• Dataset Used

• System Design

• Analysis and Results

• Conclusion

Introduction

• Question Answering Systems can be considered an advanced form of
Information Retrieval systems

• Answer questions posed by humans in natural language

• Search through a structured knowledge base or unstructured
collection of documents

• Closed domain or Open domain

• Transform English language questions to SPARQL query for Wikidata

Background

Semantic Web & RDF
• “The Semantic Web provides a common framework that allows data to be

shared and reused across application, enterprise, and community
boundaries.”

• The documents on the web are in various formats like XML, HTML, relational
etc.

• The Resource Description Framework (RDF) models different formats of data
to a machine-readable format.

• Resource descriptions in RDF are expressed as triples.

Background

RDF
• Example triple : <subject> <predicate> <object>

• RDF database records

Background

RDF

Background

SPARQL
• SPARQL is the standard language to query graph databases represented in the

RDF format.

• Two components :
• SELECT clause defines the output variables

• WHERE clause provides basic graph pattern

Background

SPARQL
• Search for paintings that have medium as oil on canvas

Background

SPARQL

Background

SPARQL
• Complex queries : Paintings by any artist who is Dutch

Background

SPARQL

Background

SPARQL Wikidata Query
• Refer to every document and relation by its IRI

• Namespace : wd and wdt

SELECT ?artist ?painting

WHERE {

?artist wdt:P27 wd:Q170072 .

?painting wdt:P170 wd:Q5598 .

}

Background

Word Vectorization
• One hot vector

• Represent categorical data as a binary vector

• [red, green, green] = [[1,0] ,[0,1] ,[0,1]]

• Word Embedding
• Conveys the meaning of the word in a

numerical format

• Words with similar meaning lie closer to each
other in the vector space

Summer
Spring
Winter

King
Queen

Computer
Phone

Television

Background

Recurrent Neural Networks
• Allows its own output to be used as input

• Vanishing gradient problem

LSTM
• Add memory cell to preserve long term

dependencies

• Use gating to control information flow

Background

Recursive Neural Networks
• Apply the same set of weights

recursively on a structured input

• Improve encoding of sentences using
their structure

Tree-LSTM
• Generalization of the LSTM model

• Tree-structured input

• Useful in semantic relatedness and
sentiment classification

Background

Child Sum Tree-LSTM
• Children output and memory cell are

summed

• Does not take into account child order

• Works with variable number of children

• Shares gate weight between children

• Used in dependency Tree-LSTM

෩ℎ𝑗 =

𝑘 ∈𝑐ℎ𝑖𝑙𝑑(𝑗)

ℎ𝑘

Example: What jumped over the lazy dog ?

jumped

What

over the

dog

lazy

?

Dataset Used

Lc-QuAD dataset
• 30,000 questions in English language across 38 templates

• Query types – list, boolean and count

• ~6500 list queries across 8 unique SPARQL template

• Dataset create with 600 questions across 3 templates

ID SPARQL Query Template Total

Count

1 SELECT DISTINCT ?uri WHERE { <S> <P> ?uri } 3304

2 SELECT DISTINCT ?uri WHERE { ?uri <P> <O> } 740

3 SELECT DISTINCT ?uri WHERE { <S> <P1> ?uri . ?uri <P2> <O> } 2505

Dataset Used
Template ID SPARQL Question Template Total Count

1 SELECT DISTINCT ?uri WHERE { <S> <P> ?uri } 3304

2 SELECT DISTINCT ?uri WHERE { ?uri <P> <O> } 740

3 SELECT DISTINCT ?uri WHERE { <S> <P1> ?uri . ?uri <P2> <O> } 2505

4 SELECT DISTINCT ?uri WHERE { <S> <P1> <O> . <O> <P2> ?uri } 3713

5 SELECT DISTINCT ?uri WHERE { <S> <P1> ?obj . ?obj <P2> ?uri } 2969

6 SELECT DISTINCT ?uri WHERE { <S> <P1> <O> . <O> <P2> ?uri } 2943

7 SELECT DISTINCT ?uri WHERE { ?uri <P> <O> . ?uri rdf:instance <O> } 2042

8 SELECT DISTINCT ?uri WHERE { <S> <P> ?uri. ?uri rdf:instance <O> } 1872

System Design

Main components of the proposed system are as follows:
• Question Analysis

• Template Classification

• Phrase Matching

• Query Construction

System Design

Question Analysis
• Stanza library for text analysis

• Part-of-speech tagging : annotate tokens

• Dependency parsing : build the dependency parse tree

System Design

Template Classification
• Identify the type of SPARQL query equivalent to the input question

• Tree-LSTM model implemented with PyTorch library

• Feature set
• Tokens

• POS tags

• Syntactic tree structure

• Relationship dependency tags

• Characters

System Design

Training data
Dependency

parsing

Build vocabulary
Build

embedding
models

Train Tree-LSTM
model

Build
dependency

tree structure

System Design

Phrase Matching
• Named Entity Recognition

• Entity and Relation Linking with Wikidata

• Falcon 2.0 library

Example: What is the capital of Denmark?

System Design

Query Construction
• Template classification captures the semantic structure of the user question

with slots to be filled

• Entities and predicates to be filled from phrase matching phrase

Example: What is the capital of Denmark?

Identified SPARQL template :

Query constructed :

Analysis and Results

Experiment Design
• The system was deployed on Google collaboratory.
• The Lc-QuaD dataset consisted of ~6000 English questions and their

equivalent SPARQL query.
• To improve the dataset, 600 questions were cleaned by correcting their

grammar and the SPARQL template id for 3 classes.
• This was separated into a training dataset of 480 questions and a testing

dataset of 120 questions that was used to evaluate the Tree-LSTM
classification model.

• The testing dataset of 120 questions was used to verify the query results of
the system.

• The model was trained for 20 epochs for each experiment.

Analysis and Results

Template Classification
• Composition of dataset

Composition of the training dataset Correctly identified templates Total data size(training / test)

Uncleaned full set records of three

templates

Template 1 (3327) +

Template 2 (740)+

Template 3 (2505)

56.5% 6572 (5258 /1314)

Cleaned dataset with subset of two

templates

Template 1 (200) +

Template 2 (200)

70% 400 (320 / 80)

Cleaned dataset with subset of three

templates

Template 1 (200) +

Template 2 (200) +

Template 3 (200)

72.83% 600 (480 / 120)

Analysis and Results

Template Classification
• Feature Selection

Test data Composition Feature List Accuracy

Template 1 + Template 2

(320 training records / 80 test records)

Dependency Tree + Word Embedding 62.5%

Dependency Tree + Parts-of-speech + Word embedding 65.5%

Dependency Tree + Parts-of-speech + Relation tags + Character +

Word Embedding

70%

Template 1 + Template 2 + Template 3

(480 training records / 120 test records)

Dependency Tree + Word Embedding 71.6%

Dependency Tree + Parts-of-speech + Word embedding 72.5%

Dependency Tree + Parts-of-speech + Relation tags + Character +

Word Embedding

72.83%

Analysis and Results

Parameter Tuning
• Small dataset size of 600 questions

• Prevent overfitting with aggressive regularization and curtail learning rate

• Weight decay
• Update weights every epoch with multiplicative factor less than 1

• Prevent exploding gradient

• Dropout
• Drop random units with their connections to prevent overfitting

• Adaptive learning rate
• Accuracy stagnant after few epochs ; training loss increasing

• Step scheduler periodically decreased learning rate

Analysis and Results

Parameter Tuning
• Final parameters of the model

Parameter Value

Input dimensions 444 x 1

Tree-LSTM memory dimensions 150 x 1

Epochs 20

Batch size 25

Learning rate 1 x 10-1

Weight decay 0.1 x 10-3

Dropout 0.2

Loss function Cross entropy loss

Optimizer Adam optimizer

Scheduler Stepwise learning rate decay

LR step size once every 5 epochs

LR step decay 0.1

Analysis and Results

Phrase Matching
• Alternate entity linking library : OpenTapioca

• Works better than Falcon 2.0 for person, organization and location

• Falcon 2.0 is a joint entity and relation linking module

Example: What is the atomic number of Helium?

Analysis and Results

Query Construction
• For a test dataset of 120 questions in English language, the highest accuracy

achieved by the Tree-LSTM model was 72.83%. This model identifies the
SPARQL query for the input question.

• The Falcon 2.0 API results the list of entities and relations that are combined
with the classification results.

• The resultant queries are checked against manually generated queries.
Queries are correct if they give the desired answer or are meaningfully
correct.

• From the 120 questions, 60% queries were constructed correctly.

Analysis and Results

Query Construction
• Example Result

Analysis and Results

Query Construction
• Example Result

Analysis and Results

Query Construction
• Types of errors possible:

• Misclassification of template

• Incorrect entity and relation linking

• Multiple triple candidates

• Incorrect grammar of input user question

Conclusion

• Resultant query can be executed on Wikidata query service to get the
desired answer

• The system has a correctness of 60% across 3 unique SPARQL
templates

• Lack of ontology recognition. Can be improved with custom entity
and relation linking module

• Extend training dataset for a larger template coverage as well as the
number of questions under each template

